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This paper presents the modeling of a host immune system, more precisely the immune effector cell and immune memory cell
population, and its interaction with an invading pathogen population. It will tackle two issues of interest; on the one hand, in
defining a stochastic model accounting for the inherent nature of organisms in population dynamics, namely multiplication with
mutation and selection; on the other hand, in providing a description of pathogens that may vary their antigens through mutations
during infection of the host. Unlike most of the literature, which models the dynamics with first-order differential equations, this
paper proposes a Galton-Watson type branching process to describe stochastically by whole distributions the population dynamics
of pathogens and immune cells. In the first model case, the pathogen of a given type is either eradicated or shows oscillatory chronic
response. In the second model case, the pathogen shows variational behavior changing its antigen resulting in a prolonged immune
reaction.

1. Introducing Relevant Prior Knowledge

1.1. Putting the Objectives of the Paper into Context. The
wide relevance of pathogens, such as the influenza virus, the
human immunodeficiency virus (HIV), or trypanosomes,
give great significance to those studies, where pathogens are
able to vary their antigens while still vital in the host and
where the host’s immune system mounts specific immune
reactions (by clonal selection, somatic hyper-mutation, and
forming an immune memory) [1].

Investigations of long-term dynamics of hosts and their
immune systems in environments that consist of variable
pathogen strains are especially valuable in, first, knowing
how duration of the immunological memory can influence
the pathogen competition and in, second, evaluating whether
the pathogen can be a selective force that can shape the
evolution of the immunological memory [2]. The study of
these processes is, however, a very complex endeavor. Indeed,
in the lowest approximation of understanding the interaction
between the invading pathogen and the immune system, the
selected immune clones do not go on to future generations
of the infected host. Moreover, the ability of a virus/bacteria

to survive within the host does not necessarily imply good
ability to infect other hosts, and thus survive and evolve.

In this paper, we will focus solely on modeling the
dynamics of an infection within one host, and we will
provide possible understanding of how the pathogen load
and pathogen diversity influence the immune response [3–
5]. Can the complex process of an immune response be
simplified to be tractable theoretically but still represent
some basic facts from immunobiology [6]? In understanding
the immune response, it is well established that both the
pathogen [7] invading the host as well as the effector
[8, 9] of the host’s immune system (trying to get rid of
the pathogen) undergo a step-by-step Darwinian process,
namely, multiplication with mutation, and selection. This
process is stochastic in nature: chance events weighted by
fitness influence the processes of multiplication, mutation
and selection. The immune response involves two such
entities, which are coupled: the pathogen, that is, virus,
bacterium or parasite, on the one hand, and the immune
effector cell together with its immune memory cell as
idioblast on the other hand. The specific immune response
to the pathogen worsens the conditions for the pathogen
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to thrive, and ultimately eliminates the pathogen, at best,
without harming the host.

In the following section (Section 1.2), we provide
a short description of the basic biological facts of an
immune response as well as some mathematical background
on continuous models studied previously in theoretical
immunology (Section 1.3). We then propose on grounds
of a simple stochastic approach of a Darwinian entity
(Sections 2.1–2.4), a stochastic model of an immune
response (Section 3.1) by coupling two Darwinian entities.
We apply this model to a nonvarying pathogen (Section 3.2),
and to the challenging problem of a variable pathogen
(Section 3.3), for example, a strain of a pathogen transform-
ing into another strain each with different antigens that
are presented to the immune system. Finally we model the
maturation process from a naive immune cell to an effector
cell that contributes to the elimination of the pathogen
(Section 4).

1.2. Basic Facts from Immunology and the Request for a Simple
Model. The interaction between a pathogen, which can be
a virus, a bacterium or a parasite that has invaded a host,
and the reaction of the host’s immune system, which is
a concerted action of multiple players in time and space,
is certainly not simple [1]. It includes the fully developed
specific adaptive/acquired immune system, mainly the B
and T lymphocytes as well as the innate immune system,
mainly the macrophages, which are dumping cells, and the
soluble cytokines, which themselves have a wide spectrum
of biological activities that help to coordinate the complex
immune regulation.

An important part of the specific adaptive/acquired
immune system is the “endogenous-cellular” path, where
the pathogen—which is usually a virus, but it can also be
an intracellular bacteria—proliferates within the cytosol of
the host cell. The antigens of this pathogen via proteasome,
endoplasmatic reticulum and Golgi apparatus are presented
at the surface of this cell by the major histocompatibility
complex I (MHC-I). If such a cell happens to be a
dendritic cell (DC), which is an antigen-presenting cell
(APC) that transports the antigen from its entrance site
to the corresponding secondary lymph organ, the antigen
presented can be recognized specifically by the antigen
receptor (CD8) of a “matured T lymphocyte” that entered
the lymphatic system. Before naive T lymphocyte have
undergone maturation: first, a naı̈ve T lymphocyte in bone
marrow or thymus undergoes T-cell receptor rearrangement
(β selection). T cells with high affinity to self-peptides MHC
are eliminated (negative selection), whereas T cells with
T-cell receptors that are able to bind self-peptides MHC
molecules with at least a weak affinity survive (positive
selection) and circulate in the peripheral lymphatic system.
The matured T lymphocyte, recognizing the antigen by high
affinity to the antigen-loaded MHC, transforms into an
effector cell and proliferates. These cells are short-lived and
some participate in forming memory cells. The cytotoxic
T-lymphocytes (CTL) then only kill those cells, which
harbor the pathogen by recognizing its antigens presented

at the surface of the infected cell by MHC-I molecules.
Thus, further proliferation of the pathogen is diminished.
Viruses are intracellular parasites that depend on the host
cell to survive and replicate. The host cell can be damaged
either directly by the virus or by the immune response
it provoked consisting of cytokines, macrophages, and
antibodies and, most important, the CTLs. The balance of
good or bad harm depends on the virus lethality, the amount
of virus present (virus load), the amount of tissue infected
(cyto-pathogenicity) and the affinity of CTL-response, and
duration of CTL response (chronicity of the infection [10]).

One can note another path, the “exogenous-humoral”
path whereby the pathogen, which is usually a bacterium, but
it can be a virus or a parasite as well, proliferates in the extra-
cellular space of the host. The pathogen, or fragments of it, is
endocytosed into the phagolysosome of a host’s APC, which
transports the antigen as a DC to the secondary lymph organ,
and the antigens of the pathogen are presented at the surface
of this cell by MHC-II molecules. The antigen presented
can be recognized specifically by the antigen receptor of a
matured helper T lymphocyte (called CD4 Th1 and CD4
Th2, resp.). A matured B lymphocyte (interacting specifically
with the matured helper T lymphocyte) becomes activated
(transforms into an effector cell and proliferates: these cells
are short-lived, and some participate in forming memory
cells), it is then called PC- (plasma-cell) producing antigen
receptors (called IgG and IgE, resp.) which are soluble. These
antibodies, or immune globulins, mark the pathogen, which
in turn is phagozytosed and killed by macrophages.

For the function of specific adaptive/acquired immune
system, the B-cell and T-cell memory is essential [11–14].
The immune memory renders the immune response at
multiple encounters with the same pathogen more efficient
than at the first encounter.

The mathematical model in Section 3 considers only
the effector cell properties (i.e., proliferation, cell death
and memory cell formation) of the immune system and
the pathogen properties (i.e., proliferation, cell death and
variation) thus justifying the applicability of same conceptual
frame of a Darwinian entity.

1.3. Previous Mathematical Models of the Immune Response.
Previous approaches on the theoretical understanding of the
interaction between an invading pathogen and the host’s
immune system [15–23], especially on the issue of mul-
tistrain pathogens [24–27], are derived from deterministic
models and are continuous in time. Continuous models
provide a good representation of the dynamics when there
are many participants and when fluctuations are small.
These models are based on establishing a reasonable set
of first-order differential equations that are assumed to be
generic equations describing the properties of single cells
[20]. The rates of change with respect to time of each
variable describing the mean values of fractions of a total cell
population are equal to a corresponding source (replication
rate) and sink (death rate and rate at which new strains are
generated). One studies, respectively, analytic and numerical
solutions, which have mainly nonlinear properties. In the
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most suitable example [3, 4], these authors introduce the
following differential equations with five variables as follows:

ẋ = λ− (d − βv
)
x,

ẏ = βxv − (a + pz
)
y,

v̇ = ky − uv,

ẇ = (cy − f y − r
)
w,

ż = f yw − bz,

(1)

where, x represents the uninfected host cell, which prolif-
erates (rate λ), dies (rate dx), and gets infected (rate βvx),
y represents the infected host cell, which has been infected
(rate βxv) and dies (rates ay and pzy), v represents the free
virus, which proliferates within infected host cell followed
by expulsion (rate ky) and declines (rate uv), w represents
the immune precursor/memory-cell, which proliferates (rate
cyw), differentiates into immune effector cell upon antigenic
challenge (rate f yw), and dies (rate rw), z represents the
immune effector cell, which has differentiated from immune
precursor/memory-cell (rate f yw) and dies (rate bz).

The authors [3, 4] give parameter regions of their
model, for example, the case of low virus load, where the
immune system is nonresponsive, the case of high load
of noncytopathic virus, where exhaustion of the immune
system occurs, and the case of immune memory function
where the immune response is persistent. They apply the
model successfully to infections with the Lymphocyte Chori-
omeningitis virus (LCMV) and the HIV. Another Ansatz
related to antigenic variation is given by [5]

v̇i j =
(
ri j − pixi − qj y j

)
vi j ,

ẋi = ηci
∑

j

vi j +

⎛

⎝ci
∑

j

vi j − b

⎞

⎠xi,

ẏ j = ηkj
∑

j

vi j +

⎛

⎝kj
∑

j

vi j − b

⎞

⎠yi,

(2)

where, vi j represents the virus variants with sequence i in
epitope A and sequence j in epitope B, both coexistent,
which proliferate (rate ri j) and being killed by CTLs (rates
pixivi j and qj y jvi j), xi represents the CTLs against sequence
i of epitope A, which proliferate upon activation or being
already active (rates ηci

∑
j vi j or ci(

∑
j vi j)xi) and die (rate

bxi), yj represents the CTL against sequence j of epitope
B, which proliferate upon activation or being already active
(rates ηkj

∑
j vi j or kj(

∑
j vi j)yj) and die (rate byj).

These coupled nonlinear differential equations investi-
gate the complex phenomena occurring in a host which is
infected by a heterogeneous pathogen population, namely,
inducing a fluctuating immune response against multiple
epitopes with the potential of a shift of immunodominance
by escape in one epitope (for a simple case the options are
termed A1, B1, C2, and D2 with sequences A and B at epitope
1 and sequences C and D at epitope 2, resp.).

Systems (which would die according to their differential
equations approximation), when taking into account the
discrete character of their microscopic components, display
the emergence of macroscopic localized subpopulations with
collective adaptive properties that allow their survival and
development [28–30]. Simulations based on a hybrid model
generate a more faithful approximation of the reality of the
immune system [31].

2. Developing the Methods

2.1. Modeling a Darwinian Entity. Within the schema of
general evolutionary biology, an entity, and thus its clonal
population of individuals, undergoes a step-by-step Dar-
winian process from one generation to the next, that is,
multiplication with random mutations and selection biased
by fitness in the dependency to the actual environment
(Figure 1). Each entity carries an information storage device
(genotype), for example, a polymer (i.e., DNA or RNA) with
a specific monomer sequence, which, in the multiplication
phase, is copied with occasional mismatches (copying error
probability per monomer). In the selection phase, each
individual entity has a certain probability to be selected to
survive according to the fitness of the phenotype (retrieved
from the information storage device) in reference to its
environment. Many and sustained step-by-step Darwinian
processes are required from the first replicating molecule up
to the emergence of mankind and many species emerged and
others became extinct along the long way called Darwinian
evolution.

Biological conduct is immanently stochastic, especially in
the view of a cell population dynamics following a step-by-
step Darwinian process. Stochastic models offer the benefit
of handling the dynamics of whole population distributions
(with their mean and standard deviation as deduction).
These models provide a good representation of the dynamics
when the numbers of participants in the process are small or
when fluctuations are large. (e.g., extinction or initiation of
infection). It is also worth noting that for studying extinction
probabilities, it is natural to turn to stochastic models.

Some stochastic approaches deal with birth-death pro-
cesses by solving “Master equations” [32], by discrete-time
multitype branching processes [33, 34], and by modeling
gene-amplification process with branching random walks
[35, 36]. Our approach in this paper is based on the theory
of branching processes, more precisely on some multitype
modifications of the standard Galton-Watson processes
examined in detail [37–41].

2.2. Dynamical Stochastic Process of an Entity with Mul-
tiplication and Selection. This paper does not explicitly
consider the information carrier (genotype) with its readouts
(phenotype), nor the environment (bone marrow or thymus
or secondary lymph organs in case of the immune cells,
intracellular or extracellular space in case of the pathogen).
The frequencies of division, the probability of forming
new strains during multiplication, and the death rate,
all constitute parameters in implicitly dealing with those
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Darwinian entity

Environment

Multiplication
with variation

Selection:

Changed phenotype
Copy error

Structure of 
environment

Higher fitness by
improved interaction

One generation
Time

Weak interaction
results in low fitness

Survives into
next generation

Probability to survive
Proportional to fitness

Survived from
previous generation

Phenotype
Envelope

Genotype

Figure 1: Schema of a Darwinian entity. An individual is singled out from the population. A period of one generation is shown. Incidental
copying error occurs during multiplication (changed genotype resulting in changed phenotype) with new fitness in reference to its structured
environment. The probability of being selected to survive is given according to new fitness.

0

0

Number of individuals

Does not survive

Probability
that individual

Does survive

(b) Selection phase

(a) Multiplication phase

No copy

Copy
N before multiplication

μ
1− α

α

β

1− β
N after selection

A after multiplication

A before selection

Figure 2: Sketch of how convolution of a binomial distribution is applied to probability distribution. (a) multiplication phase M, (3). (b)
Selection phase S, (4). (μ−N) Maximal possible number of copies. (ν−N) Number of copies.

properties. The discrete time step of the dynamics is given
by the duration of each generation.

We model the process of multiplication and selection by
a dynamical stochastic process with the following rules [42]:

(0) Start with one individual WS
0 (1) = 1 (probability 1 of

finding one individual at the end of generation n =
0). Increase generation number from n = 0 to n = 1.

(i) Evaluate the probability distribution WM
n (ν) of find-

ing 0 ≤ ν ≤ Nmax individuals after multiplication
phase M of generation n. The number of individuals
reaches the cut-off value Nmax in the case of limited
nutrition supply.

(ii) Evaluate the probability distribution WS
n(N) of find-

ing 0 ≤ N ≤ Nmax individuals after selection phase S
of generation n.

(iii) Increase generation number from n to n + 1 and
continue with (i) accordingly.

2.3. Multiplication without Mutation. The probability dis-
tribution to find 0 ≤ ν ≤ Nmax individuals after mul-
tiplication phase M of the nth generation is given by the
sum over all possible paths of the conditional probabilities(
μ−N
ν−N

)
α(ν−N)(1− α)(μ−ν) leading to that state (ν individuals)

given the state (N individuals) at the end of the selection
phase of the (n − 1)th generation times the probability
WS

n−1(N) of that state, that is, the convolution of a binomial
distribution (Figure 2(a))

WM
n (ν) =

ν∑

N=η

(
μ−N
ν−N

)

α(ν−N)(1− α)(μ−ν) ·WS
n−1(N), (3)

where α is the probability of one copy, and 1 − α is the
probability of no copy. The binomial coefficient counts
without regard to order the number of ways of choosing
ν − N copies from μ − N maximal possible copies, where
ν is the total number of individuals after the multiplication
process, and μ = Min(ρ · N ,Nmax) is the total number
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Figure 3: Dynamical stochastic process of multiplication and selection. Discrete limit, one initial ancestor. The two cardinal examples (a)
n = 7 (rn-regime, r = ρβ = 4/3, ln(r) = 0.288) and (b) n = 50 (Z∞-regime). Upper left: probability distribution WM

n (ν) of finding 0 ≤ ν ≤
Nmax individuals after the multiplication phase of the nth generation (3). Lower left probability distribution WS

n(N) of finding 0 ≤ N ≤ Nmax

individuals after the selection phase of the nth generation (4). Maximal total number Nmax (cut-off value due to limited nutrition supply).
Upper right: probability of extinction W(0) along generation n. Lower right: average number of individuals ν = ∑Nmax

ν=0 WM
n (ν) · ν and

N = ∑Nmax
N=0 WS

n(N) ·N along generation n. Parameters: Nmax = 128, multiplication factor ρ = 2, and copy probability α = 1 (all individuals
that are present before multiplication copy once), surviving probability β = 2/3. Deterministic model (green in lower right, equations (7)
and (8)): K = 64, N0 = 1, and R = 0.344.
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(3). Lower left: probability distribution WS

n(N) of finding N individuals after selection phase S of generation n (4). Average and standard
deviation indicated (correct values only by taking the probability of extinction W(0) into account). Upper right: probability of extinction
W(0) along generation n. Lower right: number of individuals ν and N with its standard deviation along generation n (least square fit,
R = 0.0694, see (7) and (8)). Parameters: Maximal total number Nmax = 128, multiplication factor ρ = 2, and copy probability α = 0.1 (only
10% of individuals that are present before multiplication copy once), surviving probability β = 0.9664.
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of maximal possible individuals after the multiplication
process (multiplication factor ρ) considering the cut-off
condition when the limit of nutrition supply is reached, and
η = Ceiling(ν/ρ). WS

n−1(N) is the probability of finding
the population of N individuals before the multiplication
process (which is the same as after the selection process of
(n − 1)th generation). WM

n (ν) is a probability distribution
with

∑Nmax
ν=0 WM

n (ν) = 1.
The probability distribution to find 0 ≤ N ≤ Nmax

individuals after the selection phase S of the nth generation
is again given by the sum over all possible paths of the
conditional probabilities ( ν

N )βN (1− β)(ν−N) leading to that
state (N individuals), given the state (ν individuals) at the
end of the multiplication phase of the nth generation times
the probability WM

n (ν) of that state, that is, the convolution
of a binomial distribution (Figure 2(b))

WS
n(N) =

Nmax∑

ν=0

(
ν
N

)

βN
(
1− β

)(ν−N) ·WM
n (ν), (4)

where β is the probability that an individual survives, and
1 − β is the probability that an individual does not survive.
The binomial coefficient counts, without regard to order, the
number of ways of choosing N surviving individuals from
a population of ν individuals. The probability of finding
this population of n individuals before the selection process
is WM

n (ν). Again, WS
n(N) is a probability distribution with

∑Nmax
N=0 W

S
n(N) = 1.

We assume that one initial ancestor appears in the
beginning of the first generation (which is the same as
after the selection process of generation n = 0) thus the
probability WS

0 (1) = 1 (root of iterative process). The
numerical evaluations are given in Figure 3 (discrete limit)
and Figure 4 (continuous limit). How the model responds
to variations in key parameters is presented in [42]. One can
insert (3) into (4) (renaming function and index, see (5)) and
construct the probability generating function (PGF) with the
dummy variable s, see (6)

PN
(
j
) =

μ∑

ν= j

(
μ−N
ν−N

)

α(ν−N)(1− α)(μ−ν) ·
(

ν
j

)

βj
(
1− β

)(ν− j),

(5)

GN (s) =
Nmax∑

j=0

PN
(
j
) · s j = (1− β + βs

)N(1− αβ + αβs
)N

.

(6)

A step-by-step Darwinian process alternating between a
multiplication and a selection phase per generation with a
constant generation time (typically a fraction of an hour to
days) and nonoverlapping generations can be contrived in
the two following ways:

(i) By the discrete limit with great oscillations in average
numbers of individuals ν and N (Figure 3), where
each individual is copied (copy probability α = 1),
and where the selection is intermediate (selection
probability to survive β = 2/3). This would imply

an orchestration of phases by an environmental
pacemaker (day and night in case of origin of life [42–
46]).

(ii) By the continuous limit (Figure 4), where the prob-
ability of an individual to copy is sufficiently small
(α = 0.1), and where the probability to be selected
to survive is close to one (β = 0.9664). This implies
individual pacemakers and a smother course of the
average numbers of individuals ν and N .

Taking average values of the probability distributions,
one compares the stochastic model with the deterministic
model given by the differential equation [47] describing
a birth-death process (number of individuals N , R =
birth rate − death rate and saturation K , where dN/dt = 0)
and its analytic solution (initial value N0 of N)

dN

dt
= RN − R

K
N2, (7)

N(t) = eRt
N0K

(K −N0 + N0eRt)
. (8)

Note: the probability distribution W(N) and the probability
of extinction W(0) are not represented within deterministic
models.

2.4. Multiplication with Copying Errors Leading to One
Mutant. The probability distribution to find νA individuals
of the initial form A and νB individuals of the mutant B (0 ≤
νA + νB = ν ≤ Nmax) after the multiplication phase M of the
nth generation is given by the convolution (Figure 5(a))

WM
n (νA, νB)

=
Nmax∑

NA=0

Nmax−NA∑

NB=0

μA−NA∑

kA=0

μA−kA−NA∑

kAB=0

WS
n−1(NA,NB)

·
(
μA −NA

kA

)

α
(μA−kA−NA)
A (1− αA)kA

·
(
μA − kA −NA

kAB

)

εkABAB (1− εAB)(μA−kA−kAB−NA)

·
(
μB −NB

kB

)

α
(μB−kB−NB)
B (1− αB)kB

·
(
μB − kB −NB

kBA

)

εkBABA (1− εBA)(μB−kB−kBA−NB),

(9)

where the two remaining indices are given by

kB = μA + μB − νA − νB − kA,

kBA = νA + kAB + kA − μA.
(10)

Each individual A (and B) replicates by a copy probability
αA (and αB, resp.). εAB (and εBA) are the probabilities that an
error in copying the initial form A occurs, and the new form
B emerges (and vice versa). The second binomial coefficient
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Number of individuals
Probability
that individual

(a) Multiplication phase

(b) Selection phase

Initial form does not survive 1− βA

New form does not survive 1− βB

New form

Initial form

NA initial form after selection

NB new form after selection

NA initial form before multiplication

NB new form before multiplication

No error in copy αA(1− εAB)

Error in copy of initial form αAεAB

No copy 1− αA

No error in copy αB(1− εBA)

Error in copy of new form αBεBA

No copy 1− αB

μA

A = μA − kA − kAB + KBA

Initial form after multiplication

B = μB − kB − kBA + kAB
new form after multiplication

μB

μB − kB

μA − kA

μB − kB − kBA

μA − kA − kAB

0

0

AB new form before selection

AA initial form before selection

A

A

Initial form survives βA

New form survives βB

Figure 5: Sketch for (9), (10), and (12) of how convolution of a binomial distribution is applied to probability distribution. (a) Multiplication
phase M, (9), (10): μA −NA − kA total copies of initial form A (and μB −NB − kB total copies of mutant B); μA −NA maximal possible copies
according to the multiplication factors ρA of initial form A (and μB −NB maximal possible copies according to the multiplication factors ρB
of mutant B); kAB (and kBA) number of copies transforming from initial form A to mutant B (and vice versa resp.). (b) Selection phase S,
(12).

(and the fourth binomial coefficient) counts without regard
to order the number of ways of choosing kAB (and kBA, resp.)
error-containing copies of the initial form A giving the new
form B (and vice versa) from a collection of μA − kA −
NA (and μB − kB − NB) total copies of the initial form A
(and of the new form B, resp.). The first binomial coefficient
(and the third binomial coefficient) counts without regard to
order the number of ways of choosing μA−kA−NA (and μB−
kB − NB) total copies of the initial form A (of the new
form B, resp.) from a collection of μA − NA (and μB − NB)
maximal possible copies according to the multiplication
factors ρA (and ρB) of the initial form A (and of the new
form B, resp.). The cut-off conditions (where Nmax is for the
total numbers of both forms A and B and νadj is defined in
Figure 6) then are

μA = ρA ·NA μB = ρB ·NB if ρA ·NA + ρB ·NB ≤ Nmax,

μA = νadj μB = Nmax − νadj if ρA ·NA + ρB ·NB > Nmax.
(11)

The probability distribution to find NA individuals of the
initial form A and NB individuals of the new form (mutant

B) (0 ≤ NA + NB = N ≤ Nmax) after the selection phase S of
the nth generation is given by the convolution (Figure 5(b))

WS
n(NA,NB) =

Nmax∑

νA=NA

Nmax−νA∑

νB=NB

WM
n (νA, νB)

·
(

νA
NA

)

βNA
A

(
1− βA

)(νA−NA)

·
(

νB
NB

)

βNB
B

(
1− βB

)(νB−NB),

(12)

where βA (and βB) are the probabilities that one individual
of the initial form A (and mutant B, resp.) survives.
Figure 7 shows the dynamics resulting from evaluation by
computer.

Taking average values of the probability distributions,
one compares the stochastic model with the determin-
istic model given by the two coupled differential equa-
tions [48] being the extension of a birth-and-death pro-
cess described in (7) for two entities transforming one
entity into the other (number of individuals NA and NB,
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B

{ ρA ·NA, ρB ·NB}

{ adj,Nmax − vadj}
{ Nmax, 0} { 0, Nmax}

{ 0, 0}

{ NA, NB}

A

AAA

Figure 6: Sketch to construct the cut-off condition in the case of initial form A and one kind of mutant B. If, by multiplication of {NA,NB}
individuals (black disk •) with factors ρA and ρB respectively, the total number ρA ·NA + ρB ·NB > Nmax would be beyond the limit of supply
Nmax, (circle ◦), the correct cut-off point {νadj,Nmax− νadj} (black square �) is the most adjacent to the intersection. Note: partition and take
average for more than one such point. The probability distributions and cut-off conditions in the cases of more than one kind of mutant are
accordingly.
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Figure 7: Dynamical stochastic process for initial form A and mutant B. One initial ancestor of form A. Three cardinal examples (a) n = 48,
(b) n = 164, and (c) n = 600. Upper left (triangle graph for 0 and scales 0.15 for W and 32 for n): probability distribution WM

n (νA, νB)
of finding νA individuals of initial form A (red) and νB individuals of mutant B (blue) after multiplication phase M of generation n (9),
(10). Lower left (triangle graph): probability distribution WS

n(NA,NB) of finding NA individuals of initial form A (red) and NB individuals
of mutant B (blue) after selection phase S of generation n (12). Upper right: total extinction probability W(0) of both initial form (A) and
mutant (B) together (violet) along generation n. Lower right: average number of individuals ν and N of initial form A (red) and mutant B
(blue) with their standard deviations (black) along generation n. Parameters: maximal total number Nmax = 32, copy probability αA = 0.1
and αB = 0.1, multiplication factor ρA = 3 of initial form A, multiplication factor ρB = 6 of mutant B, mutation probability εAB = 0.01 from
initial form A to mutant B, mutation probability εBA = 0.001 from mutant B to initial form A, surviving probability βA = 0.95 of initial
form A, surviving probability βB = 0.95 of mutant B. Deterministic model (green in lower right, (13)): Ra = 0.128, Rb = 0.14, and K = 16.

R = birth rate − death rate parameters Ra and Rb, and
saturation K) as follows:

dNA

dt
= Ra ·NA − Ra

K
N2

A −
Rb

K
NANB,

dNB

dt
= Rb ·NB − Rb

K
N2

B −
Ra

K
NBNA.

(13)

3. Applying the Methods

3.1. Modeling the Immune Response to a Pathogen by Coupling
Two Darwinian Entities. Let us look first at the conceptual

fundamentals of our model: to get the general idea, one
applies Occam’s razor (or lex parsimoniae translating to law
of succinctness) onto the complex immunological system
described above and then one provides a minimal represen-
tation of the immune response. In the following we consider:

(i) the host as being unstructured by not considering its
multicompartmentness (i.e., not considering that the
entrance site of the pathogen is spatially apart from
the corresponding secondary lymph organ, where
part of the immune-system response takes place);
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(ii) the invading pathogen (P) taking into account its
variable antigens but not distinguishing between
endogenous or exogenous paths (i.e., not considering
that the pathogen thrives within a cell of the host or
within the interstitial space);

(iii) the immune system with the immune effector (E)
taking into account an immune memory (M), but
not distinguishing between T or B lymphocytes;

(iv) the step-by-step Darwinian process as fundamental
to both entities (pathogen as well as to the immune
effector and its memory state), which are specifically
coupled;

(v) the stochastic representation of a Darwinian entity
as a sufficiently good starting point to solve the
proposed problem.

Stochastic models offer the benefit of handling the
dynamics of whole distributions with their mean and stan-
dard deviation as deduction, whereas deterministic models
deal with quantities that arise as large population rescaling.

We propose a dynamical model of two interlocked
Darwinian entities, the pathogen P on the one hand, and
the immune system on the other hand consisting of the
immune effector E and the immune memory M (Figure 8).
The coupling is such that at each time step the parameters
for the pathogen system are dependent on the current state
of the immune system and the parameters for the immune
system are dependent on the current state of the pathogen
system. As in any control system (such as body temperature
of endotherms or glucose concentration in blood) there are
two states: (i) the measured variable goes below a threshold
or “lower set point,” then the actuator is turned on and
subsequently the measured value increases, and (ii) the
measured variable goes above a threshold or “upper set
point,” then the actuator is turned off and subsequently
the measured value decreases. Within stochastic fluctuations
such systems are intrinsic periodic around a steady state.

3.2. Modeling the Immune Response to One Pathogen. The
multiplication phase of pathogen P (with antigen A) is
described by (see (3) from Section, now with index P)

WM
n (νP)

=
ν∑

NP=η

(
μP −NP

νP −NP

)

α(νP−NP)
P (1− αP)(μP−νP) ·WS

n−1(NP).

(14)

The selection phase of pathogen P is described by (see (4)
from Section, now with index P)

WS
n(NP)

=
Nmax∑

ν=NP

(
νP
NP

)

βNP
P

(
1− βP

)(νP−NP) ·WM
n (νP).

(15)

The multiplication phase of immune effector E (produc-
ing antibody a) and memory M is described by (see (9) and
(10) from Section 2.4, now with indices E and M)

WM
n (νE, νM)

=
Nmax∑

NE=0

Nmax−NE∑

NM=0

μE−NE∑

kE=0

μE−kE−NE∑

kEM=0

WS
n−1(NE,NM)

·
(
μE −NE

kE

)

α
(μE−kE−NE)
E (1− αE)kE

·
(
μE − kE −NE

kEM

)

εkEMEM (1− εEM)(μE−kE−kEM−NE)

·
(
μM −NM

kM

)

α
(μM−kM−NM)
M (1− αM)kM

·
(
μM − kM −NM

kME

)

εkME
ME (1− εME)(μM−kM−kME−NM),

(16)

where the two remaining indices are given by

kM = μE + μM − νE − νM − kE,

kME = νE + kEM + kE − μE.
(17)

The cut-off conditions are

μE = ρE ·NEμM

= ρM ·NM if ρE ·NE + ρM ·NM ≤ Nmax,

μE = νadjμM

= Nmax − νadj if ρE ·NE + ρM ·NM > Nmax,

μP = ρP ·NP if ρP ·NP ≤ Nmax,

μP = Nmax if ρP ·NP > Nmax.

(18)

The selection phase of immune effector E and memoryM
is described by (see (12) from Section 2.4, now with indices
E and M)

WS
n(NE,NM) =

Nmax∑

νE=NE

Nmax−νE∑

νM=NM

WM
n (νE, νM)

·
(

νE
NE

)

βNE
E

(
1− βE

)(νE−NE)

·
(

νM
NM

)

βNM
M

(
1− βM

)(νM−NM)
.

(19)

Each individual has a probability β, that is, βP(E),
βE(P), and βM(P), being selected to survive, it replicates by
a copy-probability α = 0.1, multiplication-factor ρ, that is,
ρP(E), ρE(P), and ρM(P) with a mutation probability ε, that
is, εEM(P) and εME(P). Thus, the multiplication factor ρ,
the error probability ε, and the surviving probability β are

parameters in function of averages P = ∑NP,max

NP=0 W(NP) · NP
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Figure 8: Scheme of the immune system response (immune effectors Ea producing antigen-receptor a and immune-memory cells Ma) to
an invading pathogen (pathogen PA carrying antigen A). Two-state model: immune effector is turned on (from neutralized state to effector
state) when average number of pathogens go above threshold TP ; pathogen is turned off (from proliferating to neutralized state) when average
immune response goes above threshold TE; immune effector is turned off (from effector state to neutralized state) when average number
of pathogens go below threshold. First infection by the proliferating pathogen PA (high multiplication factor, high selection probability to
survive) initiates the immune response of the host: an immune cell with the recipe for antigen-receptor “a” is singled out from the reservoir
of naive immune cells to form an immune effector Ea which proliferates (high-multiplication factor, high-selection probability). Above
a threshold titer of antigen-receptor a, the pathogen is neutralized PA (low multiplication factor, low selection probability). The immune
effectors Ea are transformed into immune-memory cells Ma which do not produce antigen-receptor a but carry its recipe (low-multiplication
factor, high-selection probability). During any further infections by the pathogen PA, the immune-memory cells with the recipe for antigen-
receptor a are formed back into immune effectors producing antigen-receptor a. Pathogen PA carrying antigen A can transform to pathogen
PB carrying antigen B. A new immune respond has to be launched with immune effectors Eb producing antigen-receptor b and immune-
memory cells Mb.

and E =∑Nmax
NE ,NM=0 W(NE,NM)·NE (omitting the indices S/M

and n for simplicity) that form the coupling (step functions
with threshold values, see captions of Figures 8, 2 and 4).

In Figure 9 the case is shown, where the pathogen is
eliminated (probability of extinction W(0) = 1.0 after initial
infection and after reinfection). In Figure 10, an oscillatory
chronic case is shown, where after an apparent conquest

and the subsequent relaxation of the immune reaction, the
pathogen is flaring up again (probability of extinction W(0)
persists below 1.0).

3.3. Modeling the Immune Response to a Variable Pathogen.
We consider a simple case (Figure 11) of a pathogen with two
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Figure 9: Computer result of a pathogen P (with antigen A) coupled through averages to an immune system consisting of an effector E
(producing antigen receptor a) and memory M. Case where pathogen is eliminated. Glimpses at generation (a) n = 13, (b) n = 84 and (c)
n = 200. Upper left (triangle graph for 0 and scales 0.15 for W and 32 for N): probability WS

n(NP) of finding 0 ≤ NP ≤ Nmax individuals
of the pathogen P (green). Lower left (triangle graph): probability WS

n(NE,NM) of finding NE individuals of the immune effector E (red)
and NM individuals of the immune memory M (blue), (0 ≤ NE + NM ≤ Nmax). Upper right: extinction probability W(0) as a function of
generations n of pathogen (green), immune effector, and immune memory (violet). Lower right: average of pathogen P (green), of immune
effector E (red), and of immune memory M (blue) as a function of generations n. Parameter values: maximal total number Nmax = 32;
αP = 0.1, αE = 0.1, and αM = 0.1. For average E < TE = 1.5 (below threshold value, immune effector E inactive): ρP = 6, βP = 0.96. For
average E > TE = 1.5 (above threshold value, immune effector E active): ρP = 2, βP = 0.65. For average P > TP = 0.5 (below threshold value,
pathogen P not seen by immune system): ρE = 2, ρM = 2, εEM = 0.50, εME = 0.01, βE = 0.90, and βM = 0.93. For average P > TP = 0.5
(above threshold value, pathogen P seen by immune system): ρE = 6, ρM = 2, εEM = 0.50, εME = 0.50, βE = 0.95, and βM = 0.93.

alleles at an A-to-B genlocus (one epitope): the pathogen PA
(or pathogen PB, resp.) expressing antigen A (or antigen B).
The multiplication phase of pathogens PA and PB is described
by ((9), (10) from Section 2.4, now with indices PA and
PB)

WM
n

(
νPA , νPB

)

=
Nmax∑

NPA=0

Nmax−NPA∑

NPB=0

μPA−NPA∑

kPA=0

μPA−kPA−NPA∑

kPAPB=0

WS
n−1

(
NPA ,NPB

)

.

(
μPA −NPA

kPA

)

α
(μPA−kPA−NPA )
PA

(
1− αPA

)kPA

.

(
μPA − kPA −NPA

kPAPB

)

ε
kPAPB
PAPB

(
1− εPAPB

)(μPA−kPA−kPAPB−NPA )

.

(
μPB −NPB

kPB

)

α
(μPB−kPB−NPB )
PB

(
1− αPB

)kPB

.

(
μPB − kPB −NPB

kPBPA

)

ε
kPBPA
PBPA

(
1− εPBPA

)(μPB−kPB−kPBPA−NPB ),

(20)

where the two remaining indices are given by

kPB = μPA + μPB − νPA − νPB − kPA ,

kPBPA = νPA + kPAPB + kPA − μPA .
(21)

The selection phase of pathogens PA and PB is described
by ((12) from section 2.4, now with indices PA and PB)

WS
n

(
NPA ,NPB

) =
Nmax∑

νPA=NPA

Nmax−νPA∑

νPB=NPB

WM
n

(
νPA , νPB

)

.

(
νPA
NPA

)

β
NPA
PA

(
1− βPA

)(νPA−NPA )

.

(
νPB
NPB

)

β
NPB
PB

(
1− βPB

)(νPB−NPB )
.

(22)

The immune effector Ea (or immune effector Eb)
responding specifically, thus producing antigen-receptor a
(or antigen-receptor b) which recognizes the antigen A (or
antigen B) and eliminates pathogen PA (or pathogen PB,
resp.). While the antigen “A” is the “lock” and the antigen-
receptor “a” is the corresponding “key” (or the antigen
B is the lock and the antigen-receptor b is another, but
corresponding key.
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Figure 10: Computer result of a pathogen P (with antigen A) coupled through averages to an immune system consisting of an effector E
(producing antigen receptor a) and memory M. Case where the pathogen is reappearing while the immune system response is low. Glimpse
at generation n = 100. Parameter values other than Figure 2: For average E > TE = 1.5 (above threshold value, immune effector E active):
βP = 0.75. For average P < TP = 1.5 (below threshold value, pathogen P not seen by immune system): βE = 0.85. For average P > TP = 1.5
(above threshold value, pathogen P seen by immune system): βE = 0.90.
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Figure 11: Immune response to a variable pathogen (pathogen strains each with different antigens which are presented to the immune
system). Two alleles at a AB-genlocus of the pathogen expressing antigen A or B: the immune effectors respond specifically (lock and key
principle) by proliferation and producing antigen-receptor (antibody) a or b.
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Figure 12: Computer result of a varying pathogen (PA with antigen A changing into PB with antigen B) coupled through averages to an
immune system against antigen A consisting of an effector Ea and memory Ma and against antigen B consisting of an effector Eb and
memory Mb. Partial change of pathogen PA to pathogen PB escaping immune effector Ea and with delayed immune response of effector
Eb. Glimpses at generation (a) n = 22, (b) n = 100. Upper left (triangle graph for 0 and scales 0.15 for W and 32 for N): probability
WS

n(NPA ,NPB ) of finding NPA individuals of the pathogen PA with antigen A and of finding NPB individuals of the pathogen PB with antigen
B (green) (0 ≤ NPA +NPB ≤ Nmax). Middle left (triangle graph): probability WS

n(NEa ,NMa ) of finding NEa individuals of the immune effector
(red) and NMa individuals of immune memory (blue) against antigen A (0 ≤ NEa + NMa ≤ Nmax). Lower left (triangle graph): probability
WS

n(NEb ,NMb ) of finding NEb individuals of the immune effector (red) and NMb individuals of immune memory (blue) against antigen B
(0 ≤ NEb + NMb ≤ Nmax). Upper right: extinction probability W(0) as a function of generations n of pathogen (green), immune effector &
memory against antigen A and immune effector & memory against antigen B (both violet). Middle and lower right: average of pathogen P
(green), of immune effector E (red) and of immune memory M (blue) against antigen A (middle right) and against antigen B (lower right)
as a function of generations n. Parameter values others than Figure 2: average TPA = 1.5 and average TPB = 1.5, respectively (threshold value
to switch immune system); εPAPB = 0.01, εPBPA = 0.001 (pathogen variability).
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Figure 13: Computer result of the maturation process of T-lymphocytes. First a naı̈ve T-lymphocyte (LNaive, green) in bone marrow or
thymus undergoes T-cell receptor rearrangement (β-selection). T-cells with high affinity to self-peptides MHC (LSelf, black) are eliminated
(negative selection), whereas T-cells with T cell receptors that are able to bind self-peptides MHC molecules with at least a weak affinity
(LMat->I , blue and LMat->A, red) survive (positive selection) and circulate in the peripheral lymphatic system. The matured T-lymphocyte,
recognizing the antigen by high affinity to the antigen-loaded MHC (LMat->A, red), transforms into an effector cell and proliferates. Glimpses
at generation at n = 27 and n = 83. Left: probabilities WS

n(N) of finding N individuals of T lymphocytes (0 ≤ N ≤ Nmax). Upper right:
extinction probability W(0) as a function of generations n. Lower right: average of T lymphocytes L as a function of generations n. Parameter
values and their change during the dynamics (a) n < 50 (b) 50 ≤ n < 100 (c) 100 ≤ n: maximal total number Nmax = 16; αLNaive = 0.1, αLSelf =
0.1, αLMat->I = 0.1, αLMat->A = 0.1, ρLNaive = 2, ρLSelf = 1, ρLMat->I = 1, ρLMat->A = 1/4/1, βLNaive = 0.95, βLSelf = 0.75, βLMat->I = 0.99/0.75/0.75,
βLMat->A = 0.99/0.98/0.75, εLNaiveLSelf = 0.7, εLNaiveLMat->I = 0.7, εLNaiveLMat->A = 0.7.

In Figure 12 we show a computer result of a varying
pathogen (PA with antigen A changes into PB with antigen B
with a certain probability εPAPB , εPBPA vice versa, see equations
(20)–(22) with indices PA und PB describing pathogens A
and B) coupled through average values to an immune system
against antigen A (and against antigen B) consisting of an
effector Ea and memory Ma (and an effector Eb and memory
Mb). There is no “a to b” or “b to a”—transition within the
immune system. The pathogen expressing antigen A is nearly
eradicated, but the mutant pathogen strain-expressing anti-
gen B has escaped the immune attack (probability distribu-
tion upper left of Figure 12). As an outcome, one can see that
the thriving of the pathogen within the host is prolonged.

4. Maturation of T-Lymphocytes

As mentioned in Section 1.2, the T-lymphocyte comes in
four different forms: a naı̈ve T-lymphocyte in bone marrow
or thymus undergoes T-cell receptor rearrangement (β-
selection), where T-cells with high affinity to self-peptides
MHC are eliminated (negative selection), and T-cells with
T cell receptors that are able to bind MHC molecules with
at least a weak affinity survive in the peripheral lymphatic
system (positive selection). The matured T-lymphocyte
recognizing the antigen by high affinity to the antigen
loaded MHC transforms into an effector cell and proliferates.
We consider in Figure 13 the dynamics of a probability
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function with four variables describing naı̈ve lymphocyte
LNaive, lymphocyte LSelf with strong affinity to self-peptides,
matured lymphocyte LMat−>I with weak affinity to foreign-
peptides, this lymphocyte gets inactivated, matured lympho-
cyte LMat−>A with strong affinity to foreign-peptides, this
lymphocyte gets activated (Mat = matured, I = inactivated,
A = activated). The multiplication phase is described by

WM
n

(
νLNaive , νLSelf , νLMat->I , νLMat->A

)

=
Nmax∑

NLNaive=0

Nmax−NLNaive∑

NLSelf=0

Nmax−NLNaive−NLSelf∑

NLMat->I=0

Nmax−NLNaive−NLSelf−NLMat->I∑

NLMat->A=0

WS
n−1

(
NLNaive ,NLSelf ,NLMat->I ,NLMat->A

)

·
(
μLNaive −NLNaive

kLNaive

)

α
(μLNaive−kLNaive−NLNaive )
LNaive

(
1− αLNaive

)kLNaive

·
(
μLSelf −NLSelf

kLSelf

)

α
(μLSelf−kLSelf−NLSelf )
LSelf

(
1− αLSelf

)kLSelf

·
(
μLMat->I −NLMat->I

kLMat->I

)

α
(μLMat->I−kLMat->I−NLMat->I )
LMat->I

· (1− αLMat->I

)kLMat->I

·
(
μLMat->A −NLMat->A

kLMat->A

)

α
(μLMat->A−kLMat->A−NLMat->A )
LMat->A

· (1− αLMat->A

)kLMat->A ,
(23)

where the remaining indices are given by

kLNaive = μLNaive − νLNaive ,

kLSelf = μLSelf − νLSelf ,

kLMat->I = μLMat->I − νLMat->I ,

kLMat->A = μLMat->A − νLMat->A .

(24)

For the phase (a) in Figure 13, the multiplication phase is
described by inserting formula (25) into formula (23)

μLSelf−NLSelf∑

kLSelf=0

μLMat−>I−NLMat−>I∑

kLMat−>I=0

1
6

∑
Permutation(LSelf ,LMat−>I ,LMat−>A)

[(
μLNaive −NLNaive

kLNaiveLSelf

)

· εkLNaiveLSelf
LNaiveLSelf

(
1− εLNaiveLSelf

)(μLNaive−NLNaive−kLNaiveLSelf )

·
(
μLNaive −NLNaive − kLNaiveLSelf

kLNaiveLMat−>I

)

· εkLNaiveLMat−>I
LNaiveLMat−>I

· (1− εLNaiveLMat−>I
)(μLNaive−NLNaive−kLNaiveLSelf−kLNaiveLMat−>I )

·
(
μLNaive −NLNaive − kLNaiveLSelf − kLNaiveLMat−>I

kLNaiveLMat−>A

)

· εkLNaiveLMat→A
LNaiveLMat→A

·(1− εLNaiveLMat−>A
)(μLNaive−NLNaive−kLNaiveLSelf−kLNaiveLMat−>I−kLNaiveLMat−>A )

]

,

(25)

where the remaining indices instead of (24) are given by

kLNaiveLSelf = −μLSelf − νLSelf + kLSelf ,

kLNaiveLMat->I = −μLMat->I − νLMat->I + kLMat->I ,

kLNaiveLMat->A = μLNaive + μLSelf + μLMat->I

− νLNaive − νLSelf − νLMat->I − kLSelf − kLMat->I ,

kLMat->A = μLNaive + μLSelf + μLMat->I + μLMat->A

− νLNaive − νLSelf − νLMat->I − νLMat->A−kLSelf−kLMat->I
.

(26)

The selection phase of lymphocytes is described by

WS
n

(
NLNaive ,NLSelf ,NLMat->I ,NLMat->A

)

=
Nmax∑

νLNaive=NLNaive

Nmax−νLNaive∑

νLSelf=NLSelf

Nmax−νLNaive−νLSelf∑

νLMat->I=NLMat->I

Nmax−νLNaive−νLSelf−νLMat->I∑

νLMat->A=NLMat->A

WM
n

(
νLNaive , νLSelf , νLMat->I , νLMat->A

)

·
(

νLNaive

NLNaive

)

β
NLNaive
LNaive

(
1− βLNaive

)(νLNaive−NLNaive )

·
(

νLSelf

NLSelf

)

β
NLSelf
LSelf

(
1− βLSelf

)(νLSelf−NLSelf )

·
(

νLMat->I

NLMat->I

)

β
NLMat->I
LMat->I

(
1− βLMat->I

)(νLMat->I−NLMat->I )

·
(

νLMat->A

NLMat->A

)

β
NLMat->A
LMat->A

(
1− βLMat->A

)(νLMat->A−NLMat->A )
.

(27)

5. Discussion and Conclusion

Understanding the dynamics of both an invading pathogen
and the response of the host’s immune system is an essential
task in one’s attempt to positively influence the immune
response of the given host. However, one already experiences
difficulties in modeling the behavior of a single biological
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cell. A cell (as an element of a population of such cells)
divides more frequently within a favorable environment and
may form new strains by occasional errors in the copying
process. It also dies more probably within a less favorable
environment.

How should one model such a step-by-step Darwinian
process? Some may opt for numerically solving a set of first
order differential equations, where time is continuous, and
then examine the mainly nonlinear properties of variables
(which represent large population rescaling). In contrast, we
presented here a simple stochastic model of an entity under-
going a continued step-by-step Darwinian process, which is
subdivided into two phases of multiplication (with variation)
and selection. We describe this stochastic mathematically by
a recursion formula (Galton-Watson type) for each phase,
the dynamics of the system being evaluated numerically by
computer, where the number of generation is an integer
time-variable. The form of probability distribution W(N)
changes in this system dynamics (with N being the number
of individuals, and including the probability W(0) of
extinction). This is a great advantage of this approach.

In addition, at a more fundamental level, one can suggest
the following experiment to verify the Galton-Watson type
dynamical stochastic process without mutation, described by
equations (3) and (4) resulting in Figure 4 (case Section 2.3),
or with copying errors leading to one mutant, described by
equations (9)–(12) resulting in Figure 7 (case Section 2.4)
and its parameter range: one prepares a steady-state condi-
tion of a bacterium-culture on a growing medium, where an
antibiotic is added to the nutrient solution in a sublethal con-
centration, by repeated consecutive single-cell inoculation
procedures. Then one can count bacteria by stopwatch the
final single-cell inoculations carried out in parallel with the
same nutrient solution (case Section 2.3) or with the nutrient
solution charged additionally with another antibiotic of sub-
lethal concentration (case Section 2.4) and plot the resultant
time-dependant histogram.

In this paper, we studied three types of behavior by
analyzing both the pathogen and the host’s immune reaction
with the proposed model system: (i) lasting pathogen elimi-
nation with buildup of immune memory, (ii) an oscillatory
chronic case, where the pathogen is almost eliminated by
the activated immune system, while during the subsequent
relaxation of the immune system the pathogen is flaring
up again, and (iii) the two-strain case, where the pathogen
can vary its antigen at one epitope resulting in a prolonged
immune-response.

In order to map such a simple mathematical model
of the immune-response to a real system, for example, a
specific host, a specific pathogen, and a specific pathway,
further work should consider the particular properties
(e.g., the relative doubling rate) of the pathogen and the
particular properties of the T and B lymphocytes and other
host properties as done by the aforementioned authors
[2–4]. Explicitly considering genotype and phenotype
should also be fruitful. Finally, one can find possible
applications of the model in HIV, LCMV, influenza
virus, herpes virus, mycobacterium tuberculosis, and
plasmodium or trypanosomes. Supplementary material

provided on the Website of CMMM available online at
doi:10.1155/2012/784512.
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