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Abstract

Decreasing the number of people who must be vaccinated to immunize a community against an infectious disease could
both save resources and decrease outbreak sizes. A key to reaching such a lower threshold of immunization is to find and
vaccinate people who, through their behavior, are more likely than average to become infected and to spread the disease
further. Fortunately, the very behavior that makes these people important to vaccinate can help us to localize them. Earlier
studies have shown that one can use previous contacts to find people that are central in static contact networks. However,
real contact patterns are not static. In this paper, we investigate if there is additional information in the temporal contact
structure for vaccination protocols to exploit. We answer this affirmative by proposing two immunization methods that
exploit temporal correlations and showing that these methods outperform a benchmark static-network protocol in four
empirical contact datasets under various epidemic scenarios. Both methods rely only on obtainable, local information, and
can be implemented in practice. For the datasets directly related to contact patterns of potential disease spreading (of
sexually-transmitted and nosocomial infections respectively), the most efficient protocol is to sample people at random and
vaccinate their latest contacts. The network datasets are temporal, which enables us to make more realistic evaluations than
earlier studies—we use only information about the past for the purpose of vaccination, and about the future to simulate
disease outbreaks. Using analytically tractable models, we identify two temporal structures that explain how the protocols
earn their efficiency in the empirical data. This paper is a first step towards real vaccination protocols that exploit temporal-
network structure—future work is needed both to characterize the structure of real contact sequences and to devise
immunization methods that exploit these.
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Introduction

A key to effective prevention of infectious diseases is to identify

people at risk. Such individuals can then be tested (especially for

frequently asymptomatic diseases), informed of their risk situation

(with the goal to change their risk behavior), or (if a vaccine exist)

vaccinated. In this article, we will use vaccination, or immuniza-

tion, as a metaphor for all these cases (but discuss some more

concrete scenarios in the Discussion section).

Vaccination of an entire community is often not possible due to

limited supply, production capacity and manpower. But to

vaccinate a whole community is not desirable either—vaccine is

expensive, it may have side effects and, luckily, it is not needed to

immunize a community. If a large enough fraction f of it is

vaccinated, a disease cannot spread to any substantial degree—the

community has in effect achieved herd immunity [1]. Lowering the

threshold of f to reach herd immunity is thus important and the

way to do it is find people in risk of getting and spreading the

disease and vaccinate them.

Epidemic outbreaks of an infectious disease are complex

functions of both the characteristics of the pathogen and the

movement and interaction patterns of the people [1]. The diversity

in people’s contact patterns carries over into disease spreading

[1,2]. It is believed that an outbreak such as the SARS epidemics

of 2003 might not have become a major event if not for a few

highly influential spreaders [3] exhibiting behavior far outside the

norm. To lower the threshold for herd immunity, it is crucial to

identify and vaccinate these potentially influential individuals. The

idea in this paper is to use empirical contact structures, more or

less close to those over which disease may spread, to identify

important people to vaccinate. One early example of this

approach is the neighborhood vaccination (NV) [4] protocol—choose

a person at random among all persons that have been involved in

at least one contact at time t*, ask her to name someone she met,

vaccinate this other person, and repeat until a desired fraction of

the vertices are vaccinated. Chances are high that this other

person has a large degree (number of neighbors) in the static

interaction network and may be influential in spreading disease.

The contact structure thus not only influences disease dynamics, it

is also a source of information that can be exploited to stop the

disease. Human interaction patterns have much more structure

that can be utilized in immunization protocols than merely the
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distribution of degrees in a static network, which is what

neighborhood vaccination protocols build on. There is a great

deal of temporal structure as well [2]. The simplest such patterns

are cyclic—we are more likely to meet others at 3PM than at

3AM. Another potentially important temporal pattern is a broad

distribution of contact rates between pairs of individuals [1].

Especially for diseases with a relatively high infectious dose,

needing a prolonged exposure to transfer, this could have an

impact on the disease dynamics that is hard to predict from

network structure alone [5]. A straightforward extension of the NV

protocol to capture this structure would be to ask the person

chosen at random to name the person she has met most often since

some specific time. This is one of the protocols we test. A third

temporal pattern, which static network models do not capture, is

the overturn of relationships, i.e. that an edge is active for a limited

period of time and never again after this. If there is a positive

correlation between the activity over an edge and the activity of

the vertices at either side, then it is important to vaccinate people

who are engaged in a period of activity. This leads to another

extension of the NV protocol—ask the individual picked at random

who her most recent contact was (who could spread the disease),

and then vaccinate that person. Just like the NV protocol, this is a

method does not require any global knowledge and can be

implemented in practice.

To briefly review subsequent developments, following the NV

method, one line of research has focused on exploiting higher-

order static network structure [6–9]. This type of immunization

protocol has the obvious disadvantage that higher-order structure

is even more difficult to extract from social systems than the degree

sequence of the contact network. This approach is perhaps best

suited to stopping outbreaks of computer viruses where one can get

a fuller picture of the transmission trees. Ref. [6] includes an

iterated version of NV where neighbors of vaccinees, rather than

neighbors of random individuals, are vaccinated. Recent and Weight

can easily be extended to iterated versions (or to exploit higher

order structure, like Refs. [7–9]). Another recent theme addresses

the game theory aspect of voluntary vaccination [10]. If the

majority of a community gets vaccinated, the community has herd

immunity and there is no need to vaccinate an as yet unvaccinated

person. On the other hand, if few people get vaccinated, the risk of

getting the disease grows and vaccination may seem reasonable

even to needle-phobics. The present work applies to scenarios of

voluntary vaccination as well, provided that there is no strong

correlation between an individual’s contact-structural behavior

and her willingness to get vaccinated if faced with an approaching

epidemics. Yet other network-epidemiological studies of commu-

nity immunization focus on the simultaneous effects of the

population’s response to the disease and that of a vaccination

campaign [11,12].

In the rest of the work, we will test the vaccination protocols

mentioned above on four empirical datasets (some representing

realistic contact structures for disease contagion, some represent-

ing other types of contact and included more from as a reference).

Then we test the efficacy of the protocols by looking at how much

the vaccination lower the upper bound of outbreak sizes (in

fractions of the population size), and average outbreak sizes in

Susceptible–Infected–Susceptible (SIS) simulations [1], averaged

over the all individuals as infection sources. Throughout the paper,

we compare our protocols to NV, both because it one of the best

protocols that exploits only the contact structure and (more

importantly) that our protocols reduce to NV if the temporal

structure is projected out of the data. Then we go more into detail

in explaining how the protocol performance relates to the

temporal aspects of the contact structure. To this end, we use

models generating temporal contact sequences with certain

stylized features of the real data and study them by simulations

and approximate analytical calculations.

Results

The protocols
The two protocols we present in this paper use information from

a random individual I in the community to find another individual

to vaccinate who is more important in terms of disease spreading

than I. The strategies are illustrated in Fig. 1C–D, for a

hypothetical contagion of 100% transmission probability. In our

first protocol, Recent, we iteratively asked a random individual I to

name the most recent contact (of the sort that could transmit the

disease in question) and vaccinated this person. The contact

dynamics between two individuals has, at least in some circum-

stances, been observed to have a ‘‘bursty’’ dynamics—with

alternating periods of activity and idleness [13]. The same pattern

holds for the activity of individuals in the datasets we study in this

work. The Recent protocol targets this type of temporal structure,

and vaccinates individuals with a bias toward those currently in a

period of heightened activity. In our second protocol, Weight, we

iteratively asked a random individual I to name its most frequent

contact since some time t in the past. This method seeks to

vaccinate people who are, in general (or rather, over a longer time

scale), more active than average. It is possible that one can make

the protocols yet more efficient by choosing I as the last vaccinee

to obtain chains of vaccinations [6], but in this work we use the

above definitions to make the comparison with the well-known NV

protocol transparent.

Empirical datasets
We evaluate our strategies using four anonymized, empirical

datasets extracted from electronic records of human interaction.

Some of these datasets, which we present below, are more

representative of the contact structures underlying disease

transmission than other. The purpose of including lower quality

datasets in the analysis is to see a wider spectrum of temporal

effects (in the efficiency of the immunization protocols) as a ground

for our general discussion.

The first dataset comes from a Brazilian online forum where

male sex-buyers report and evaluate sexual encounters with female

escorts (top-end prostitutes). This data spans 2,232 days, 16,730

people and 50,632 sexual contacts [14]. We connect a sex-buyer

with an escort if they had at least one reported sexual encounter.

We take the post’s date as an estimate of the time of the encounter.

Although this contact structure does not describe an entire sexual

network, sexually transmitted infections (STI) can potentially

spread over the contacts [15]. Nonetheless, qualitative conclusions

(affected by the type of temporal and topological correlations

present, not their magnitude) should be valid even if we use the

data as a raw contact structure. Our second dataset records the

proximity between patients in a hospital network. The data,

described in detail in Ref. [16], cover 8,521 days and 295,107

patients living in the Stockholm region of Sweden. If two patients

are on the same ward on the same day, we record that as a

contact. In total, there are 64,625,283 such contacts that can be

interpreted as potential spreading events of nosocomial disease

[16]. The last two datasets come from online communications—

one is the e-mail exchange dataset from Ref. [13], where 3,188 e-

mail accounts were sampled over 83 days. An e-mail between two

addresses is recorded as a contact. In total there are 309,125

contacts. E-mails to or from someone outside of the sampled e-

mail accounts are ignored. This network captures some general
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features of human dynamics and is a representative structure for

spreading of computer virus and information or opinions. More

than that, however, its temporal structure gives a different type of

behavior than the other datasets with respect to vaccination and

we will use it as an example of such. The fourth dataset comes

from an Internet dating community [17]. Various forms of

communication between 29,341 members were recorded over 512

days, comprising a total of 536,276 contacts. Although the

contacts in this community are precursors to romantic and sexual

relationships (and thus potential disease spreaders), one can

probably not draw any direct conclusion from it; rather, we

include it as an example.

Simulation of vaccination campaigns on empirical
contact sequences

Contacts within a population have two functions in a

vaccination campaign. First it is the connective structure that

actually spreads the pathogen. Second, it is the basis for

information from which we decide whom to vaccinate. At the

time of the vaccination, we can only affect the disease spreading

over contacts happening in the future, and base our decisions on

contacts that have happened in the past. Therefore, in our

simulations, we divide the sampling timeframe [0,T] into two

periods [0,t*] and [t*,T] (where we chose t* as the time three-

quarters of the contacts occurred) and use the first period only as

the information source for the immunization protocol, and the

second solely for the purpose of evaluation via disease simulation.

In line with our stylized level of modeling, the vaccination is

assumed to take place instantaneously at t*. This means that, in

our study, the immunization program is assumed to occur at a

time scale much shorter than that of epidemics, which is strictly

speaking not the reality. Another motivation for this assumption is

that the results would probably be qualitatively the same without

it, so to avoid the complication of scanning different vaccination

rates, we assume the rate is infinite. We also note that vaccines are

usually distributed in batches that make the vaccination process

pulse-like rather than continuous. Another assumption is that the

disease is introduced into the system at the same time the

vaccination program starts. While this is strictly speaking incorrect,

it is feasible to assume that the vast majority of the population is

uninfected at the time of the vaccination. A third unrealistic but

simplifying assumption is that immunization is immediate and

completely effective. Like the above assumptions, we make this

one in order to keep the model mathematically simple and

consonant with the rest of the literature. A more realistic model,

with a non-zero probability of infection even though one is

vaccinated, could be a topic for a deeper investigation, but would

probably yield results similar to a rescaling of f (to smaller values,

reflecting the occasional infection of a vaccinee).

Upper bound on outbreak sizes
In Fig. 2, we plot the performance of the strategies as a function

of the fraction f of the population vaccinated. The performance

measure is based on calculating V—the average upper bound of

outbreak size (what one would get if all possible transmission

events, where an infective person meet a susceptible, actually

happens) in simulations as outlined above. We define V as the

average over all vertices present in the contact set in the interval

[t*,T] as infection sources. V is thus a measure for contact-

sequences corresponding to the largest connected component in a

static network—a common estimate of the severity of worst-case

scenarios [18]. However, in contrast to the largest component size,

V also includes temporal network effects such as that the disease

can only spread from one vertex at time t via its edges active in the

future of t [19,20]. To quantify the relative benefits of the different

strategies, we plot the fractional increase of V with respect to the

NV method, DV. If, for example, DV= 210% the strategy in

question decreases the upper bound of outbreak sizes by 10%

relative to neighborhood vaccination. (The raw V-values can be

found in Fig. S1 and a discussion in Text S1.) The prostitution,

hospital, and Internet dating networks all yield similar results for

DV; the curves for the e-mail data look drastically different (we will

look further into why below). The relative advantage of Recent is

strongest for the sexual contact network of Fig. 2A (with more than

20% improvement over NV at best). Our first conclusion is that

DV is mostly negative—both Recent and Weight outperform NV for

most datasets and fractions of the population vaccinated. Weight is

typically better than NV (being about 20% better in the email

Figure 1. An illustration of a pictorial simulation of the immunization protocols. Panel A displays an artificial contact structure where each
horizontal line represents an individual. The circles and vertical lines indicate the contacts. There are two regions, separated by half of the sampling
time, one for learning (experience) and one for disease spreading. Panel B shows an example of a spreading process with 100% chance of contagion
per contact, no recovery and no vaccination. Red lines represent infected individuals. In Panels C and D we see the same spreading event as in (B), but
now, one individual is vaccinated by the Recent (C) or Weight (D) strategies. The ego indicates the vertex selected at random in the immunization
protocol and the dotted line, its selected neighbor according to Recent or Weight strategy.
doi:10.1371/journal.pone.0036439.g001
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network). Recent, on the other hand, performs worse than NV for

the e-mail network but is better for the other contact sequences.

Average outbreak sizes in dynamic simulations
To test the immunization protocols in a more realistic situation

than the upper bound of outbreak sizes, we also run SIS

simulations [1]. If we get qualitatively similar results from the

SIS simulations that would be a strong indication that our results

are stable. For example, the Susceptible–Infected–Removed (SIR)

model, which is similar to SIS but does not, like SI, allow

reinfections is in that sense intermediate between SI and SIS and

would therefore (in practical situations) be expected to behave like

an SI and SIS in agreement. In our simulations, a susceptible

individual becomes infected upon contact with an infected with a

probability l. We let the infected stage last a fixed duration d. We

go through all unvaccinated vertices as sources of infection and

simulate the disease spread within the interval [t*,T]. It might thus

happen that the source is only present in the data before t*, in

which case it would certainly not infect anyone else.

The first quantity we look at for these simulations (see Fig. 3,

which shows results for SIS) is the average fraction of individuals

that is infected at least once v (averaged over all unvaccinated

individuals as infection sources and 1000 random seeds) as a

function of f. (We plot the raw v-values in Fig. S2, and discuss

them in Text S1.) For this plot we use the parameter values

l= 0.25 and d= 3 weeks. We choose this transmission probability

to roughly reflect realistic diseases (for example, less contagious

than chlamydia [21], more than HIV [22]), and short durations to

capture dynamic effects of the finite duration of diseases. Since the

datasets are limited in time, such effects would vanish if d was

much longer. The SIR (Susceptible–Infected–Removed) model

with the same parameter values yields rather similar curves—the

skewed distribution of activity in these datasets means that the

probability of re-infection (the difference between SIS and SIR) is

significant only for the comparatively small group of most active

individuals.

The curves in Fig. 3 are strikingly similar to those in Fig. 2. Only

the magnitude of the differences varies—for the prostitution Dv
(Fig. 3A) is consistently smaller than DV (Fig. 2A); for the other

three datasets, the difference in performance is larger (about 15%

improvement for the Recent strategy in the Hospital and Internet

dating networks and more than 30% for the Weight strategy for

the email network) for the SIS simulations in comparison to the

worst-case scenario measure, V. One explanation for the small

differences in the prostitution data is that about three-quarters of

the contacts occur only once. Our strategy Recent can eliminate a

worst-case scenario by finding people involved in these rather rare

recurring contacts; however, for the average outbreak sizes

measured in the SIS simulations, the chance of an outbreak is so

small, that the v-values do not differ much.

Relative advantage of strategies as a function of
infectivity and duration of the infective state

We continue our analysis of how the vaccination affects the

average outbreak sizes in stochastic simulations by looking at the

response of v to the model parameters l and d. In this analysis, we

Figure 2. The performance of the Recent and Weight strategies relative to the NV method. The performance measure V is the upper bound
of the outbreak size, given the temporal contact structures, averaged over all infection sources. The yellow regions indicate an improvement on NV
(the more negative values, the better). The different panels correspond to the four different datasets. The error bars indicate standard errors over the
set of infection sources.
doi:10.1371/journal.pone.0036439.g002
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keep f = 20%—a value close to where the choice of immunization

strategy makes most difference. In addition, the four datasets in

this analysis fall into two classes where the e-mail data exhibits a

unique behavior and the three others are similar to each other. We

let the smallest dataset of this category—the Internet dating

network—represent the whole class. To evaluate the strategies, we

go through all the unvaccinated individuals as sources of the

epidemics, apply the immunization protocols, and calculate, for a

pair of immunization strategies A and B: out of 100 runs of the SIS

model, how many times strategy A outperforms strategy B. In

Fig. 4, we present the deviation in percent FWeight–Recent from a

scenario where the strategies are equally successful (other

combinations of strategies, including NV can be found in the

Fig. S3 and a discussion in Text S1). The main conclusion is that

the observation from Fig. 3 holds throughout the (l,d) parameter

space—Weight is the best strategy for the e-mail data; Recent is the

best for the others. In the small l and small d limit, the disease will

die out soon whether someone has been vaccinated or not. This

explains why the smallest deviations, both in Fig. 4A and B, occurs

for the smallest (l,d)-values. Then, if we focus on the dating

community in Fig. 4A, there is a dramatic change in FWeight–Recent as

l exceeds 50% for d.40 days. This is related to an epidemic

threshold that, despite the skewed degree distributions (Fig. 5A–

D), is rather clear for this type of data [15]—for l.50%, a disease

can spread to a finite fraction of the population, and the

immunization protocols do make a difference for this dataset.

Furthermore, if one varies d, F responds in a highly non-linear

manner. If the duration of the infection is long enough, the

benefits of the strategies are similar, but for diseases short in

duration, F changes rapidly with d. For the e-mail data there is a

similar plateauing d-dependence of F, but l-dependence is closer

to zero, rather than an intermediate value.

Model of artificial contact sequences
From the above studies we may conclude that, regardless of the

type of the disease, Recent is the best strategy for the prostitution,

Internet dating, and hospital proximity data, whereas Weight is the

better strategy for the e-mail dataset. Why? Recent, Weight and NV

all handle topology in the same way, in the sense that the vaccinee

is chosen from the same neighborhood, so any difference in

efficiency probably comes from the temporal characteristics of the

activity between two persons. This is further corroborated by the

fact that the degree distributions—both of the accumulated

contact network and the network of ongoing contacts (that at a

specific point has happened and will happen again)—are

qualitatively similar for all four datasets (Fig. 5A–D). A candidate

explanatory temporal structure is burstiness [23], the phenomenon

that human activities of some specific type often are grouped in

time. It turns out that all our datasets have fairly high burstiness

(measured by a quantity presented in the Methods section) and it

cannot separate the e-mail data from the others (Fig. 5E). One

aspect that sets the e-mail data apart, however, is that the edges

are fairly persistent (measured by the fraction of edges that is

present both in the first and last 5% of the contacts). In a situation

Figure 3. The performance of the Recent and Weight strategies relative to the NV method for a dynamic, SIS-type disease simulation.
The performance measure in this case is the average outbreak size v (total number of infected individuals) in a SIS simulation with a per-contact
transmission probability l= 0.25 and a duration d of the infected stage of three weeks. Just like Fig. 2, the vaccination is more efficient, relative to NV,
the lower Dv is. The error bars correspond to the standard error calculated over all unvaccinated vertices as infection sources and 1000 runs of the
vaccination and SIS simulation per source.
doi:10.1371/journal.pone.0036439.g003
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like the e-mail data where the overall activity is rather uniform, the

activity of the more distant past is more reliable in predicting

future activity. The Internet dating, hospital, and prostitution

networks are more dynamic, with individuals entering and leaving

the system (here, the persistence about 50 times less than the e-

mail data). The trend in the Internet dating community is on the

Figure 4. The relative performance of Recent and Weight over the SIS model’s parameter values. We measure a quantity FWeight–Recent that
is large if an SIS outbreak, on average, is better stopped by Weight than Recent. More specifically, we calculate which immunization protocol that
would most efficiently (in terms of the lowering the number of infection events during the simulation) stop an infection starting at vertex i, and
average it over all i. FWeight–Recent is the deviation from a neutral situation of Weight and Recent being most effective for an equal fraction of vertices.
For every parameter value, we use all unvaccinated vertices as infection sources and 100 runs of the immunization protocol and disease simulations.
In this plot, we use f = 20%. The dating-community data (A) behave qualitatively like the prostitution and hospital contact data.
doi:10.1371/journal.pone.0036439.g004

Figure 5. Degree distributions of the empirical datasets. In panels A–D, we plot the probability density p as a function of degree k. We plot
results both for the accumulated network of all contacts and averages of three networks of ongoing contacts (defined by all edges that, at a certain
time t9, a contact over all edges have happened and will happen again). We choose t9 as when a quarter, half and three quarter have happened. In
panel E, we show the values of two types of temporal statistics of the datasets—the persistence (which separates the e-mail data from the rest) and
burstiness.
doi:10.1371/journal.pone.0036439.g005
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increase in terms of system-wide activity level, whereas the hospital

and prostitution data show a more quasi-stable behavior where

individuals enter and leave the system at a more constant pace. If

we assume a situation where in terms of activity identical users

come and leave the system at equal rates, the users most recently

seen to be active are also the ones most likely to be active in the

near future, and thus the ones most urgently requiring vaccination.

This helps us to understand why Recent is the best strategy for

Internet dating, prostitution, and hospital proximity network.

To put the arguments above on a more solid footing, we

construct two models of contact patterns capturing these two

temporal structures (see illustrations in Figs. 6A and B). In both

these models, the network structure is purely random (details in the

Methods section) to ensure that all of the effects we observe are

temporal. In the first model, which captures varying activity (the VA

model), we let communication over an edge (a connected pair of

vertices in the network) take place at intervals of t, a value drawn

from a uniform distribution, until time reaches T. The second

model embodies the birth and death of relationships—each edge is

active for a fixed duration (Dt time steps, with one contact per time

step), but the starting time is random. We call this model the partner

turnover (PT) model.

In Figs. 6C–F, we plot the results from our simulations of the

contact pattern models. These simulations, which investigate both

worst-case scenarios (Figs. 6C–D) and average outbreak sizes in

the SIS model (Figs. 6C–F), confirm that temporal structure can

create the different efficacies of the immunization protocols. For

the VA model, since the neighbor to vaccinate is chosen in

proportion to weight, the chance of picking a highly active

individual is higher with the Weight strategy than NV. If Recent is

applied to the VA model in our range of parameters (relatively

large t*), there is a heightened chance that the latest contact is one

with a small t that will not recur (Text S1), which makes Recent

perform worse than NV. For the PT model, if an edge recently had

some activity, chances are high that it will be active again soon.

Recent is designed to find such recently active edges, so it logically

works better than NV in this situation. If there are relationships

that are over in the PT model, then Weight will pick one of those.

This is clearly counterproductive compared to sampling recently

active (like Recent), like the NV strategy, just choosing a random

neighbor. The best strategies for each of these artificial networks

improve the NV protocol by 10–40%. One can show analytically

(see Text S1 and Fig. S4), that using the accumulated degree as a

proxy for the importance of the vaccinated vertex, Recent performs

better than NV, which performs better than Weight for the partner

turnover model, and Weight performs better than NV, which

performs better than Recent for the varying activity model, for most

realistic parameter values.

Discussion

In this paper, we propose two immunization protocols seeking

to exploit both the temporal and topological contact structures.

We limit ourselves to protocols that are practically realizable

(admitting that the problem formulation is very simplified

compared to the politics of real vaccination campaigns). Our

strategies utilize both temporal and topological contact structure,

Figure 6. Evaluating the performance of the vaccination strategies for different types of temporal correlations. In A and B, we
illustrate the models that encode the different temporal contact structures. In the varying activity model (A), the first contact along an edge happens
at time ts after the beginning of the simulation and then subsequent contacts happen with a time interval ts. In the other, partner turnover, model (B),
an edge becomes active with uniform probability in time the interval [0,T2n]. The edge is active for n time steps with one contact per time step.
Panels C and D show the worst-case scenario, V, and panels E and F show the average outbreak sizes in the SIS model. The networks used in C and E
follow the temporal profile shown in panel A; panels D and F follow the profile illustrated in panel B. The underlying network topology is the Erdős-
Rényi model, which has a minimum of structural bias.
doi:10.1371/journal.pone.0036439.g006
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and we show that they are more effective than the neighborhood

vaccination protocol (that uses only static topological information).

The two strategies are based on sampling individuals at random,

asking them ‘‘Who where you in contact with most recently [in

such a way that disease could have spread]?’’ (the Recent strategy)

or ‘‘Who were you in contact with most often the last X months?’’

(the Weight strategy), and then vaccinating the named individual.

In this paper, we study the long-term limit of X, so that the X

months cover all the datasets before the vaccination time. To

clearly observe the effects of the temporal structure (in contrast to

the network topology), we limited ourselves to straightforward

extensions of the neighborhood vaccination protocol. One can

imagine extensions like recursive, chained applications of these

protocols (cf. Ref. [6]), or a Bayesian approach where one scan the

patterns predicting future contacts for the ones optimizing

vaccination.

We test the strategies on four empirical datasets of contacts.

These are primarily intended as examples to prove the main point

that simple local vaccination strategies can exploit temporal

network structure (and leave it to future studies to devise

vaccination strategies for general temporal-network structures).

Two of these datasets represent possible pathways for real

epidemics (a sexual network of Internet-mediated prostitution

and a proximity network of patients in a hospital system). The

other two datasets come from online communication (where,

presumably, an edge means a high chance for an offline social tie,

but the temporal contact structure is probably not so correlated

with the offline contacts). We split the sampling times of the data

into two parts, the first where the individuals experience the world,

and the second where an epidemic spreads via the contacts. In this

work, we set this breaking point at three quarters of the sampling

time, but this choice is rather arbitrary, setting it to half or 90% of

the sampling time gives qualitatively the same results (not shown).

Furthermore, we see that the conclusions are qualitatively

unchanged with shorter sampling periods (we truncate half of

the time series and observe the same response). Like all other

empirical datasets constituting subsets of human contacts, our data

can have biases from the sampling procedure. That a person

disappears from the prostitution data does not mean the person

become inactive. At the moment there are no theories for how to

compensate for such effects in temporal networks (as there are for

static networks [24]), so we make the assumption that the

structures are not artifacts of the sampling (which is to some

extent corroborated by the facts, mentioned above, that results are

insensitive to truncating the data and moving of the breaking

point). If one would consider the same scenario with much longer

data sets, so long that the behavior of individuals have time to

change, then the oldest information would not be worth much for

predicting important people to vaccinate in the near future.

Symmetrically, the selection of people to vaccinate at present will

not matter for outbreaks in the far future. To generalize these two

cases, events far from now cannot affect, or be affected, by the

temporal network structure, but at worst Recent and Weight will

perform as random vaccination.

In contrast to other vaccination simulations [3,6–9], we do not

assume that contact patterns are the same before and after

vaccination. In these other studies, the network that will transmit

the disease after vaccination is already used as a basis for

identifying individuals to vaccinate. In this respect, our approach is

more strict and realistic compared to the above-mentioned studies.

As it turns out, the Weight strategy outperforms Recent and NV for

the e-mail data while Recent is the most efficient method for the

other three datasets. This tells us four things. First, there is enough

temporal structure in the contact patterns for our protocols to be

effective. Second, the optimal choice of immunization protocol

can be dependent on the specific contact structure of a disease.

Third, in the more realistic networks that we investigate Recent is

the better strategy (although the datasets are so few that such a

generalization should be taken with a grain of salt). Fourth, the

temporal correlations of these more realistic networks are

relatively short. After a closer look at the temporal structures

separating these datasets, using models of contact dynamics (where

one can control the temporal structure,), we argue that a turnover

of relationships promotes the efficiency of Recent. A similar result is

Koopman et al.’s finding that short-term fluctuations are more

important than long-term changes for HIV transmission [25]. In

general, temporal-network based methods can be more efficient

than the static-network approaches within a time window of the

size of the correlations in the data. Too far into the past or future

both Weight and Recent will converge to NV. Weight, in contrast, is

most efficient when the ties between individuals overlap strongly in

time, but there is a broad distribution of contact rates over those

ties. These conclusions seem to hold irrespective of the degree

distribution of the aggregated network (as we test both on the

skewed, fat-tailed empirical networks and model network that have

degrees distributed by the narrow Poisson distribution). Still, it

could of course be the case that real systems have other temporal

structures, which illustrates that we need future studies both to

characterize the temporal-network structure of real-world contact

structures and to propose vaccination strategies that exploit these

structures. In a real implementation, the naming of a person by

another, picked at random, could be erroneous both when it

comes to pointing out someone that has been in such a close

contact that a disease could have spread, and assessing the order

(for Recent) or intensity (Weight) of the contacts. On the other hand,

if there are large errors in the latter, time-related assessments, then

Recent and Weight will effectively approach the NV protocol. If, in

addition, there is a significant inaccuracy in the assessment of

whom that has been close enough for contagion, then all three

protocols—Recent, Weight and NV—approach random vaccination.

Most practical vaccination campaigns are voluntary. Assuming

voluntary vaccination is not primarily guided by risk-awareness, it

probably comes close random vaccination. So Recent and Weight

would at worst, in the case there is no information to utilize,

perform like voluntary vaccination.

We mentioned in the Introduction that vaccination is to be

taken in the most general sense, as reducing the risk a specific

individual gets and transmits a disease. When it comes to practical

vaccination of real infectious disease, Hepatitis B is perhaps the

pathogen that fits our protocols best for two reasons [26]. First, its

primary contagion pathways are sexual contacts and injecting drug

use, so contacts that could transmit the disease are easily

recognizable. This increases the accuracy of the naming step of

the protocols, and thus their efficiency. Second, it has effective

vaccines. One can also imagine HIV prevention as an application,

but vaccination should then be read as counseling, perhaps in

combination with antiretroviral prophylactics. Another type of

clinical practice that could be improved by our protocols is the

partner treatment of diseases like chlamydia, gonorrhea and

trichomonas, where an infected patient can get medication for a

partner without the partner having to be examined [27]. If the

patient has more than one sexual partner, the choice of whom to

include in the partner treatment could be guided by the most

recent or the most frequent partner since some time into the past.

In a wider perspective, a related sampling procedure of our

vaccination protocols is contact tracing [28], where one tries to

sample people within an epidemic outbreak by having everyone

testing positive to report their previous contacts and testing these.
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In case one does not want to make a complete sampling of the

former contacts of infected individuals, a slightly modified Recent or

Weight could be used to set the priority of whom to call for testing.

At a fundamental level, the fact that, no less than the topology,

temporal structures can influence the efficiency of immunization

protocols must be more thoroughly understood. Similar problems

arise in other areas where one seeks to limit a spreading

phenomenon dependent on contact dynamics such as diseases in

wild or domestic animals, e-mail viruses, or computer worms [29].

We anticipate more research in this direction.

Methods

Disease-spreading simulation
All the datasets we use can, mathematically, be represented as

lists of contacts (xi,yi,ti), i = 1,…,C. Each triple represents a contact

between individual xi and yi at time ti. We can assume that a

contact list is ordered such that ti#ti+1 for all i. Without loss of

generality, we set t1 = 0. T, the total sampling time, is thus simply

tC. Let N(t) be the number of vertices at time t and N (without

argument) denote N(T).

We divide the sampling time into two parts [0,t*] and [t*,T]

where t* = tx = t3C/4. At time t* we both vaccinate the population

and start the disease. We choose one vertex among the entire

unvaccinated population (even if their last contact is before, or first

contact after, t*), with uniform randomness, as an infection source.

The immunization protocols use the experience from the interval

[0,t*], but no information whatsoever about the interval when the

epidemics is unfolding [t*,T]. The results in the paper are

qualitatively rather insensitive to the choice of x. However, if x is

too small the information the protocols can act upon is smaller and

naturally their performance worse. If x is too large then the time

for the disease simulations get too short. Our results are roughly

speaking stable in the interval 50%,x,90%, so we settle for

x = 75% as a round number.

At time t* we choose Nf individuals to vaccinate (where f is a

control parameter setting the fraction of the population to

vaccinate). The flow chart of the simulation is:

1. With uniform probability, pick an individual i among the N(t*)

individuals present in the data at this time.

2. Pick a neighbor j of i, either the most recent contact of i (the

Recent protocol) or the most frequent contact in the interval

[t*2X, t*], 0#X,t* (Weight), or any contact in this interval with

uniform probability (NV). For simplicity, we use X = t* in this

paper.

3. If such a vertex j exists and is not vaccinated, then vaccinate j.

4. If Nf vertices are not yet vaccinated, go to step 1.

One run of the SIS disease simulation starts by marking one

source vertex as being infected, and all other vertices marked as

susceptible. Then we go through all contacts (xi,yi,ti), 3C/4,i#C,

and if xi (yi) is infected, but not yi (xi), then, with a probability l, yi

(xi) becomes infected. After a time d, an infected vertex becomes

susceptible again. Our key quantity is v—the total fraction of

infected vertices at time T. When we study the average upper

bound of outbreak sizes—technically equal to the outcome of a

SIS simulation with l= 1 and d= ‘—we use the symbol V
(instead of v) for the average number of individuals that can be

reached by successive contacts from the source. To calculate v and

V, we average over all (12f) N unvaccinated vertices as infection

sources and 1000 independent runs of the immunization protocol

and disease propagation.

Burstiness
Burstiness is a feature typical for time lines of events in the life of

a human. If you, for example, look at the times a person sends

email, they are typically grouped into periods of intense activity,

‘‘bursts,’’ with few contacts in between. We follow Ref. [23] and

define a measure of burstiness as the coefficient of variation of the

times t between events—B = (st2mt)/(st2mt), where st is the

standard deviation of t and mt is the mean. B takes values between

21 and 1 where 21 indicates a completely regular signal, 1 is a

maximally bursty signal and 0 represents neutrality.

Models of contact dynamics
To elucidate the effects of the temporal structure on the

immunization protocols, we use two generative models of contact

sequences. The network topologies of these simulations are the

same—an instance of an Erdős–Rényi model [30] with 1000

vertices and 2000 edges. The idea is to generate an underlying

network topology with as little structure as possible, to test the

hypothesis that the relative performance of Recent and Weight are

more dependent on the temporal, than the topological, aspects of

contact structure. Given the topology, we associate every edge

with a set of contacts generated by one of two methods. For the

first method (the varying activity model), we draw a random

number t with uniform probability in the interval [0,T]. Then we

let the contacts over the edge take place at times t, 2t, …, nt,
where n is the largest number such that nt,T. In the other

method, the partner turnover model, the contacts take place over

Dt consecutive time steps. The starting time for this burst of

contacts, ts, is a random variable drawn with uniform probability

from the interval [0, T2Dt]. We use T = 10,000 and Dt = 250.
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Supporting Information

Figure S1 The upper limit of the outbreak sizes V for
our two vaccination protocols, neighborhood vaccina-
tion and an unbiased vaccination of the f individuals.
Different panels are for different datasets (corresponding to Figs. 2

and 3 in the paper). The points are averaged over all unvaccinated

vertices as infection sources and 1000 realizations of the

vaccination scheme and disease simulation per infection source.

Error bars display standard errors.

(TIF)

Figure S2 The average outbreak size v for our two
vaccination protocols, neighborhood vaccination and an
unbiased random vaccination of the f individuals. The

parameter values are l= 0.25 (l is the per contact transmission

probability) and a duration d= 3 weeks of the infected stage.

Different panels are for different data sets (corresponding to Figs. 2

and 3 in the paper). The points are averaged over all unvaccinated

vertices as infection sources and 1000 realizations of the

vaccination protocol and outbreak simulations. Error bars display

standard errors.

(TIF)

Figure S3 The performance of the Recent and Weight
strategies relative to the NV model for an SIS disease
simulation. The performance measure FA–B shows which

strategy is most efficient (per infection source) relative to a neutral
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situation where the strategies A and B are equally efficient (cf.

Fig. 4 in the paper). For every parameter value, we use all vertices

as infection sources and 100 runs of the vaccination protocol and

disease simulations. Our other datasets (from prostitution and

hospital contacts) behave qualitatively like the dating-community

data (A).

(TIF)

Figure S4 Illustration of quantities for the discussion of
the varying activity model.
(TIF)

Text S1 Supporting statistics and analytic derivation of
the contact model’s behavior. In this text, we discuss some

additional statistics (the raw values of upper bounds on outbreak

sizes and raw values on average outbreak sizes in SIS simulations)

that give the same conclusion as the figures in the main article but

from different angles. We also include an analytic derivation of the

response of the vaccination protocols to the two models of contact

patterns along an edge.
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