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We explored suitability of a rat tuberculosis aerosol infection model for investigating the pharmacodynamics of new
antimycobacterial agents. Infection of rats via the aerosol route led to a reproducible course of M. tuberculosis infection in the
lungs. The pulmonary bacterial load increased logarithmically during the first six weeks, thereafter, the infection stabilized for the
next 12 weeks. We observed macroscopically visible granulomas in the lungs with demonstrable acid-fast bacilli and associated
histopathology. Rifampicin (RIF) at a dose range of 30 to 270 mg/kg exhibited a sharp dose response while isoniazid (INH) at a
dose range of 10 to 90 mg/kg and ethambutol (EMB) at 100 to 1000 mg/kg showed shallow dose responses. Pyrazinamide (PZA)
had no dose response between 300 and 1000 mg/kg dose range. In a separate time kill study at fixed drug doses (RIF 90 mg/kg,
INH 30 mg/kg, EMB 300 mg/kg, and PZA 300 mg/kg) the bactericidal effect of all the four drugs increased with longer duration
of treatment from two weeks to four weeks. The observed infection profile and therapeutic outcomes in this rat model suggest
that it can be used as an additional, pharmacologically relevant efficacy model to develop novel antitubercular compounds at the
interface of discovery and development.

1. Introduction

Tuberculosis remains a leading cause of death worldwide [1]
despite unprecedented interest in the scientific community
to better understand the pathobiology and development of
newer interventional therapies. In this process, animal mod-
els of infection have been a corner stone in understanding
complex pathology and immunology of tuberculosis. Guinea
pigs were the first animal models used to demonstrate
tuberculosis disease by Koch in 1882 [2]. Since then, a variety
of animal models including mice, rabbits, and nonhuman
primates [3–5] have been investigated to simulate tubercular
disease and associated host responses. However, none of
the models can mimic the complex pathobiology seen in
humans.

The mouse continues to be a preferred species for
modeling tuberculosis infection as well as for screening novel
anti-TB drug candidates due to practical reasons [6, 7].
Guinea pigs, rabbits, and nonhuman primates are known
to be better representatives of late human disease [4, 5] but

pose a challenge for drug screening due to large compound
requirements and prohibitive costs.

Rats have significantly contributed to modeling of variety
of human pulmonary bacterial [8], fungal [9] and viral
infections [10, 11] due to an increasing availability of rat
immunological reagents. In recent years, several rat strains
like Lewis, American cotton rats [12], and diabetic rat strains
[13] have been successfully used to develop infection model
of tuberculosis, particularly for investigating pathology and
immune responses [14, 15]. However, there are no reports
on therapy of tuberculosis in rat infection model. Here we
report the application of Wistar rat model for approximating
tuberculosis infection and the effect of front-line drugs in the
containment of this infection.

2. Material and Methods

2.1. Bacterial Strain. M. tuberculosis H37Rv ATCC 27294, a
strain sensitive to all the standard antimycobacterial agents,
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Figure 1: Standardisation of M. tuberculosis aerosol infection in
Wistar rats: initial bacillary load and course of infection observed
over a period of 4 weeks, following challenge with three different
infection inocula.

was used for all animal infection experiments. Bacterial
cultures were prepared as described previously [16].

2.2. Drugs and Reagents. Rifampicin (RIF), Isoniazid (INH),
Pyrazinamide (PZA), Ethambutol (EMB), and Carboxym-
ethyl cellulose (CMC) were purchased from Sigma Chemical
Co. USA.

2.3. Animals. The Institutional Animal Ethics Committee
(IAEC), registered with the Government of India (Reg.
no. 5/1999/CPCSEA) approved all animal experimental
protocols and usage. Male Wistar rats were purchased from
Raj Biotech Pune, India. Rats (7–8 weeks old) were randomly
assigned into groups of three per cage and were allowed
2 weeks acclimatisation before experimental use. Feed and
water were given ad libitum. Infected rats were maintained in
individually ventilated cages (Allentown technologies, USA)
in bio containment level 3 facilities.

2.4. Aerosol Infection. Wistar rats were infected via the
respiratory route to obtain low-grade bacillary lung infection
(∼100 bacilli) using a modified Madison aerosol chamber
[16]. Bacterial lung loads were estimated to determine
suitable infection conditions for drug efficacy experiments.
After infection, the animals were housed for the duration of
the study in a bio-safety level 3 facilities. By using micro-
bial enumeration as the dependent variable, the number
of animals required per treatment group was as low as
three in experiments for drug evaluation. The course of
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Figure 2: Course of infection of M. tuberculosis H37Rv in Rat lungs
following low-grade aerosol infection. (�): Course of infection and
CFU obtained during weeks 1–7 in study 1. (�): Course of infection
and CFU obtained over weeks 2–18 in study 2. Drug treatment
started at week 4 postinfection. Inset shows a rat lung at thirteen-
week post infection with multiple macroscopic nodular granulomas
all the lung lobes following aerosol infection with M. tuberculosis.

mycobacterial infection was monitored by enumeration of
colony forming units (CFU) from excised lungs at 1, 2, 3,
4, 6, 8,13, and 18 weeks postinfection.

2.5. In Vivo Dose-Response Studies. In a separate experiment,
starting 4 weeks postinfection, 3 animals per group were
administered by oral gavage once daily with a dose range of
front-line anti-TB drugs in a 0.25% (w/v) carboxymethyl cel-
lulose suspension formulation. Rifampicin (30–270 mg/kg),
Isoniazid (10–90 mg/kg), Pyrazinamide (300–1000 mg/kg),
and Ethambutol (100–1000 mg/kg) were administered for
two or four weeks. At the onset and 24 h after the completion
of treatment, groups of rats were killed by exposure to CO2

and the lungs were aseptically removed. Left lung lobe was
processed for CFU estimation to monitor drug efficacy while
the right lobe was fixed in 10% formaldehyde solution for
histopathology. The left lung lobe was homogenized in a
final volume of 3 mL by using Teflon-Glass tissue grinders
(Wheaton Inc.). Each suspension was serially diluted in
10-fold steps, and at least 3 dilutions were plated onto
Middlebrook 7H11 agar supplemented with 10% albumin
dextrose catalase (Difco Laboratories) and incubated at 37◦C
with 5% CO2 for 3 weeks.

2.6. Histopathology. The right lung lobe of each animal was
removed for histopathological studies. They were infiltrated
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Figure 3: Dose response of front-line TB drugs in rats following
two-week treatment. log10 CFU counts/left lung lobe plotted against
a range of drug regimens. Rifampicin (30, 90 and 270 mg/kg),
Isoniazid (10, 30, and 90 mg/kg), Ethambutol (100, 300, and
1000 mg/kg) and Pyrazinamide (300 and 1000 mg/kg) were dosed
per oral once daily for two weeks (12 doses). Each bar represents
the mean CFU counts from three animals.

with and collected in 10% buffered neutral formalin, fol-
lowed by standard histopathological processing techniques
[15] using different gradation of alcohol. Paraffin embedded
tissues were sectioned to 5μm thickness and stained with
either Haematoxyline and Eosin stain or Ziehl Neilson
staining for acid fact bacilli using quick staining kit (Becton-
Dickinson).

2.7. Statistical Analysis. The colony counts obtained from
plating were transformed to log10(x+1), where x equals the
total number of viable tubercle bacilli calculated to be present
in a given sample. Prism software version 4 (GraphPad
Software, Inc., San Diego, California) was used for all the
calculations.

3. Results

3.1. Course of M. tuberculosis Infection in Rat Lung. The focus
of initial experiments was to establish an optimum inoculum
size required to consistently achieve low bacterial numbers
(100–300 CFU) in the lungs. M. tuberculosis inocula of three
different bacterial strengths (104 CFU mL−1), 106 CFU mL−1

and 108 CFU mL−1) were aerosolised in a 25 mL volume
using a Collison Nebulizer (BGI Incorporated, Waltham,
MA) for a fixed duration, and the course of infection
was monitored till four weeks. All three inocula lead to
installation of bacilli into the lungs in a dose-dependent
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Figure 4: Time course of effect of front-line TB drugs on rat lung
infection (RIF-90 mg/kg; INH-30 mg/kg; EMB 300 mg/kg and PZA
300 mg/kg). Drug treatment was given per oral once daily for 2- and
4-week periods.

manner (Figure 1). An inoculum of 106 CFU mL−1 con-
sistently delivered ∼ 200 bacilli/lung and was considered
optimum for further experiments. The course of infection
following an initial load of 108 CFU mL−1 was steep, while
that following 104 CFU mL−1 yielded inconsistent infection
across animals. Thus these two inocula were not preferred
for further experiments. The course of tuberculosis infection
increased logarithmically up to the first 6 weeks. The growth
rate declined thereafter and the net bacterial load in the
lungs increased by merely 1 Log10CFU over the next 12-week
period (Figure 2).

3.2. Gross and Histopathology Findings. Grossly the rats
developed circumscribed granuloma of varying sizes (pin-
point to 3 mm in diameter) distributed over the lung
surface by 6 weeks and gradually increased to 5 mm and
showed raised appearance (Figure 2 inset). Histopatholog-
ical examination of the granuloma at various intervals
during the course of infection revealed strong association
between bacillary loads and pathology. Microscopically,
for the first two weeks there were no histopathological
changes in the lungs except for mild inflammatory response
in the blood vessel. By week 2, there was mononuclear
cell infiltration in alveolar spaces distributed sparsely in
lower inoculum (104 CFU mL−1) and extensively in higher
inoculum groups (106 CFU mL−1 and 108 CFU mL−1). By 4
weeks, granulomatous lesions were seen in lungs across all
groups (Figure 5), although the number of such foci varied
depending on the initial inoculum. The predominant cell
types were macrophages/histiocytes and foam cells. Lym-
phocytic aggregation was predominant while few epitheloid
cells and multinucleated histiocytes were seen occasionally.
Some degenerating neutrophils were also seen. There was no
central zone of necrosis and peripheral fibrosis. The general
architecture of granuloma resembled that seen in mice.
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Table 1: Reproducibility of infection and response to treatment across 2 independent experiments. Each data point represents the mean ±
SD data from three animals per group.

log10 CFU/Lung

Untreated RIF-90 INH-30 EMB-300 PZA-300

Expt.1 Mean 4.75 2.63 3.45 4.51 4.13

Std. Dev. 0.42 0.21 0.01 0.39 0.03

Expt.2 Mean 4.94 2.86 3.82 4.78 4.52

Std. Dev. 0.21 0.11 0.03 0.02 0.35

(a)

10 μm

(b)

Figure 5: H&E at 100×magnification (a) and ZN stain at 1000×magnification (b) of a lung granulomatous lesion at 4 weeks post infection.

3.3. Bactericidal Activity of Drugs. The dose response of four
frontline TB drugs was determined in the rat infection model
over a wide concentration range administered once daily
per-orally for 2 weeks. RIF exhibited most potent and a
sharp dose-dependent bactericidal activity among all drugs
tested (Figure 3). RIF 30, 90, and 270 mg/kg doses resulted
in 1.5, 2.1, and 2.7-log10 CFU reductions, respectively, in
the lungs following two weeks of treatment. INH was the
second most efficacious drug with 0.4, 1.2, and 1.3-log10 CFU
reductions, respectively, at 10, 30, and 90 mg/kg doses. EMB
was less efficacious than RIF and INH but exhibited a clear
dose response. The net bactericidal effect of EMB 100, 300
and 1000 mg/kg was 0.1, 0.2 and 0.9-log10 CFU reductions,
respectively. In contrast, PZA had activity of 0.6 and 0.7-log10
CFU reductions at 300 and 1000 mg/kg doses.

In a second experiment, we compared the effect of
RIF 90 mg/kg, INH 30 mg/kg, EMB 300 mg/kg, and PZA
300 mg/kg administered per-orally once daily either for 2
weeks or 4 weeks. The effect was reproducible across the
two experiments (Table 1); RIF, EMB, and PZA exhibited
significantly higher bactericidal activity when the duration
of treatment was increased from 2 to 4 weeks, while INH did
not (Figure 4).

4. Discussion

Animal models are an integral part of drug discovery
programs. They allow understanding of disease process and
evaluation of new interventions in a dynamic system thus
providing a link between in vitro potency and therapeutic
use.

Traditionally, mice have been the model of choice for
early preclinical testing of drug candidates for antitubercular
activity because of their relative ease in handling, lower
maintenance costs, and need for small amounts of experi-
mental drugs to study pharmacokinetics and pharmacody-
namics [6, 7, 17]. In contrast, rats have been considered
unsuitable for experimental tuberculosis since they were
noted to be resistant to tubercle bacilli. Neither high doses
of tubercle bacilli given parenterally could kill nor produce
necrotic tuberculous lesions and tuberculin sensitivity.

The pathology observed in mice following M. tuberculosis
infection does not entirely reflect the human disease. In con-
trast, larger animals like guinea pigs, rabbits, and nonhuman
primates better approximate human tuberculosis [18–21].
However, the obvious limitation for drug screening remains
the larger size, logistics and drug quantity requirements. In



International Journal of Microbiology 5

recent years, evidence is available where tuberculosis infected
rats have necrotic lesions and chronic infections in the
lungs [13, 14, 22], that are closer to the events observed
in human disease than in the mice model. Thus, rats may
provide an intermediate option in terms of representing
more histopathological aspects of human disease than mice,
yet not posing significantly higher demands on logistics and
drug substance.

We report a Wistar rat aerosol infection model of tuber-
culosis suitable for investigating the pharmacodynamics of
antitubercular drugs. Three key reasons that prompted us to
explore a rat infection model are as follows.

(1) Rats are widely accepted species for investigating
pharmacokinetics and toxicokinetics at the pre-
clinical and development stages of drug discovery
programs [15].

(2) In recent years, there are many reports on rat
M. tuberculosis infection models for investigating
immunology and pathology of tuberculosis [12–15,
19]. A report indeed showed that granulomas in
M. tuberculosis infected American cotton rats [12]
exhibit caseous central necrosis similar to humans
thereby adding additional value to the animal model.

(3) We reasoned that if the response of M. tuberculosis
infected rats to antitubercular therapy is reproducibly
established then the entire PK, PD, and toxicological
investigations at the interface of discovery and devel-
opment can be done in the same species.

We have reproducibly achieved chronic rat lung infec-
tions similar to that reported in American Cotton rats [12]
and Lewis rats [14]. In our study, infected rats appeared
healthy during the 18 weeks of observation. Aerosol infection
allowed us to mimic portal of entry as in humans, resulting
in inflammatory disease leading to pulmonary granulomas.
The biphasic nature of infection may provide an opportunity
to study drug effects on actively replicating bacilli (week 1–6)
or on minimally replicating bacilli (week 7–18).

The histopathological changes observed in Wistar rats
over a period of 18 weeks had no central necrosis similar
to mice [7] and other rat strains like type 1 diabetic rats
[13] and Lewis rats [14]. In contrast, American cotton
rats [12] and F344/N-rnu nude rats [22] have been shown
to exhibit central necrosis within granulomas suggesting
variable immunological and pathological outcomes across
different rat strains.

Our study established efficacy of four front-line TB drugs
(RIF, INH, PZA, and EMB) in the Wistar rat infection model.
Significant bactericidal activities of four reference drugs
acting on distinct molecular targets undoubtedly suggest
suitability of rat infection model for screening of compounds
with antitubercular activity. Thus, Wistar rat model offers a
significant advantage over the mouse model since it presents
histopathological changes that are closer to that observed
in human tuberculosis, while simultaneously permitting the
study of pharmacokinetics, pharmacodynamics, and safety
pharmacology in the same species. This would provide

a better handle in terms of predicting the human dose with
the appropriate safety margins.
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