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Abstract 

Background:  The problem of drug resistance and bacterial persistence in tuberculosis is a cause of global alarm. 
Although, the UN’s Sustainable Development Goals for 2030 has targeted a Tb free world, the treatment gap exists 
and only a few new drug candidates are in the pipeline. In spite of large information from medicinal chemistry to 
‘omics’ data, there has been a little effort from pharmaceutical companies to generate pipelines for the development 
of novel drug candidates against the multi drug resistant Mycobacterium tuberculosis.

Methods:  In the present study, we describe an integrated methodology; utilizing systems level information to 
optimize ligand selection to lower the failure rates at the pre-clinical and clinical levels. In the present study, metabolic 
targets (Rv2763c, Rv3247c, Rv1094, Rv3607c, Rv3048c, Rv2965c, Rv2361c, Rv0865, Rv0321, Rv0098, Rv0390, Rv3588c, 
Rv2244, Rv2465c and Rv2607) in M. tuberculosis, identified using our previous Systems Biology and data-intensive 
genome level analysis, have been used to design potential lead molecules, which are likely to be non-toxic. Various in 
silico drug discovery tools have been utilized to generate small molecular leads for each of the 15 targets with avail-
able crystal structures.

Results:  The present study resulted in identification of 20 novel lead molecules including 4 FDA approved drugs 
(droxidropa, tetroxoprim, domperidone and nemonapride) which can be further taken for drug repurposing. This 
comprehensive integrated methodology, with both experimental and in silico approaches, has the potential to not 
only tackle the MDR form of Mtb but also the most important persister population of the bacterium, with a potential 
to reduce the failures in the Tb drug discovery.

Conclusion:  We propose an integrated approach of systems and structural biology for identifying targets that 
address the high attrition rate issue in lead identification and drug development We expect that this system level 
analysis will be applicable for identification of drug candidates to other pathogenic organisms as well.

Keywords:  Drug development, Drug resistance, Mycobacterium tuberculosis, Non-toxic targets, Structural biology, 
Systems biology
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Background
Tuberculosis (Tb), caused primarily by Mycobacte-
rium tuberculosis (Mtb), is a major world-wide disease 

affecting millions of individuals every year, with high 
mortality rates. The World Health Organization’s goal 
of ‘End-Tb Strategy’ and the United Nation’s Sustain-
able Development Goals (SDGs) (Goal 3; target3) lay 
the roadmap for achieving a global goal of ending the 
Tb epidemic by 2030. The unmet medical need followed 
by the recent emergence of multi drug resistant (MDR) 
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and extreme drug resistance (XDR) strains of Mtb [1, 2] 
continues to be a roadblock in achieving this goal‬‬ [3–5]. 
There are very few drugs for treating Tb (MDR/XDR) 
and various reasons exist for the lack of new medicines, 
including the lack of funding in Pharmaceutical Research 
& Development for such neglected diseases. The prohibi-
tive cost of drug development has been attributed to poor 
target selection and due to this, 87% of the late-stage fail-
ures can be avoided, as they show poor efficacy and side 
effects [6]. In addition, the market size of Tb drugs is also 
low and not attractive to multi-national companies.

In the present situation, understanding of the complex 
biological responses or the systems biology of an organ-
ism is highly significant to improve and fasten the pro-
cess of drug development by reducing the failure rates. 
Methods of selective chemical tailoring of molecules 
based on the knowledge of existing lead compounds 
against Mtb, which can also address the emerging resist-
ance issues, has the potential of fueling the Tb clini-
cal pipeline. In order to minimize the chances of failure 
and cost of Tb drug discovery, innovative approaches for 
designing newer chemical entities, using data intensive in 
silico approaches, involving experimentally validated data 
is the need of the hour. Keeping this in mind, the Open 
Source Drug Discovery (OSDD) project was initiated to 
facilitate the data-driven drug discovery [7, 8].

We have previously reported an integrated model 
involving Systems Biology approach, incorporating an 
extensive genome wide evaluation, as well as understand-
ing the sites of mutations in 1623 genome of clinical iso-
lates of Mtb, to identify 33 potential non-toxic metabolic 
targets [9, 10]. Our previous work emphasizes the use 
of systems biology approach to identify novel non-toxic 
targets with a motivation to shorten the process of drug 
discovery by exploiting computational methods focusing 
on Mtb. In order to identify drug targets with least likeli-
hood of side effects, all 116 in silico essential genes were 
compared with the human genome and human microbi-
ome at the sequence level. Of the total of 116 essential 
genes obtained from in silico gene knockout, 104 genes 
were found to have no homology to human genome 
sequences. In order to build a system biology approach to 
identify novel non-toxic target, it is desirable that all such 
target genes, share no homology to human genome and 
least homology to microbiome, to be a part of an impor-
tant metabolic pathway, and to be evolutionary invariant 
in the clinical isolates.

In the present study, out of these potential 33 targets, 
15 proteins having available crystal structures, were eval-
uated for the development of novel inhibitors. These tar-
gets were found to have no significant human homology. 
The concept of incorporating a proteome scale analysis 
in understanding the sites of mutations, followed by a 

comprehensive structure based drug design approaches 
[11], and digging into the wealth of experimental data to 
generate potential leads against these specific targets, is 
presented here.

With an increase in the generation of data in medicinal 
chemistry (both computational and synthetic), under-
standing of the relationships and patterns between the 
available data, using in silico approaches, in order to initi-
ate a hypothesis driven drug discovery becomes impera-
tive [12].

The published results of GlaxoSmithKline’s (GSK) 
large-scale high throughput screening of a library of 
chemical compounds against Tb were apprehended for 
their unique and non-redundant chemical structures. A 
list of total 776 compounds, out of which 426 compounds 
had a predicted target (based on computational studies) 
and 177 were potent non-cytotoxic drug sensitive Mtb 
H37Rv hits identified by the company, were made avail-
able [13, 14].

A detailed chemical analysis of the existing small mol-
ecule databases, as well as the evaluation of any existing 
lead candidates available as Mtb inhibitors in these data-
bases was performed for the current set of targets. We 
evaluated our set of potential 33 targets for their exist-
ing reported GSK inhibitors. Targets were shortlisted 
(Table 1); based on their availability of a GSK inhibitor in 
the database, Protein Data Bank (PDB) structure, essenti-
ality (experimental/in silico) and a part of Metabolic Per-
sister Genes (MPGs). The selected 11 targets were taken 
up for an extensive evaluation using various in silico drug 
discovery tools, involving pharmacophore analysis [15, 
16], molecular docking (Glide, Schrodinger and Auto-
Dock) [17, 18] and molecular dynamics (MD) simulations 
[19, 20] in a few cases, using the Schrodinger suite (2015). 
Polypharmacological [21] studies on the above targets, 
with an attempt of repositioning [22] and recalibrating 
the old and existing drug families, are also reported here. 
All the targets were pre-screened using GSK open access 
database and OSDDChem database (http://crdd.osdd.net/
osddchem/) to generate new starting leads. Herein, we 
report the identification of 20 lead molecules including 4 
FDA approved drugs as potential candidates for the inhi-
bition of the proposed targets in Mtb metabolism.

The integrated analysis reported here, includes in 
silico toxicity evaluation for both the targets and the 
molecules; involves the consideration of the drug resist-
ance and therefore, has a potential to generate new drug 
candidates. These can, thus be taken up for in vitro and 
in vivo screening against H37Rv and MDR strains of Mtb. 
The study should also serve the wider anti-tuberculosis 
research community by providing a list of genes and their 
potential inhibitors that are more likely to be validated 
for Tb drug discovery and development.

http://crdd.osdd.net/osddchem/
http://crdd.osdd.net/osddchem/
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Table 1  The output and input metabolite for the shortlisted 33 each genes

Gene Input metabolite Output metabolite

Targets involved in nucleic acid transactions

 Purines metabolism

  dfrA 7,8-dihydropteroate Tetrahydrofolate

  folB 7,8-dihydroneopterin 6-hydroxymethyl-7,8-dihydropterin

 Pyrimidines metabolism

  pyrF Phosphoribosyl pyrophosphate Phosphoribosyl amine

  Tmk 2′-Deoxyuridine 5′ diphosphate/2′-deoxyuridine 5′-phos-
phate/deoxythymidine 5′-diphosphate/thymidine 
monophosphate

2′-Deoxyuridine 5′-diphosphate/2′ deoxyu-
ridine 5′-phosphate/deoxythymi-
dine 5′-diphosphate/thymidine 
monophosphate

 Nucleotide metabolism

  rpiB Ribose-5-phosphate/ribulose-5-phosphate Ribose-5-phosphate/ribulose-5-phosphate

  Dcd dCTP/dUTP dCTP/dUTP

  atpE ADP ATP

  nrdI met-NrdFox met-NrdFred

 DNA replication

  nrdF2 Ribonucleotides Deoxyribonucleotides

 RNA pseudouridine synthesis

  Rv1711 Pseudouridineguide snoRNAs (Pseudouridine) RNA pseudouridine

Targets involved in membrane biosynthesis

 Fatty acid metabolism

  fcoT Acyl-ACP Fatty acids

  acpM FASII complex AcpM (FAS-II complex)

  desA2 Stearoyl-CoA (saturated fatty acids) oleoyl-CoA (unsaturated fatty acids)

  echA3 Δ2-enoyl-CoA 3-hydroxyacyl-CoA

  echA18.1 Δ2-enoyl-CoA 3-hydroxyacyl-CoA

Targets involved in carbohydrate metabolism

 Kerb cycle

  Carbohydrate metabolism

   pntAb Ethanol/citrate/Fd2−
red Acetyl-CoA/2-oxoglutarate/Fdox

   nuoA NADH NAD+

   canB CO2 Bicarbonate

  Electron transport cycle

   ctaE Cytochromered Cytochromeox

   Rv0763c NADP+ reductaseox Ferredoin NADP+ reductasered

   nrdH CDP/UDP dCDP/dUDP

  Mycothiol biosynthesis

   Mca (Mycothiol (MSH)/MS-electrophiles (MSR) AcCys + GlcN-Ins AcCySR (N-acetyl-CyS-con-
jugate)/(mercapturic acid) + GlcN-Ins

Targets involved in de novo pathways

 Essential cofactors

  kdtB 4′-phosphopantetheine 3′-desphospho-coenzyme A

  Rv2361c Isopentenyldiphosphate Decaprenyldiphosphate

  Mog Molybdopterin Adenylatedmolybdopterin

  moaD2 Cyclicpyranopterin monophosphate/molybdopterin con-
verting factor

Molybdopterin/molybdenum cofactor

 Vitamin biosynthesis

  pdxH Pyridoxamine 5′-phosphate Pyridoxal 5′-phosphate

 Amino acid biosynthesis

  prsA Ribose-5-phosphate 5-phospho-α-d-ribose 1-diphosphate

  Gap D-glyceraldehyde 3-phosphate 3-phospho-d-glyceroyl phosphate
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Methods
Target selection and validation
All the 33 crucial metabolic genes were analyzed for their 
series of biochemical steps. Literature mining was used 
as a key source to elucidate their metabolic interference 
and the collected data was verified through the path-
ways available in KEGG, BioCyc and MetaCyc. Of these 
33 targets, 15 with available crystal structures were uti-
lized for the Molecular Docking studies. The GLIDE suite 
of Schrodinger for the corresponding natural substrate 
(NS, if any)/PDB ligand was used to determine the bind-
ing poses for each protein structure of the shortlisted 15 
targets.

Based on the understanding of the active site of the 
proteins, libraries of compounds (average of ~ 300) from 
the existing chemical databases [23] were generated for 
each of these targets using primarily ChEMBL database. 
Multi-ligand molecular docking studies were carried out 
for the target-specific GSK ligands/OSDDchem com-
pounds followed by virtual screening. ADMET pharma-
cological properties were calculated for all the retrieved 
lead compounds using QikProp tool of Schrodinger. The 
retrieved lead compounds were further shortlisted on the 
basis of docking score/binding energy and no violation 
to Lipinski’s rule of five and other parameters. Some of 
these were further employed to molecular dynamic stud-
ies in order to validate the results. Schematic representa-
tion of the workflow is shown in Fig. 1.

Softwares used for the in silico studies
Pharmacophore analysis was performed using the 
e-pharmacophore script and ADMET property calcu-
lations were performed using QikProp tool of Schro-
dinger (Small-Molecule Drug Discovery Suite 2016-3: 
QikProp, version 4.9, Schrödinger, LLC, New York, NY, 
2016). All the compounds were initially treated with Lig-
Prep (Schrödinger Release 2016-3: LigPrep, version 3.9, 
Schrödinger, LLC, New York, NY, 2016). All the imple-
mentation was carried out with the graphical user inter-
face (GUI) of the Maestro software package (Schrödinger 
Release 2016-3:MacroModel, version 11.3, Schrödinger, 
LLC, New York, NY, 2016) using the OPLS forcefield 

[19, 24]. Molecular mechanic-born and surface area con-
tinuum solvation (MM/GBSA) method, to estimate the 
free energy of the binding of small ligands to biological 
macromolecules, was performed using Small-Molecule 
Drug Discovery Suite 2016-3: Schrödinger Suite 2016-3 
QM-Polarized Ligand Docking protocol; Glide version 
7.2, Schrödinger, LLC, New York, NY, 2016. MD simu-
lations were performed using DESMOND, Schrodinger, 
with OPLS as the force field, TIP4P as the water model 
and fixing no. of Na+ = 7. Additionally, molecular dock-
ing on a few targets was performed using AutoDock 
Vina(version 1.1.2) and AutoDock tools(version 1.5.6).

The “drug-likeness” test was carried out using Lipin-
ski’s “Rule of Five”, ro5 [25]. The distributions of the com-
pound molecular weights (MW), (Ntie-Kang Springer 
Plus 2013, 2:353 Page 2 of 11 http://www.springerplus.
com/content/2/1/353), lipophilicity (QlogP), number of 
hydrogen bond acceptors (HBA) and number of hydro-
gen bond donors (HBD) were calculated and used to 
assess the “drug-likeness” of the generated library of 
compounds. The 24 most relevant molecular descriptors 
calculated by QikProp are used to determine the #star 
parameter (Schrödinger 2015d).  The plot of distributions 
of violations of Lipinski’s ro5 and Jorgensen’s ro3 within 
the libraries, (Ntie-Kang Springer Plus 2013, 2:353 Page 
3 of 11 http://www.springerplus.com/content/2/1/353) 
for the respective libraries were defined as (MW  <  500; 
log P < 5; HBD ≤ 5; HBA ≤ 10)(32), (150 ≤ MW ≤ 350; 
log P ≤ 4; HBD ≤ 3;HBA ≤ 6) [26, 27] and (MW ≤ 250; 
−2 ≤  log P ≤  3; HBD  <  3; HBA  <  6; number of rotat-
able bonds, (NRB < 3) [28]. An example, a few selected 
descriptors based plots for the target Rv2763c is provided 
in (Additional file 1: Figures S16–S18).

The activity analysis was done based on the binding 
affinity score obtained either using Glide or AutoDock. 
The selection cut off was based on the binding affinity of 
the natural substrate/PDB ligand (wherever applicable) 
with the protein. The molecules were shortlisted based 
on the minimum requirement of the binding affinity/
docking score, with highest number of H-bonded inter-
actions and the best possible conformation, in alignment 
with the PDB ligand.

Table 1  continued

Gene Input metabolite Output metabolite

 Peptide metabolism

  dapE CysGly + Glu/N-succinyl-ll-2, 6-diaminoheptanedioate Cys + Gly/succinate + ll-2,6-diaminohep-
tanedioate

 Carbon, nitrogen and sulfur metabolism

  Rv3600c Pantothenate 4′-phosphopantothenate

http://www.springerplus.com/content/2/1/353
http://www.springerplus.com/content/2/1/353
http://www.springerplus.com/content/2/1/353
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Results
Analysis of 33 non‑toxic targets and their metabolic role
As previously stated, we short-listed 33 invariant genes in 
Mtb using system biology approach which are potential 
non-toxic candidates for drug targets. These 33 targets 
were classified on the basis of their nature of metabolic 
action viz. fatty acid metabolism or nucleotide bio-
synthesis. From our previous annotations [9], it was 
observed that of these 33 invariant genes, the functions 
of all the genes were known except for the two (Rv0390 
and Rv1508A). Although, the function of the targets 
Rv0390 and Rv1508A were unknown, they were found 
to be essential and evolutionarily conserved. The analy-
sis revealed that the remaining 31 genes were involved in 
the functioning of essential metabolic pathways without 
any redundant allies to replace them in their absence. The 
output and input metabolite for each gene has been pre-
sented in the Table 1. These target genes were classified 
mainly on the basis of their involvement in DNA transac-
tions, nucleotide biosynthesis, carbohydrate metabolism 
and de novo pathways.

In our previous work, we reported that almost all of 
these 33 non-toxic targets were found to have a good 
Druggable Score (DS Index), and were falling in the cat-
egory of highly druggable and druggable targets. It was 
observed that of these 33 targets, 15 had available crystal 
structure, which were well elucidated and were taken up 
for structure based drug designing.

Molecular docking studies of the shortlisted targets
All the 15 shortlisted targets from our previous analysis 
[10] were evaluated using a myriad of structure based 
drug design approaches. Molecular docking was per-
formed for targets with their corresponding Natural Sub-
strates (NS)/PDB ligand and a maximum of ten different 
poses were generated for each, in order to understand the 
best binding poses in the pocket. The targets were pre-
screened against the entire 426 GSK molecules and 1192 
OSDDChem database compounds to generate the initial 
starting leads. The selective targets were also screened 
with their corresponding reported GSK inhibitors, using 
molecular docking, to understand the binding modes. 
Based on the best-docked and the best-superimposed 
molecules with the PDB ligands, libraries of compounds 
were generated [from ChEMBL (https://www.ebi.ac.uk/
chembl/ws) and ChemSpider (http://www.chemspi-
der.com/)] [29] databases, having structural similarities 
with the leads. Pharmacophore analysis was performed 
for evaluating the essential pharmacophores (H-bond 
donors, acceptors, aromatic ring, etc.) for best binding, 
followed by a virtual filtering of the molecules from data-
bases based on these essential pharmacophores. How-
ever, of these 15 selected targets (with available crystal 

structure), only 11 produced lead compounds (Tables 2, 
3) with good docking score/binding energy and no vio-
lation to Lipinski’s rule of five and other parameters. 
Docking figures and interaction diagrams for the best 
compounds are provided in the (Additional file 1: Figures 
S1–S15).

To predict the drug-likeness and pharmacological 
properties of the compounds, various descriptors were 
calculated, theoretically. Some of these descriptors were 
plotted against the compound numbers, for graphi-
cal representations (example shown for Rv2763c in the 
(Additional file 1: Figures S16–S18). Based on these anal-
yses, we generated a list of compounds (Table 4) as poten-
tial inhibitors. These potential candidates should, ideally, 
provide a better efficacy as compared to the current set 
of drug candidates. This evaluation helped us in picking 
up compounds from open access databases, which can be 
procured readily and can be taken up further for in vitro 
and in  vivo analysis. The potential 20 lead compounds 
proposed here also include 4 known FDA approved drugs 
(Listed in Table 4), which could be utilized for repurpos-
ing, in combination with the current regime, for a speedy 
drug discovery process.

As a part of this analysis, we also observed that the 
binding pocket in dfrA (Rv2763c) for Trimethoprim 
has a single point mutation (A29T), in only one of the 
MDR strains. It is proposed that the emerging mutations 
could result in the development of resistance against tri-
methoprim [30] and hence would eventually require bet-
ter alternatives. We found another FDA approved drug, 
Tetroxoprim (Table  4), showing an improved binding 
affinity with the target, in the same binding pocket as Tri-
methoprim. This can thus, be proposed as an alternative 
to the drug Trimethoprim, for the combination therapy 
against Tb.

Discussion
We have thoroughly investigated the 15 metabolic 
genes (in silico and experimentally essential genes 
as well as a metabolic persister gene), in Mtb, which 
are highly invariant across the available 1623 strains 
including 1084 MDR strains of the bacteria, for detailed 
structure based drug discovery approaches. The Mtb 
specific invariant genes in the available genome were 
evaluated for their relevance in drug discovery, as these 
genes can form good targets for the inhibition of the 
growth of the organism. Based on the metabolic path-
way analysis, it was observed that all of these 15 genes 
were found to be crucial candidates for structure based 
drug designing and none of the gene showed any con-
vergence. The genes were found to act on the specific 
input metabolite, thereby suggesting that these metab-
olites can be further exploited to discover drugs based 

https://www.ebi.ac.uk/chembl/ws
https://www.ebi.ac.uk/chembl/ws
http://www.chemspider.com/
http://www.chemspider.com/
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Table 4  Lead molecules identified based on the best docking scores, binding affinity calculations, and best superimposi-
tion with the natural substrate

Target Compound name Structure Docking score/B.E.

Rv2763c CHEMBL432987 Docking score = − 12.08

Rv2763c CHEMBL2098242 Docking score = − 10.28

Rv2763c CHEMBL32039 (Tetroxoprim) Docking score = − 10.19

Rv3607c CSID:20211002 Docking score = − 7.41

Rv3247c CHEMBL3184131 Dockingscore = − 11.55

Rv3247c CHEMBL1467435 Docking score = − 11.32
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Table 4  continued

Target Compound name Structure Docking score/B.E.

Rv3247c CHEMBL20734 (Nemonapride) Docking score = − 10.67

Rv3247c ChEMBL219916 (Domperidone) Docking score = − 9.17

Rv0321 ChEMBL533912 B.E. = − 9.3

Rv3048c CHEMBL2098385 (From GSK open 
access compounds)

Docking score = − 9.01

Rv3048c CSID:353848 Docking score = − 7.41

Rv0098 ChEMBL3037996 B.E. = − 9.1

Rv0390 ChEMBL217735 B.E. = − 8.0
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Table 4  continued

Target Compound name Structure Docking score/B.E.

Rv0098 ChEMBL3349754 B.E. = − 8.6

Rv1094 CHEMBL535116 Docking score = − 6.79

Rv1094 CHEMBL3302699 (Droxidopa) Docking score = − 6.68

Rv2965c CHEMBL2097847 Docking score = − 6.92

Rv2361c CHEMBL2098151 (From the set of GSK 
molecules)

Docking score = − 12.62

Rv0865 ChEMBL255979 B.E. = − 9.9

Rv0390 ChEMBL76817 B.E. = − 8.0
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Fig. 1  Systematic work flow explaining the methodologies and corresponding results of the analysis
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on the specific essential metabolic pathways. The analy-
sis of input and output metabolites for the short-listed 
15 genes revealed that all the genes, except Rv0390 
(with unknown function), are involved in specific func-
tions, without any interference amongst their primary 
metabolites, in any of their metabolic pathways. As 
there was no interference in the metabolic pathways, 
all the genes were considered as independent structure 
specific drug targets. This makes every gene unique 
in its action and thereby suggested that if a drug is 
designed against these essential genes, it will remain 
highly specific in the inhibition of metabolic pathway of 
Mtb by effectively acting on them. The absence of any 
convergence in the mechanistic action of these genes 
ensured that the functioning of the drug will not bring 
about any other stochastic damage and will be highly 
exclusive in its action. The enhanced functional anno-
tations of the Mtb genome, obtained through a crowd 
sourcing approach was previously used by us to recon-
struct the metabolic network of Mtb in a bottom up 
manner [9]. It is understood that the possible limitation 
of assuming pathway independence lies in the extent to 
which all the pathways and their interconnections are 
reported in literature. However, given that literature 
might not be comprehensive and every interconnec-
tion between pathways might not be known, there exist 
a slight possibility of these shortlisted genes ending up 
in same unique pathway. With the well-characterized 
PDB data, these genes were analyzed and subjected to 
conformational analysis for structure dependent drug 
designing.

A) Targets involved in DNA transactions
Purines metabolism
1) Rv2763c (dfrA/folA)  The gene is involved in an 
essential step in de novo glycine and purine synthe-
sis and dihydrofolate reductase activity. In folate bio-
synthesis, dihydrofolate reductase coded by dfrA 
catalyses the reduction of folate to 5, 6, 7, 8-tetrahy-
drofolate. Molecular docking was carried out on a set 
of reported 24 GSK inhibitors (for folA) and it was 
found that SB-439950 in the NAD binding pocket and 
ChEMBL2098242 in the Trimethoprim binding pocket 
exhibited the docking score of −  10.88 and −  10.28 
respectively (Table  2). Structural and pharmacophore 
similarities with NS and the GSK inhibitor (Additional 
file  1: Figures S1, S2), resulted into a set of 830 mol-
ecules, where ChEMBL432987 showed a highest dock-
ing score of −  12.085 and ChEMBL32039 exhibited 
a docking score of −  10.19 (Table  4). The interaction 
analysis of ChEMBl2098242 revealed that NH2 and NH 
are involved in the hydrogen bonding with Asp27, Ile94, 
and a Phe31 Pi-stacking.

2) Rv3607c (folB)  The gene is a MPG, which is experi-
mentally essential and is involved in dihydroneopterin/
folate biosynthesis. Binding studies were carried out in 
reference to the NS to understand the poses and inter-
actions. Molecular docking was performed for all the 
GSK molecules including the reported GSK inhibitor 
(GSK2168465A; docking score  =  −  4.21) (Table  2). A 
compound library of  ~  1200 compounds was generated 
and evaluated using molecular docking studies (CSID: 
20211002; best docking score = − 7.41) (Additional file 1: 
Figure S3) (Table 4).

Pyrimidines metabolism
3) Rv3247c (tmk)  The gene is a thymidylate kinase 
(dTMP Kinase). molecular docking was carried out with 
all the GSK molecules as well as the proposed inhibitors 
(docking score = − 2.6) (Table 2). A compound library of 
450 compounds was generated with high structural simi-
larities with the best GSK molecules (Additional file  1: 
Figures S4, S5).

On analysis, it was observed that four lead compounds 
ChEMBL3184131, ChEMBL1467435, ChEMBL20734 
and ChEMBL219916 exhibited the strong binding affinity 
with the docking score of − 11.55, − 11.32, − 10.67 and 
− 9.17 respectively (Table 4).

Nucleotide metabolism
4) Rv0321 (dcd)  The gene is involved in the intercon-
version of dCTP and dUTP and did not have a reported 
GSK inhibitor. Therefore, OSDDChem database was 
screened against the target to identify the top 100 com-
pounds exhibiting highest binding energy, better than the 
NS (docking score = − 9.9).Clustering was carried out for 
the top ranked compounds, leading to the generation of a 
pharmacophore model, with survival score of 3.43 (Addi-
tional file 1: Figure S6a). In order to validate the quality of 
the generated pharmacophore model, clinically approved 
Tb drug Rifampicin showed a two-feature mapping with 
good fit value of 4.74.A molecular library (~ 1000 com-
pounds) was generated using various databases, based on 
the best structural and pharmacophore similarities. The 
best binding affinity was obtained for ChEMBL533912 
with ΔG score of − 9.3 kcal/mol (Table 4). The lead com-
pound showed hydrogen bond interactions between NH 
of propanamide flanked in the flurophenyl with Tyr162. 
Nitrogen atom in the 1, 2, 4 triazol ring showed interac-
tions with Ala167 and Ser161 with an interatomic dis-
tance of 3.5 Å each respectively.

DNA replication
5) Rv3048c (nrdF2)  The gene is involved in the DNA 
replication pathway. It has no NS attached in its PDB 
structure. Molecular docking studies were performed 
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with the reported GSK molecules and the entire GSK set 
of molecules for comparison (Table  2). Library of com-
pounds (~ 350 molecules) was generated based on struc-
tural and pharmacophore similarities. ChEMBL2098385 
and CSID353848 exhibited a highest binding affinity and 
the best docking score of − 9.01 and − 7.41 respectively 
(Additional file 1: Figures S7, S8) (Table 4).

B) Targets involved in membrane biosynthesis
Fatty acid metabolism
6) Rv0098 (fcoT)  The gene is a long chain acyl-coenzyme 
A (CoA) thioesterase that hydrolyses fatty acyl-CoA to 
fatty acid, hence involved in fatty acid metabolism. Top 
100 compounds (with improved binding energy as com-
pared to the NS, ΔG score of − 6.9 kcal/mol), were iden-
tified by virtual screening of the OSDDChem database. 
Library of ~ 1000 molecules was generated based on the 
structural and pharmacophore similarities. This library 
was further screened against the target. Two lead mole-
cules, ChEMBL3349754 and ChEMBL3037996 exhibited 
binding affinity ofΔG = − 8.6 and − 9.1 kcal/mol, respec-
tively (Table 4) (Additional file 1: Figure S9).

The interaction study of ChEMBL3349754 revealed 
that the carbonyl group of the phenyl acetate ring 
showed interactions with Asn83 which is also pre-
sent in the binding site with an inter atomic distance of 
3.1 Å and oxygen atom present in the eleventh position 
of trioxatricyclo rings showed strong interactions with 
Leu115 and tyr87 present in the binding site at a dis-
tance of 3.4 and 3.4 Å.

7) Rv1094 (desA2)  The gene is involved in conversion 
of saturated fatty acids to unsaturated fatty acids. In the 
biosynthesis of unsaturated fatty acids, the gene codes for 
acyl-[acyl-carrier-protein] desaturase which catalyses the 
conversion of stearoyl-CoA to oleoyl-CoA. It has no NS 
reported in its PDB structure. All the GSK molecules and 
reported GSK inhibitors were screened with the protein, 
in the binding pocket generated using SiteMap tool of 
Schrodinger. A compound library (180 compounds) was 
screened against the target. ADMET property prediction 
(QikProp, Schrodinger) and the docking studies with the 
known drug molecules (based on structural similarities, 
generated using QikProp) were also carried out (Addi-
tional file  1: Figure S10). ChEMBL3302699 exhibited a 
docking score of − 6.68 whereas ChEMBL535116 showed 
the strong binding affinity of − 6.79 with the existing drug 
Droxidopa, which is a synthetic amino acid precursor and 
acts as a prodrug to the neurotransmitter norepineph-
rine (Table  4). ChEMBL535116 showed hydrogen bond 
interactions with Trp32 and Glu29 and a Pi-stacking with 
Trp32 and Arg102.

Targets involved in de novo pathways (Essential cofactors)
8) Rv2965c (kdtB)  The gene is involved in CoA bio-
synthesis (4th step) and reversibly transfers an adeny-
lyl group from ATP to 4′-phosphopantetheine, yielding 
dephospho-CoA (DPCOA) and pyrophosphate. There 
is no NS attached to its PDB structure, however it has a 
CoA. Receptor grid was generated using this CoA and 
SiteMap (Schrodinger) predictions of the binding pocket. 
Molecular docking was carried out with the reported GSK 
molecules as well as the entire GSK library to compare the 
results (Table 2). Compound library (~ 50) was generated 
using similar structural analysis of the GSK molecules 
(Additional file  1: Figure S11). ChEMBL2097847 exhib-
ited a docking score of − 6.92 (Table 4).

9) Rv2361c (uppS)  The gene is involved in Z-decapre-
nyldiphosphate synthesis. The gene codes for a protein, 
which is involved in the synthesis of decaprenyldiphos-
phate, a molecule with a critical role in the biosynthesis 
of most features of the mycobacterial cell wall. The gene 
is also a part of MPGs. Molecular docking was performed 
with NS and top 10 poses were generated (Additional 
file  1: Figure S12). A library of molecules (~  800 com-
pounds) was generated based on the best binding from 
the set of 426 GSK molecules (Table 2). Highest docking 
score achieved for the compound ChEMBL2098151was 
−  12.62 (Table  4). The compound showed most impor-
tant interactions of Arg244, Ser252, Arg292 and Arg250 
with the cyclopropyl ester functionality. The interaction 
analysis also revealed an important Pi- interaction, which 
results in a drastic increase in the binding of the pyridine 
ring with Arg127.

10) Rv0865 (mog)  The gene is associated with the 
molybdopterin biosynthesis in Mtb. It has no NS/PDB 
ligand associated with the crystal structure. The OSD-
DChem library was computationally screened against 
the binding pockets of the target protein using AutoDock 
Vina. Molecular docking carried out on a set of 100top 
scored pose ligands exhibited strong binding affinity (ΔG 
value between −  8.5 and −  9.9 kcal/mol) and were fur-
ther selected for compound clustering. The cluster gen-
erated from fingerprint based similarity and chemical 
clustering was used for the development of feature mod-
els. Pharmacophores were derived for the clustered and 
structurally similar compounds (matching to the feature 
model) available in ChEMBL and ChemSpider databases. 
Pharmacophores satisfying drug-like properties were 
further employed for virtual screening. Highest bind-
ing free energy obtained for ChEMBL255979 was ΔG as 
− 9.9 kcal/mol (Table 4). Molecular binding interaction of 
the protein complex revealed that carboxyl group which 
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is placed in-between trimethyldecahydro-3, 12-epoxy and 
biphenyl ring showed interactions with Val11 at an atomic 
distance of 3.6  Å and the same carboxyl group showed 
two hydrogen bond interactions with Ser13 with a bond 
length of 3.1 and 3.3 Å respectively (Additional file 1: Fig-
ure S6b).

Targets with unknown function
Rv0390  This is a gene with undefined function. A diverse 
set of OSDDChem database, containing 1192 compounds, 
was docked and a series of top scoring compounds with 
ΔG = −  6.8 kcal/mol or above, were obtained. Cluster-
ing analysis was performed to determine the structural 
similarity between compounds. The large cluster repre-
sentative structures were employed for the development 
of pharmacophore models, and compounds with sur-
vival score of 3.54 were considered to be active in the set. 
3-dimensional Pharmacophore based virtual screening 
resulted in the retrieval of top ranked 100 compounds. 
Of these, two lead compounds viz., ChEMBL217735 and 
ChEMBL76817 exhibited the predicted binding energy of 
ΔG = − 8.0 kcal/mol each with acceptable pharmacoki-
netics properties (Table 4, Additional file 1: Figure S13). 
The Oxygen of butanoate moiety of ChEMBL217735 
showed interactions with Ile 65 and Asp 62 at distance 
of 3.1 and 3.6 Å respectively. Hydrogen bond interactions 
were observed between carboxylate group of Ala 66 with 
a bond length of 3.1 Å.

Assays for the in  vitro activity of dihydrofolatereduc-
tase (dfrA/folA, Rv2763c), dihydroneoterinaldolase (folB, 
Rv3607c), thymidylate kinase (tmk, Rv3247c) and Z-deca-
prenyldiphosphate synthase (uppS, Rv2361c), with the set 
of inhibitors having good IC50 and MIC-50 values have been 
reported in the literature [30–34]. We have evaluated the 
structural similarities of these inhibitors (reporting high-
est activity) with the inhibitors of the targets shortlisted in 
the present study. The shortlisted inhibitors developed pri-
marily in silico were subjected to molecular docking anal-
ysis with their respective targets for comparative studies. 
Our studies revealed that the inhibitors proposed for tar-
gets 1G3U (tmk, Rv3247c) and 1DG5 (dfrA/folA, Rv2763c) 
showed better in silico binding affinity as compared to 
their previously reported activities using in vitro analysis. 
The docking score of the theoretically proposed leads for 
tmk 1G3U (Rv3247c, docking score = −  7.01) and folA, 
1DG5 (Rv2763c, docking score = −  9.48) were found to 
be higher than the inhibitors with reported IC50 in  vivo 
values. It may be noted that many successful inhibitors do 
not show the desired in  vivo activity and similarly many 
in silico best inhibitors may not show the similar activity. 
However, in silico work does have a potential of reduc-
ing the failure rates and increases the chance of success in 
drug discovery.

As previously reported, these 15 shortlisted targets were 
further subjected to ‘druggability’ assessment. On analy-
sis it was observed that out of these, 5 had unique crystal 
structures and 10 had multiple crystal structures available 
in PDB. The targets with more than 1 crystal structure were 
subjected to multiple sequence alignment for the selection 
of the best structure to be utilized for molecular docking 
studies. In the process, it was observed that these targets 
showed a significant deviation in the DS index. This sug-
gested that the quality of the sequences of the PDB struc-
tures to be taken up for molecular docking studies play a 
vital role for the validity of results in a computational based 
study. On comparing the DS index of targets with unique 
crystal structures, it was observed that the ones with 
maximum sequence coverage exhibited high DS index as 
compared to the structures with minimal sequence cover-
age thus validating our approach for selection of potential 
targets, which are evolutionarily conserved as well. There-
fore, this system analysis demands that the PDB structures 
for carrying out the analysis are relevant, only if the target 
sequence matches the invariant sequence of the genomes.

We had also reported the possibility of targeting 
NDH-I with an existing FDA approved drug for type-II 
diabetes, Metformin, as an adjunct therapy for Tb. Based 
on our previous analysis, it was evaluated that NDH-I 
has a putative role in giving rise to bacterial persistence 
[35]. Additionally, similarity searches using QikProp tool 
of Schrodinger yielded some existing drugs having high 
structural similarities with the docked molecules. As an 
example, the structural comparison of the best-docked 
molecules for target 1G3U (Rv3247c), revealed Dom-
peridone and Nemonapride (selective antagonist of the 
dopamine D2 and D3 receptors), as probable drug can-
didates for repurposing. For the target 1DG5 (Rv2763c), 
similarity studies with the best-docked molecule showed 
Tetroxoprim (a less used antimalarial and a derivative of 
Trimethoprim), as the closest known drug, which can 
be taken up for repurposing (docking score = − 10.19). 
Along with this, Droxidopa (analog of l-Dopa) has 
shown a potential inhibition property for 1ZA0 (Rv1094) 
(docking score = −  6.68) (Table  4). We also performed 
an analysis in order to understand the effect of protein 
folding and conformational changes on the binding affin-
ity. As an example, Rv2763c (dihydrofolate reductase) 
and its best PDB structure (PDB ID: 1DG5) was evalu-
ated for comparison with its human homolog (PDB ID: 
4QHV). The two proteins have very little homology in the 
sequence, but the structural comparisons indicated that 
the two proteins fold in a similar fashion. We observed 
that the ligand CHEMBL432987, which is the best bind-
ing molecule (docking score = −  12.08), does not bind 
well with the human homolog (docking score = − 8.00). 
This is considered as a drastic drop in the binding affinity 
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between the two proteins. This could be attributed to the 
differences in the environment of both NADP and of the 
inhibitor between the Mtb and human structures. Resi-
dues like Ala101 and Leu102 nearing the N6 of NADP are 
very distinctly hydrophobic in pathogen as compared to 
the host [36]. It, therefore, becomes important to address 
that the sequence homology is not 100% indicative of the 
similarities in the binding sites and hence, we do need to 
incorporate structural comparisons (protein folding) to 
understand the homology between the two structures.

Conclusion
We therefore, propose that with these methodologies, 
new potential drug-like leads can be generated with 
the success rate of 1/10 as compared to the existing 
1/100 molecule entering clinical trials. These studies are 
expected to lead to the generation of a new anti-Tb drug 
candidate, primarily developed in silico. Therefore, our 
attempt to develop a comprehensive approach for the 
drug discovery by short-circuiting the research on gener-
ation of newer chemical scaffolds will positively influence 
the probability of clinical success of a drug candidate. We, 
therefore, suggest an integrated methodology, which will 
not only tackle the MDR form of Mtb but also the most 
important persister population of the bacterium.
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