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ABSTRACT

Hi-C experiments produce large numbers of DNA
sequence read pairs that are typically analyzed to
deduce genomewide interactions between arbitrary
loci. A key step in these experiments is the cleav-
age of cross-linked chromatin with a restriction en-
donuclease. Although this cleavage should happen
specifically at the enzyme’s recognition sequence, an
unknown proportion of cleavage events may involve
other sequences, owing to the enzyme’s star activ-
ity or to random DNA breakage. A quantitative esti-
mation of these non-specific cleavages may enable
simulating realistic Hi-C read pairs for validation of
downstream analyses, monitoring the reproducibil-
ity of experimental conditions and investigating bio-
physical properties that correlate with DNA cleavage
patterns. Here we describe a computational method
for analyzing Hi-C read pairs to estimate the frac-
tions of cleavages at different possible targets. The
method relies on expressing an observed local target
distribution downstream of aligned reads as a linear
combination of known conditional local target distri-
butions. We validated this method using Hi-C read
pairs obtained by computer simulation. Application
of the method to experimental Hi-C datasets from
murine cells revealed interesting similarities and dif-
ferences in patterns of cleavage across the various
experiments considered.

INTRODUCTION

The recently developed technique of chromosome confor-
mation capture (3C) and its derivatives known as 4C, 5C
and Hi-C (1–5) provide valuable information about interac-
tions between different genomic loci (6). Such interactions
can in turn be analyzed to infer the spatial organization
of chromatin (7–13). Among the more advanced of these
methods, Hi-C experiments can probe chromatin interac-
tions across an entire genome (14).

Each Hi-C experiment involves an elaborate protocol
that eventually yields a large number of pairs of short se-
quence reads. First, the genomic DNA inside intact nuclei
is covalently cross-linked by treatment with formaldehyde.
The cross-linked DNA is then digested with a restriction en-
zyme, and the resulting sticky ends are labeled with biotin
and filled to generate blunt ends. These blunt ends are lig-
ated and the ligation products are sheared, size-selected and
enriched by biotin-streptavidin pulldown. Owing to size-
selection, the final Hi-C library consists of DNA molecules
whose lengths vary over a narrow range, e.g. from 300 to
500 bp. The ends of these final products are sequenced us-
ing next-generation DNA sequencing technology (15). Thus
each product molecule yields a pair of short sequence reads,
and all reads have the same length, e.g. 50 bases. The read
pairs can in turn be analyzed to deduce interactions, or con-
tacts, between different parts of the original chromatin fiber
(16).

A key step in Hi-C experiments is the digestion of
cross-linked chromatin by a Type II restriction endonu-
clease that cleaves DNA specifically at locations contain-
ing the enzyme’s recognition sequence (5), which is gener-
ally 4 or 6 bases long and is palindromic (17). For exam-
ple, the HindIII restriction enzyme recognizes AAGCTT
and hydrolyzes the phosphodiester bond between the two
adenosines on each strand. In reality, however, DNA cleav-
age in Hi-C experiments may be less specific than expected
(18,19), because restriction enzymes can also cleave alter-
nate sequences that differ in one base from the cognate
recognition sequence, a phenomenon known as star activ-
ity (20). Moreover, additional cleavages may result from
random DNA breakage (19). These alternative mechanisms
then give rise to different relative fractions of DNA cleav-
ages. A quantitative estimation of such cleavage fractions
would enable accurate computer simulations for generat-
ing known Hi-C products, which could then be used to
test downstream computational pipelines for data analy-
sis. Cleavage fractions could also be used to compare dif-
ferent Hi-C datasets or monitor experimental conditions,
e.g. through the fraction of cleavages due to random DNA
breakage and to investigate biophysical properties, such as
chromatin compaction, that may correlate with DNA cleav-
age patterns in Hi-C experiments.
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Here we describe a computational method for analyzing
Hi-C datasets to estimate the fractions of cleavages occur-
ring at both cognate and non-cognate recognition sequences
of a given restriction enzyme, as well as the fraction of cleav-
ages due to random DNA breakage. This method does not
require additional experimental data besides the read pairs
provided by Hi-C experiments, and can therefore be used
with available datasets to investigate past experiments. We
validate the proposed method using known Hi-C fragments
generated by computer simulation and illustrate the appli-
cation of the method by obtaining cleavage fractions from
published Hi-C datasets on murine pre-pro-B, pro-B and ES
cells.

MATERIALS AND METHODS

Model of the cleavage process in Hi-C experiments

We model the cleavage process in Hi-C experiments by as-
suming two possible mechanisms: enzyme activity and ran-
dom DNA breakage. The former results in DNA cleavage
only at genomic locations containing the enzyme’s cognate
recognition sequence or its single-base mutants, whereas
the latter mechanism results in cleavage at any genomic lo-
cation, independently of DNA sequence. We assume that
cleavage may occur at any n-base sequence, where n is the
length of the enzyme’s recognition sequence, e.g. n = 6 for
HindIII and n = 4 for MboI. We also assume that cleav-
age efficiency does not depend on DNA duplex orientation.
Thus, we define a cleavage ‘target’ to be any n-base sequence
or its reverse complement and assign a unique integer index
i to each target. The number of different possible n-base tar-
gets is N = (palindromic targets) + (all other targets) = 4n/2

+ (4n − 4n/2)/2. The N = 136 possible 4-base targets and the
N = 2080 possible 6-base targets are listed in supplementary
files targets4.txt and targets6.txt, respectively. The ‘cognate
target’ (CT) is the recognition sequence of the restriction
enzyme. For simplicity, cleavage of any target is assumed to
produce the same staggered profile of sticky DNA ends as
enzymatic cleavage at the CT (Figure 1A).

We next define the ‘cleavage fraction’ ri, i = 1, . . . , N, with
∑N

i=1 ri = 1, as the fraction of cleavages occurring at sites
with target i prior to the ligation of biotin-labeled blunt ends
in the Hi-C protocol. Suppose that target i occurs at Si sites
in the reference sequence. Then, among the cleavages due
to random breaks, the fraction occurring at target i is ri|b =
qi, where qi = Si/

∑
iSi is the proportion of sites with tar-

get i in the reference sequence. Among the cleavages due to
enzyme activity, the fraction occurring at target i is ri|e =
pe|iqi/

∑
kpe|kqk, where pe|i is the enzymatic cleavage proba-

bility for target i, i.e. the probability of successful cleavage
by the enzyme when it binds to a site with sequence i. There-
fore, the total fraction of cleavages at target i is:

ri = pbri |b + (1 − pb)ri |e = pbqi + (1 − pb)
pe|i qi

∑
k pe|kqk

, (1)

where pb is, among all cleavages, the fraction due to random
DNA breakage and 1 − pb is the fraction due to enzyme
activity. Hence, in our model, the problem of quantifying
cleavage specificity in Hi-C experiments boils down to esti-
mating ri for all possible targets.
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Figure 1. (A) Essential experimental steps yielding a Hi-C product each of
whose ends (red) maps to the reference sequence at a location near the cor-
responding cleaved target site (blue). Cleavage at the HindIII recognition
sequence is shown to illustrate the sequence of a ligation junction. Several
experimental details, such as biotin labeling of blunt ends, are omitted for
clarity. (B) Windows used to determine the OLTD begin at the downstream
end of each aligned read. Arrows indicate extent and orientation of single
reads before and after alignment to the reference sequence. (C) Windows
usable for constructing a CLTD are those in which the chosen target oc-
curs at least once. Target sites, products, reads and windows are not drawn
to scale. In the present study, reads are 50-bp long and windows are 400-bp
long.

Estimation of cleavage fractions

The final Hi-C products result from pulldown and size-
selection of sheared, biotin-labeled ligation products (5).
Consequently, each Hi-C product should contain at least
one ligation junction that resulted from joining two blunt
ends, each derived from cleavage of some target (Figure 1A).
Because the Hi-C product length L has a limited range, say
300 to 500 bp (5), each of the two ends of a product molecule
is connected to a corresponding blunt end by a DNA stretch
of up to ∼500 bp. Then, the genomic location of the target
from which a particular blunt end was derived should be
within 500 bp from the genomic location of the aligned read
associated with that blunt end (see bottom of Figure 1A).
Thus, by examining the targets present in the downstream
vicinity of each aligned read, we should observe the cleaved
targets more often than the uncleaved ones.

To quantify this observation, we construct a ‘local tar-
get distribution’, which specifies, for each possible target i,
the frequency of that target within a particular set of win-
dows of length W over the given reference sequence. By
choosing each window to start immediately downstream of
each aligned read from a given Hi-C dataset, we obtain an
‘observed local target distribution’ (OLTD). If cleavage oc-
curred only at target i, the resulting OLTD would show a
higher frequency at the cleaved target than at others. We
can predict this OLTD by constructing a ‘conditional lo-
cal target distribution’ (CLTD) for target i. A CLTD can be
obtained from the reference sequence by counting targets in
windows immediately downstream of each possible aligned
read consistent with cleavage at target i (Figure 2A and B).
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Figure 2. Schematic representation of the hypothesis underlying the pro-
posed method for estimating cleavage fractions from genomic locations
of aligned reads. In this trivial example, the lengths of targets (blue and
red), aligned reads (black) and windows (rectangular outlines) on the ref-
erence sequence are assumed to be 2, 4 and 7 bp, respectively. In actual
Hi-C experiments, such lengths may be 6, 50 and 400 bp, respectively (see
Figure 3). There are 10 different possible targets of length 2 bp. Averaging
counts of target sites over windows consistent with cleavage at only one
target, GC in (A) or AT in (B), yields a conditional local target distribu-
tion (CLTD) that emphasizes the cleaved target. The observed local target
distribution (OLTD), i.e. the distribution observed when cleavage occurs at
more than one target (C), is assumed to be a linear combination of CLTDs
corresponding to the cleaved targets, with weights equal to the unknown
cleavage fractions.

There are N different CLTDs for a given reference sequence,
one for each possible target.

By construction, the CLTD for target i approximates the
OLTD that would be obtained from a large number of prod-
uct ends if cleavage occurred randomly but uniformly only
at target i. On the other hand, if cleavage occurred at var-
ious targets, we would expect the resulting OLTD to be a
mixture of the CLTDs corresponding to the cleaved targets,
and the contribution of each CLTD should reflect the pro-
portion of cleavages at the corresponding target. We there-
fore propose to express an OLTD as a linear combination of
CLTDs (Figure 2C), each weighted by the cleavage fraction
for the corresponding target, i.e., b = Sr + ε, where b is an
N-element vector containing the OLTD, S is a N × N matrix
each of whose columns si contains the CLTD for a particu-
lar target i, r is a N-element vector containing the cleavage
fractions ri for i = 1, . . . , N, and ε is an N-element vector of
random errors due to finite averaging in the construction of
the OLTD.

In practice, we want to estimate the cleavage fraction pb
due to random DNA breakage and the cleavage fractions
xi = (1 − pb)ri|e due to enzyme activity assumed to involve
only E � N possible targets, namely the CT of the restric-
tion enzyme and the 3n/2 targets corresponding to all pos-
sible single-base mutations in the palindromic sequence of
the CT. For 6-base targets, E = 10. Let the subset E con-
tain such targets. Then, as shown in Supplementary Data,
we can rearrange the above linear combination to:

b = Ax + ε, (2)

where A is an N × (E + 1) matrix and x is an (E + 1)-element
vector. The first E columns of A are the columns si of S for
i ∈ E , whereas the last column is equal to

∑N
i=1 qi si and rep-

resents the local target distribution due to random break-
age, i.e. the OLTD that would be observed if cleavages oc-
curred uniformly at all possible targets. The first E elements
of x are xi = (1 − pb)ri|e, and thus represent the contribution
of enzyme activity to the cleavage fractions for targets i ∈ E
in Equation (1). The last element of x is equal to pb. To find
an optimal x for given b and A in Equation (2), we solve a
non-negative least squares problem (21) using the function
scipy.optimize.nnls provided by SciPy tools (22). Equation
(1) then gives ri from xi and pb.

Determination of OLTD. In Hi-C experiments, the ends
of each final product molecule are sequenced to yield a pair
of short reads. Each read can be aligned to zero, one, or
multiple locations on the reference sequence. We disregard
pairs containing reads that align with mismatches or align
to multiple locations. Also rejected are ‘inward’ read pairs,
i.e. pairs of reads that point toward each other after align-
ment to the reference sequence, because such read pairs are
not always the result of cleaving a target site downstream of
each read (23). Each read from each accepted pair defines
the start of a downstream window that should contain the
cleaved target. Because a read containing a ligation junction
cannot be aligned to the reference sequence, neither read in
an accepted pair may contain the cleaved target. Thus, the
length of the downstream window is W = L − 2m, where L
is the assumed product length and m is the length of a read
(Figure 1B). Over M such windows we compute the average
number bi of occurrences of target i, for i = 1, . . . , N. Then,
the vector b = [b1 b2 . . . bN]T contains the desired OLTD.

Determination of CLTDs. A CLTD is the OLTD predicted
when cleavage occurs only at a particular target i. Thus, we
construct a CLTD just like an OLTD by averaging the num-
ber of target occurrences within a set of windows over the
same reference sequence used to construct the OLTD. In
this case, however, we consider all windows consistent with
cleavage at target i, i.e. target i must occur at least once
in each window of length W (Figure 1C). Because reads
that align to multiple locations in the reference sequence
are ignored when constructing an OLTD, the windows that
start at those locations must be omitted in the construction
of all CLTDs. The CLTD for target i is placed in column
si = [s1i s2i . . . sNi ]T of the N × N matrix S, where ski is the
average number of occurrences of target k in windows con-
sistent with cleavage at target i.

Simulations of Hi-C experiments

To validate our computational method, we generated arti-
ficial read pairs using a computer program that simulates
Hi-C experiments on a given genome, as described in Sup-
plementary Data.

Analysis of experimental Hi-C datasets

To analyze fragments from real Hi-C experiments, we re-
trieved datasets from the NCBI Sequence Read Archive
(24) for experiments SRX178471, SRX178473, SRX118420
through SRX118426, SRX116341 and SRX116342. These
datasets contain pairs of 50- or 36-bp sequence reads from
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experiments on murine pre-pro-B, pro-B and ES cells (25–
27). The read pairs from these datasets were aligned and se-
lected as described in Supplementary Data. Then, for each
experiment, the selected pairs were sorted by genomic loca-
tion of the read with smallest location in each pair, and split
into three interleaved samples of approximately equal size.
Each sample was then used to estimate the desired cleav-
age fractions with Equation 2, and the resulting values were
used to calculate sample means and standard deviations.

RESULTS

Validation with simulated Hi-C products

Our method for estimating cleavage fractions from Hi-C
datasets involves three computational steps: determination
of N CLTDs from the reference sequence, determination
of an OLTD from a Hi-C dataset and solution of a non-
negative least squares problem formulated in terms of those
distributions, Equation (2).

CLTDs identify cleaved targets. Each CLTD is con-
structed from the reference sequence by assuming that
cleavage involves only a particular target. Intuitively, the
cleaved target should be more strongly represented than
others in the associated CLTD, because at least one such
target must occur in the windows used to construct the asso-
ciated CLTD, while other targets are not necessarily present
in each window. Thus, each CLTD should specifically iden-
tify the corresponding cleaved target.

These expectations are confirmed by the CLTDs obtained
for the HindIII CT and for three of its single-base mutants
(Figure 3A–D). Because these CLTDs were constructed
from an artificial chromosome consisting of uniformly ran-
dom bases, most targets can be seen to occur with frequen-
cies close to 2 × (400 + 1)/46 ≈ 0.2, i.e. twice the frequency
expected for any 6-base sequence in a 400-bp window. There
are also targets with frequencies close to 0.1, the frequency
expected for targets with palindromic 6-base sequences. As
anticipated, in each CLTD the cleaved target occurs with the
highest frequency. However, frequencies enhanced above
the background are also seen for targets whose sequences
partially overlap the sequence of the cleaved target, because
these targets are more likely than non-overlapping ones to
occur in windows where the cleaved target is present. The
existence of enhanced frequencies for a small number of
targets that depend on the sequence of the cleaved target
supports the notion that each CLTD identifies a particular
cleaved target. It should therefore be possible to compute
the unique set of weights needed to express a given OLTD
as a linear combination of CLTDs.

Hi-C products from computer simulations. To test the pro-
posed method with read pairs at known genomic locations,
we performed three groups of computer simulations of Hi-
C experiments. The first group generated constant-length
Hi-C products from a reference sequence containing uni-
formly random bases. The second group generated products
from chr19 of the mm10 mouse genome. The third group
generated variable-length products from the same chromo-
some. In each group of simulations, we induced four dif-
ferent patterns of enzymatic cleavage (Supplementary Ta-
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Figure 3. Examples of (A–D) conditional and (E) measured local target
distributions derived from an artificial chromosome consisting of 5 141 828
uniformly random bases. Counts of sites for each possible target i were av-
eraged over all possible windows of length W = 400 bp on the reference
sequence, such that each window contained at least one site with the target
sequence (A) AAGCTT, (B) AAACTT, (C) AACCTT, (D) AAGATT, as
explained in Figure 1C, or such that (E) each window started immediately
downstream of an aligned read from one or the other end of a Hi-C prod-
uct, as explained in Figure 1B. Products for (E) were obtained from sim-
ulations with decreasing enzymatic cleavage probabilities pe|i at the above
four target sequences, and with zero fraction pb of cleavages due to ran-
dom DNA breakage (column ‘4 targets’ in Supplementary Table S1). The
file targets6.txt lists 6-base targets in order of index i.

ble S1). Cleavage at a ‘single’ target involved only the CT
AAGCTT of the HindIII restriction enzyme. Cleavage at
‘4 targets’ used a decreasing probability of enzymatic cleav-
age pe|i at the CT and three of its 1-base mutants, namely
AAACTT, AACCTT, AAGATT, where smaller letters indi-
cate mutated bases. Cleavage at ‘10 targets’ again used de-
creasing pe|i, but at the CT and all of its 1-base mutants.
Cleavage at ‘10 evenly’ used pe|i = 100% for all ‘10 targets.’
Additionally, to investigate various extents of random DNA
breakage, each pattern of cleavage was simulated with four
different values of pb, namely 0, 10, 20 and 50%. To obtain
error bars, each simulation was carried out three times with
different seeds of the random number generator. Finally, we
repeated all simulations using 4-base targets. Thus we per-
formed a total of 3 × 4 × 4 × 3 × 2 = 288 simulations, which
generated a total of 1.44B read pairs aligned to known ge-
nomic locations.

Cleavage fractions from simulations on random sequence.
To begin, we analyzed the constant-length Hi-C products
obtained from an artificial reference sequence of uniformly
random bases. We verified that the OLTD (Figure 3E)
closely approximates a linear combination of the CLTDs
for the cleaved targets (Figure 3A–D) with weights equal
to the cleavage fractions r̃i measured from the simulations
(data not shown).
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Figure 4. Variation of the residual RCF between estimated and measured
cleavage fractions with increasing number M of windows used to compute
the OLTD from simulated Hi-C read pairs. The simulations involved (A)
a random reference sequence and products with constant length L, (B)
chr19 of mm10 and constant-length products or (C) chr19 of mm10 and
variable-length products. Each point is the mean of three residuals RCF,
each calculated using a set of estimates r̂i and measurements r̃i obtained
from an independent simulation. Error bars are standard deviations of the
three RCF values. Each series of connected points corresponds to a differ-
ent pattern of enzymatic cleavage probabilities pe|i, all with pb = 20%. The
horizontal dashed line indicates the smallest measured cleavage fraction r̃i
among all simulations (see Supplementary Table S1 for the case with pb =
0). Supplementary Figure S2 shows similar plots for other values of pb.

To obtain cleavage fractions r̂i estimated from the simu-
lated read pairs, we solved the non-negative least squares
problem of Equation (2) using the appropriate OLTD and
CLTDs. Then, to assess how the accuracy of r̂i varies with
the number M of windows used to compute the OLTD,
we varied M and compared the resulting estimates r̂i , for
i ∈ E , with corresponding measurements r̃i obtained from
the simulations. We found that the sample mean of r̂i , over
three replicates of the simulation, approaches r̃i for each
cleaved target as M increases, while the sample standard de-
viation of r̂i becomes negligible (Supplementary Figure S1),
suggesting a lack of systematic error in the estimates for this
simple test case.

Plotting RCF, the residual between the estimated and
measured cleavage fractions (see Supplementary Data),
against M (Figure 4A and first column in Figures S2 and
S3) confirmed that the r̂i ’s are free from systematic error
for values of pb up to 50%. The residual Rb = | p̂b − p̃b| be-
tween estimated and measured values of pb was also found
to decrease with increasing M (Supplementary Figure S4,
first column).

Cleavage fractions from simulations on chr19. To test our
method with reads from a more realistic reference sequence,
we used the constant-length products obtained from Hi-C
simulations on chr19 of the mm10 reference mouse genome.
The cleavage fractions measured in this case differed no-
tably from the corresponding cleavage fractions measured
in the previous simulations (Supplementary Table S1), a re-
sult consistent with the non-random character of real ge-
nomic sequences. Despite this non-random character, we
found that the residuals RCF and Rb again approach zero as
M increases (Figure 4B and second columns in Supplemen-
tary Figures S2, S3 and S4), indicating that the estimated
cleavage fractions approach the measured cleavage fractions
and are therefore unbiased even for a real chromosome.

Figure 5. (A) Enzymatic cleavage fractions x̂i and proportion pb of cleav-
ages due to random DNA breakage estimated from Hi-C datasets of (25),
(26) and (27). Error bars represent standard deviations over three pseudo-
samples. (B) The square (x̂CT)2 of the enzymatic cleavage fraction esti-
mated for the cognate target (CT) (y-axis) and the area under the peak
in the histograms (Supplementary Figure S5) of experimental product
lengths (x-axis) are alternative approximations to the proportion of Hi-C
products resulting from cleavage only at the CT of the enzyme. The two ap-
proximations agree in most of the cases analyzed. Each point corresponds
to an experiment whose cleavage fraction estimates are reported in (A) and
in Supplementary Table S3. Vertical error bars are the same as in (A). Hori-
zontal error bars account for the width of the bins bounding the histogram
peak. The line y = x (dashed) is shown as a guide. ‡ Cleavage fractions es-
timated for chr1, rather than chr19.

We next analyzed the products generated by the third
group of Hi-C simulations, which again involved chr19 of
mm10 but also introduced a spread in the length L of the
simulated products to better approximate the products from
real experiments (Supplementary Figures S5 and S6). In this
case, increasing M caused RCF to level off at around 0.3%
(Figure 4C), suggesting the presence of a small systematic
error. This error is fairly insensitive to pb (Supplementary
Figures S2 and S3, third column) and is present also in p̂b
(Supplementary Figure S4, third column). As such error
was absent in estimates from constant-length products, it
likely ensued from analyzing variable-length products with
OLTDs and CLTDs constructed over windows of constant
length W, effectively assuming a constant length L for all
products. Although real Hi-C products do vary in length,
using constant-length windows to estimate cleavage frac-
tions from such products may provide adequate estimates
r̂i for applications that can tolerate errors on the order of
1%.

Application to experimental Hi-C products

To perform our calculations on real Hi-C products from dif-
ferent cells and different sources, we obtained two datasets
from murine E2A-deficient hematopoietic progenitor (pre-
pro-B) cells and RAG-1-deficient pro-B cells (25), seven
datasets from murine Ataxia Talangiectasia mutated kinase
deficient (ATM-/-) and wild-type pro-B cells with an I-SceI
site in chr2, chr7, chr15 or chr18 (26), and two datasets
from murine embryonic stem cells (mESCs) (27). We then
applied our method to estimate cleavage fractions due to en-
zyme activity and random breakage from each experimen-
tal dataset. To limit computational effort, we obtained esti-
mates only for cleavages on chr1 and chr19 (Figure 5A and
Supplementary Table S3).

The fraction p̂b of cleavages attributed to random break-
age was negligible in 7 of the 13 cases analyzed (Supple-
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mentary Table S3). In all cases, the largest enzymatic cleav-
age fraction was estimated at the CT of the HindIII en-
zyme and ranged from 49 to 90%. Such fraction, however,
was smaller for experiments SRX178471 and SRX178473
than for all other experiments. Also, SRX178471 and
SRX178473 gave the same composition of enzymatically
cleaved targets, on both chr1 and chr19, but such compo-
sition differed from that of the other experiments, possi-
bly owing to procedural differences. Interestingly, data for
SRX118420 and SRX118421, which were biological repli-
cates on ATM-/- I-SceI-chr2 pro-B cells, gave similar cleav-
age patterns, in agreement with the expectation that dif-
ferent biological replicates produce similar results. Similar-
ity of cleavage patterns also ensued from mESC biologi-
cal replicates SRX116341 and SRX116342. However, data
for SRX118423 and SRX118424, biological replicates on
ATM-/- I-SceI-chr18 pro-B cells, gave similar values of p̂b
and x̂CT but dissimilar cleavage fractions at other enzymat-
ically cleaved targets, suggesting the presence of small esti-
mation errors, as seen in Figure 4C, or variation in experi-
mental conditions.

Previous studies have characterized the star activity of
the HindIII restriction endonuclease under non-standard
conditions involving high pH, high ionic strength, high en-
zyme concentration or the addition of the organic solvent
DMSO. Under these conditions, the HindIII endonucle-
ase was found to cleave at targets AAGCCT, AAGATT,
AAGCGT, AAGCTC, AAACTT and AAGCAT, which dif-
fer in one base from the CT AAGCTT (28,29). For each of
these non-CTs, some or all of the experiments analyzed gave
cleavage fraction estimates greater than 1% (Supplementary
Table S3). Significant fractions were also estimated for non-
CTs AACCTT, AAGCTG and AAGCTA, which were not
reported in Refs. (28,29).

To probe the validity of our estimates, we collected his-
tograms of apparent product lengths from each dataset
(Supplementary Figure S5). As the tails of these histograms
correspond to Hi-C products resulting from non-specific
DNA cleavage (18), the area under the peak in the normal-
ized histograms should approximate the fraction of prod-
ucts resulting from cleavage only at the enzyme’s CT. An-
other quantity approximating such fraction is the square
(x̂CT)2 of the cleavage fraction estimated for the CT. Com-
paring the two approximations revealed a qualitative agree-
ment for all experiments considered except SRX178471,
which gave a value of x̂CT noticeably lower than expected
(Figure 5B). These results suggest the presence of system-
atic errors, which can be large in some cases, but appear to
be small in general.

DISCUSSION

Large Hi-C datasets are typically analyzed to obtain con-
tact maps that contain information about the 3D organi-
zation of chromatin (9). The present study shows that the
same datasets can be analyzed to obtain information about
DNA cleavage specificity in Hi-C experiments. In particu-
lar, we have presented a computational method for estimat-
ing cleavage fractions, which quantify the cleavages result-
ing from restriction enzyme activity and from random DNA

breakage during the experimental steps carried out to digest
cross-linked chromatin in preparation for blunt ends.

We validated our method using artificial Hi-C products
generated by computer simulation. Our validation revealed
a small systematic error in the cleavage fractions estimated
from products with variable length (Figure 4C). Although
perhaps acceptable in some applications, the observed er-
ror could be reduced by constructing OLTDs and CLTDs
that account for the distribution of actual product lengths.
Such distribution could in turn be inferred from histograms
of apparent product lengths (Supplementary Figure S5), or
from fluorescence intensity profiles of agarose gels used for
size-selection of Hi-C products.

Additional validation may also be possible by using
appropriate experimental data. For example, estimates of
cleavage fractions could be compared to more direct mea-
surements from careful analysis of ligation junctions found
in full sequences of Hi-C products. Full product sequences,
though shorter than 200 bp, were obtained in previous work
assessing a modified Hi-C protocol (30). Larger numbers
of full sequences, necessary for accurate measurements of
cleavage fractions, may become accessible with further ad-
vances in next-generation sequencing methods (15).

Our proposed method relies on a model that includes
several simplifying assumptions about the process of trans-
forming genomic DNA into a Hi-C library. Among the as-
sumptions are the independence of pb on genomic loca-
tion, the absence of product length variation, the absence
of products with zero or more than one ligation junction,
the inclusion of products with ligation junctions lacking a
biotinylated cytosine, the absence of cleavage events closely
spaced on the same DNA molecule, the absence of biases
due to GC content and restriction fragment lengths (18)
and generally the absence of any read coverage bias. We
did, however, account for mappability bias (18) by omit-
ting windows associated with unmappable reads from the
computation of CLTDs. Some of the above assumptions
may be responsible for the unexpectedly low value of x̂CT
obtained for experiment SRX178471 (Figure 5B). By ad-
dressing the above assumptions, future refinements to the
described computational method should yield more accu-
rate results.

Although simulations of Hi-C experiments were used to
validate our computational method, they may also be valu-
able for other purposes. For example, simulations could pro-
vide an inexpensive means to test experimental protocol de-
tails (31), such as the choice of restriction enzyme for a given
genome, or to assess the accuracy of existing and future
computational methods that infer contact maps from Hi-
C data, a task not easily accomplished with experimental
datasets alone. Because the accuracy of contact maps in-
ferred from Hi-C data may depend on cleavage specificity,
a validation of such maps could benefit from artificial Hi-C
products that resemble experimental ones in terms of cleav-
age fractions. Our estimation of such fractions would pro-
vide the parameters necessary to perform simulations that
yield products with the desired characteristics.

Besides enabling accurate simulations of Hi-C experi-
ments, the ability to estimate cleavage fractions from Hi-C
read pairs may be useful to compare datasets or to monitor
experimental conditions. For example, the observed vari-
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ation of cleavage patterns across experiments (Figure 5A)
suggests that cleavage fractions could be used as a signa-
ture to confirm the origin of different datasets or to assess
the reproducibility of the same procedures performed at dif-
ferent times or by different investigators. Also, datasets ob-
tained from biological replicates may be expected to pro-
duce similar patterns of cleavage, as we observed for experi-
ments SRX118420 and SRX118421. Thus comparing cleav-
age fractions could provide a means to gauge the quality of
different experimental runs.

The observed variation across experiments also suggests
that cleavage fractions may correlate with biologically rel-
evant aspects of the cells under study. For instance, the
cleavage fractions we estimated from the experimental Hi-
C datasets of Ref. (25) on pre-pro-B and pro-B cells var-
ied significantly with cell type. In particular, the proportion
of cleavages due to enzyme activity at the CT was found
to decrease in pro-B cells relative to pre-pro-B cells (Fig-
ure 5A and Supplementary Table S3), suggesting that chro-
matin reorganization or condensation in pro-B cells may
have altered the accessibility of CT sites relative to non-
cognate ones. Future studies may consider estimating cleav-
age fractions for specific genomic domains, chromosomes
or entire genomes, and correlating those fractions with bio-
physical properties that affect the possible mechanisms of
DNA cleavage in Hi-C experiments.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank Dr Amy Davenport Migliori and Chai-
tanya Murthy for insightful discussions. The authors are
also grateful to the anonymous reviewers, whose thorough
comments and suggestions resulted in significant improve-
ments to this manuscript.

FUNDING

American Cancer Society Instructional Research Grant
[70-002 to Moores Cancer Center, in part]; National Science
Foundation Research Grant [1200850]. Funding for open
access charge: UCSD.
Conflict of interest statement. None declared.

REFERENCES
1. Dekker,J., Rippe,K., Dekker,M. and Kleckner,N. (2002) Capturing

chromosome conformation. Science, 295, 1306–1311.
2. Simonis,M., Klous,P., Splinter,E., Moshkin,Y., Willemsen,R.,

deWit,E., vanSteensel,B. and deLaat,W. (2006) Nuclear organization
of active and inactive chromatin domains uncovered by chromosome
conformation capture-on-chip (4C). Nat. Genet., 38, 1348–1354.

3. Zhao,Z., Tavoosidana,G., Sjolinder,M., Gondor,A., Mariano,P.,
Wang,S., Kanduri,C., Lezcano,M., Singh Sandhu,K., Singh,U. et al.
(2006) Circular chromosome conformation capture (4C) uncovers
extensive networks of epigenetically regulated intra- and
interchromosomal interactions. Nat. Genet., 38, 1341–1347.

4. Dostie,J., Richmond,T.A., Arnaout,R.A., Selzer,R.R., Lee,W.L.,
Honan,T.A., Rubio,E.D., Krumm,A., Lamb,J., Nusbaum,C. et al.
(2006) Chromosome conformation capture carbon copy (5C): a
massively parallel solution for mapping interactions between genomic
elements. Genome Res., 16, 1299–1309.

5. Lieberman-Aiden,E., vanBerkum,N.L., Williams,L., Imakaev,M.,
Ragoczy,T., Telling,A., Amit,I., Lajoie,B.R., Sabo,P.J.,
Dorschner,M.O. et al. (2009) Comprehensive mapping of long-range
interactions reveals folding principles of the human genome. Science,
326, 289–293.

6. deWit,E. and deLaat,W. (2012) A decade of 3C technologies: insights
into nuclear organization. Genes Dev., 26, 11–24.

7. Bau,D., Sanyal,A., Lajoie,B.R., Capriotti,E., Byron,M.,
Lawrence,J.B., Dekker,J. and Marti-Renom,M.A. (2011) The
three-dimensional folding of the beta-globin gene domain reveals
formation of chromatin globules. Nat. Struct. Mol. Biol., 18, 107–114.

8. Meluzzi,D. and Arya,G. (2013) Recovering ensembles of chromatin
conformations from contact probabilities. Nucleic Acids Res., 41,
63–75.

9. Dekker,J., Marti-Renom,M.A. and Mirny,L.A. (2013) Exploring the
three-dimensional organization of genomes: interpreting chromatin
interaction data. Nat. Rev. Genet., 14, 390–403.

10. Paulsen,J., Lien,T.G., Sandve,G.K., Holden,L., Borgan,Ø., Glad,I.K.
and Hovig,E. (2013) Handling realistic assumptions in hypothesis
testing of 3D co-localization of genomic elements. Nucleic Acids Res.,
41, 5164–5174.

11. Kruse,K., Sewitz,S. and Babu,M.M. (2013) A complex network
framework for unbiased statistical analyses of DNA–DNA contact
maps. Nucleic Acids Res., 41, 701–710.

12. Hu,M., Deng,K., Qin,Z., Dixon,J., Selvaraj,S., Fang,J., Ren,B. and
Liu,J.S. (2013) Bayesian inference of spatial organizations of
chromosomes. PLoS Comput. Biol., 9, e1002893.

13. Serra,F., Di Stefano,M., Spill,Y.G., Cuartero,Y., Goodstadt,M.,
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