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Abstract

Most cellular functions are carried out by a dynamic network of interacting proteins. An open question is whether the network

properties of protein interactomes represent phenotypes under natural selection. One proposal is that protein interactomes have

evolved to be resilient, such that they tend to maintain connectivity when proteins are removed from the network. This hypothesis

predicts that interactome resilience should be maintained by natural selection during long-term experimental evolution. I tested this

prediction by modeling the evolution of protein–protein interaction (PPI) networks in Lenski’s long-term evolution experiment with

Escherichia coli (LTEE). In this test, I removed proteins affected by nonsense, insertion, deletion, and transposon mutations in evolved

LTEE strains, and measured the resilience of the resulting networks. I compared the rate of change of network resilience in each LTEE

population to the rate of change of network resilience for corresponding randomized networks. The evolved PPI networks are

significantly more resilient than networks in which random proteins have been deleted. Moreover, the evolved networks are

generally more resilient than networks in which the random deletion of proteins was restricted to those disrupted in LTEE. These

results suggest thatevolution intheLTEEhasfavoredPPInetworks thatare,onaverage,moreresilient thanexpectedfromthegenetic

variation across the evolved strains. My findings therefore support the hypothesis that selection maintains protein interactome

resilience over evolutionary time.
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Introduction

When redundant nodes and connections in a network carry a

cost, removing those redundancies may increase efficiency at

the expense of reducing resilience to unexpected disruptions.

After a critical point, called the percolation threshold, further

pruning can cause a catastrophic breakdown of connectivity

and function (Callaway et al. 2000). In the context of protein–

protein interaction (PPI) networks, efficiency may refer to the

cost of protein production (Kafri et al. 2016).

Zitnik et al. (2019) formally defined network resilience to

measure how quickly a network breaks down as nodes are

removed. They then studied the evolution of PPI networks

(also called protein interactomes) across the tree of life, con-

cluding with the hypothesis that interactome resilience is
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favored during evolution. While interesting, this hypothesis is

rather vague. To better understand the relevance of network

resilience to evolutionary biology, we need to ask whether

network resilience has any relevance or predictive power in

additional contexts. If network resilience is a necessary prop-

erty of evolved PPI networks, then it should be maintained by

selection during long-term evolution experiments. Here, I use

the methods developed by Zitnik et al. (2019) to test this

prediction, by examining how protein interactome resilience

has evolved in Lenski’s long-term evolution experiment with

Escherichia coli (LTEE).

In the LTEE, 12 initially identical populations of E. coli have

evolved for more than 50,000 generations (Lenski et al. 1991;

Lenski 2017). The LTEE populations are named by the pres-

ence of a neutral phenotypic marker: populations Araþ1 to

Araþ6 grow on arabinose, whereas populations Ara�1 to

Ara�6 cannot (Lenski et al. 1991). Many populations have

lost unnecessary metabolic traits (Leiby and Marx 2014; Grant

et al. 2021), and many genes have been disrupted by loss-of-

function mutations, in part caused by the evolution of ele-

vated mutation rates in several populations (Tenaillon et al.

2016; Couce et al. 2017; Good et al. 2017; Maddamsetti and

Grant 2020a).

Despite evidence for genomic and phenotypic streamlin-

ing, it is unknown how PPI network resilience has evolved

during the LTEE. To examine this question, I compared the

rate of change of protein interactome resilience in each LTEE

population to the expected rate of change in corresponding

sets of randomized networks (Materials and Methods). I com-

pare rates of change of interactome resilience between real

and simulated networks, because this approach is simple and

accounts for phylogenetic correlations among genomes from

the same population; it treats the independent LTEE popula-

tions as the appropriate unit of statistical replication.

Importantly, the randomized networks within each popula-

tion have no such phylogenetic correlations, in order to re-

duce the computational cost of sampling large numbers of

statistically independent replicates. For robustness, I analyzed

two curated data sets of PPIs in E. coli, which I refer to as Zitnik

interactome (Zitnik et al. 2019) and the Cong interactome

(Cong et al. 2019). Overall, protein interactome resilience is

higher in the LTEE than in the randomized networks, indicat-

ing that this system-level property is being maintained over

long-term experimental evolution.

Materials and Methods

The full Materials and Methods section is in the supplemen-

tary information, Supplementary Material online; a brief sum-

mary follows. For robustness, I conducted two separate

analyses, using two PPI data sets (Cong et al. 2019; Zitnik

et al. 2019). For each of these PPI data sets, I generated a

protein interactome network for the ancestral LTEE clone,

REL606. I then generated 264 evolved protein interactome

networks, in correspondence with the 264 genomes of

LTEE clones isolated at 11 timepoints through 50,000 gener-

ations (Tenaillon et al. 2016). To generate the evolved net-

works, I first tabulated nonsense SNPs, small indels, mobile

element insertions, and large deletions affecting protein-

coding regions in each genome (Tenaillon et al. 2016).

Because these mutations disrupt protein reading frames, I

use them as a proxy for loss-of-function mutations in the

LTEE. For this reason, I call these types of mutations “gene

disruptions,” and call genes that are affected by these types

of mutations “disrupted genes” for short. I then constructed

the evolved networks by pruning the REL606 interactome of

nodes (proteins) and edges (interactions) affected by gene

disruptions in the given genome. Network resilience was cal-

culated using the method described in Zitnik et al. (2019).

Please see the full Materials and Methods section in the sup-

plementary information, Supplementary Material online for

further details about the data sets, the network resilience

calculations, and the statistical analysis.

Results

LTEE PPI Networks Are More Resilient Than PPI Networks
with Random Proteins Deleted

I calculated the resilience of randomized counterparts of the

evolved LTEE PPI networks, in which proteins to delete from

the network were sampled at random. In this randomization

scheme, a protein may be removed from the PPI network,

regardless of its essentiality in E. coli (fig. 1). For this reason,

I expected that the evolved LTEE PPI networks would be more

resilient than the randomized PPI networks, and this was in-

deed the case (Zitnik interactome: Wilcoxon signed-rank exact

test P¼ 0.00024; Cong interactome: Wilcoxon signed-rank

exact test P¼ 0.00024). This result can be seen by comparing

the red and yellow slopes in figure 2.

The analysis in figure 2 also shows that the Araþ1 popu-

lation is an outlier: randomized Araþ1 networks are expected

to have very low resilience, even though the Araþ1 popula-

tion has maintained the wild-type point mutation rate (see

fig. 2 legend). This finding can be explained by the high trans-

poson insertion mutation rate that evolved in this population

(Papadopoulos et al. 1999; Maddamsetti and Grant 2020a;

Consuegra et al. 2021). The Araþ1 population has also

lagged behind the others in mean fitness (Wiser et al. 2013;

Grant et al. 2021; Consuegra et al. 2021).

LTEE PPI Networks Are More Resilient Than PPI Networks
with Gene Disruptions Sampled across LTEE Populations

In part, the previous finding could be caused by sampling

unrealistic randomized networks. For instance, the previous

method permits the sampling of randomized networks that

lack essential ribosomal proteins, which is biologically implau-

sible (fig. 1). I therefore conducted a second test, in which
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I restricted the proteins sampled for deletion to those that

were disrupted in at least one LTEE population. Here, the

probability of sampling proteins for deletion was weighted

by the frequency of observed disruptions across LTEE popula-

tions. This resampling procedure takes parallel genetic evolu-

tion into account (Woods et al. 2006; Ostrowski et al. 2008;

Tenaillon et al. 2016), because proteins that are disrupted

multiple times across populations are more likely to be sam-

pled. The evolved LTEE PPI networks, on the whole, are more

resilient than randomized PPI networks generated from gene

disruptions tabulated across all 12 LTEE populations (Zitnik

interactome: Wilcoxon signed-rank exact test P¼ 0.0061;

Cong interactome: Wilcoxon signed-rank exact test

P¼ 0.0012). This result can be seen by comparing the red

and blue slopes in figure 2.

Genes in Large Deletions in the LTEE neither Show Physical
Modularity nor Fewer Interactions

The resampling procedures operate on the level of individual

gene disruptions and losses, such that large deletions are

replaced by a sample of individual gene disruptions.

Therefore, the resampling procedures could bias the results

by breaking up the block structure of multi-gene deletions.

This would matter if disrupting a block of x genes has less of

an effect on PPI network resilience than disrupting x genes

across the genome.

I examined two PPI properties through which the absence

of large deletions in the randomized networks could have an

effect. First, systematic bias could be introduced if genes

within large deletions tend to have fewer interactions than

genes affected by small indels or nonsense mutations.

Second, systematic bias could be introduced if interactions

within large deletions show physical modularity, such that

genes within large deletions preferentially interact with each

other, but not with genes elsewhere on the chromosome.

I find no difference in PPI degree between genes knocked

out by multi-gene deletions, and those disrupted by single-

gene mutations in the 50,000 generation LTEE clones (Zitnik

interactome: Wilcoxon rank-sum test P¼ 0.46; Cong interac-

tome: Wilcoxon rank-sum test P¼ 0.26). Furthermore, I find

that interactions removed by multi-gene deletions in 50,000

generation LTEE clones are further apart in the genome, on

average, than interactions removed by single-gene disruption

mutations. For the case of the Zitnik interactome, interactions

removed by multi-gene deletions have a mean genomic dis-

tance of 1,071,063 base-pairs, compared with a mean geno-

mic distance of 1,054,403 base-pairs for interactions removed

by single-gene disruptions (Wilcoxon rank-sum test:

P¼ 0.0364). For the case of the Cong interactome, interac-

tions removed by multi-gene deletions have a mean genomic

distance of 714,316 base-pairs, compared with a mean ge-

nomic distance of 583,624 base-pairs for interactions re-

moved by single-gene disruptions (Wilcoxon rank-sum test:

P< 10�4). Therefore, the differences between realized and

randomized PPI network resilience in the LTEE do not seem

to be an artifact of the resampling procedure, at least with

regard to PPI degree and the aspects of physical modularity

that I examined.

Purifying Selection on Essential Genes in the LTEE Ancestral
Clone Is Insufficient to Explain the Maintenance of
Network Resilience in the LTEE

What evolutionary forces are responsible for maintaining pro-

tein interactome resilience in the LTEE? Interactome resilience

is not a target of positive selection, because mean population

fitness increases in each LTEE population (Wiser et al. 2013)

whereas interactome resilience decreases (fig. 2). Therefore,

interactome resilience negatively correlates with fitness gains

in the LTEE (fig. 3). The only remaining explanation is that

network resilience is being maintained by purifying selection.

Still, it is unclear whether protein interactome resilience is

under direct selection, or whether its maintenance is a

byproduct of purifying selection on correlated phenotypes.

As essential genes cause lethal phenotypes when dis-

rupted, direct purifying selection against the disruption of es-

sential genes could cause indirect purifying selection on

interactome resilience. I hypothesized that disruptions of

Ancestral PPI Network Evolved PPI Network

Randomization Procedure 1 Randomization Procedure 2

FIG. 1.—Illustration of ancestral, evolved, and randomized networks.

Nodes represent proteins, and edges represent protein–protein interac-

tions. Red nodes indicate essential proteins which cause lethal phenotypes

if disrupted by nonsense SNPs, small indels, mobile element insertions, or

large deletions. The PPI network of the ancestral bacterial clone is shown at

top left. The PPI network of an evolved bacterial clone, in which one

protein has been disrupted, is shown at top right. The randomization

procedures sample subnetworks of the ancestral PPI network. Each ran-

domized network corresponds to an evolved PPI network: the number of

proteins disrupted in the randomized network is fixed to the number

disrupted in the corresponding evolved PPI network. The first randomiza-

tion procedure used in this article (bottom left) samples all protein-coding

genes in the ancestral clone for disruption, including those encoding es-

sential proteins. The second randomization procedure used in this article

(bottom right) samples protein-coding genes for disruption based on the

number of evolved populations that contain disruptions of that gene (see

Materials and Methods for further details).
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essential genes would have disproportionately negative

effects on network resilience. Although I found evidence of

direct purifying selection on essential genes, I found limited

evidence for the hypothesis that direct purifying selection on

essential genes indirectly maintains interactome resilience.

I examined a set of 541 essential and nearly essential genes

that were identified in REL606 (Couce et al. 2017). These

genes are highly enriched for PPIs compared with the remain-

ing 3,571 nonessential genes (one-sided Wilcoxon rank-sum

test: P< 10�58 for Zitnik PPI data set, P< 10�10 for Cong PPI

FIG. 2.—Protein–protein interaction (PPI) networks in the LTEE (red) lose network resilience more slowly than randomized networks generated using

either all genes in the REL606 genome (yellow) or only those disrupted in the LTEE (blue). The top six populations have the ancestral point-mutation rate,

whereas the bottom six populations evolved elevated point-mutation rates. (A) Analysis based on the Escherichia coli PPI network published in Zitnik et al.

(2019). (B) Analysis based on the E. coli PPI network published in Cong et al. (2019).
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data set). Essential and nearly essential genes also show a

significant signal of purifying selection in the 50,000 genera-

tion LTEE clones: they contain 44 out of 941 gene disruptions

in the 50,000-generation LTEE genomes, whereas the total

length of essential and nearly essential genes is 499,180 bp,

out of 3,962,143 bp representing the total length of all

protein-coding genes (one-sided binomial test: P< 10�15). It

should be noted that the 23 of the 57 genes with clear evi-

dence of parallel evolution (i.e., two or more nonsynonymous

mutations) in nonmutator lineages of the LTEE (Tenaillon et al.

2016; Maddamsetti et al. 2017) are essential or nearly essen-

tial. This association between essentiality and positive

selection in the LTEE is highly significant (Fisher’s exact test:

P< 10�6).

I then simulated the disruption of every single gene in

REL606 to measure their effects on network resilience. In con-

trast with my initial expectation, I find that the majority of

single gene disruptions in REL606 increase network resilience.

Furthermore, disruptions of essential and nonessential genes

have qualitatively similar effects on network resilience (sup-

plementary fig. S1, Supplementary Material online). When I

examine the effect of disrupting every single gene in the

50,000 generation LTEE clones on interactome resilience,

the results are largely strain-specific. Again, the trend for
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FIG. 3.—PPI network resilience negatively correlates with mean population fitness, measured by direct competition assays against reference LTEE clones

(Wiser et al. 2013). The top panels show the fitness measurements from Wiser et al. (2013); the colors denote the PPI network resilience of genomes sampled

from the corresponding populations and time points. The bottom panels show the negative correlations between mean population fitness and PPI network

resilience. (A) Analysis based on the Escherichia coli PPI network published in Zitnik et al. (2019). The negative correlation between fitness and resilience is

significant (Pearson’s product-moment correlation: r¼ �0.59, P<10�16). (B) Analysis based on the E. coli PPI network published in Cong et al. (2019). The

negative correlation between fitness and resilience is significant (Pearson’s product-moment correlation: r ¼ �0.27, P<10�4).
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essential genes is similar to the trend for nonessential genes

(supplementary fig. S2, Supplementary Material online).

Together, these findings suggest that purifying selection on

essential genes in the LTEE ancestral clone is not sufficient to

explain the maintenance of network resilience in the LTEE.

Discussion

I find that evolved networks in the LTEE lose protein interac-

tome resilience more slowly than expected, based on compar-

isons with networks with random gene disruptions and

networks with gene disruptions weighted by their occurrence

across LTEE populations (fig. 1). The second analysis controls

for the biologically implausible PPI networks that would be

created by sampling essential genes for disruption. Together,

these results are consistent with Zitnik and colleagues’ general

hypotheses that network resilience 1) is a genuine property of

evolved PPI networks and 2) is relevant for understanding

how PPI networks evolve.

Selection must be driving the maintenance of protein inter-

actome resilience in the LTEE. Since protein interactome resil-

ience negatively correlates with fitness gains in the LTEE

(fig. 3), positive selection can be ruled out as a cause.

Therefore, purifying selection must be maintaining protein

interactome resilience in the LTEE. In addition, I find a general

trend that loss-of-function mutations increase network resil-

ience in REL606. This finding shows that positive selection has

not optimized the interactome resilience of REL606: indeed,

the interactome resilience of REL606 appears to be closer to a

local minimum than to a local maximum.

Protein interactome resilience could be maintained by direct

selection, or as a byproduct of selection on phenotypes that

correlate with interactome resilience. In previous work, I found

evidence for purifying selection on essential genes in metage-

nomic time series covering 60,000 generations of the LTEE

(Maddamsetti and Grant 2020b), as well as evidence of puri-

fying selection on highly interacting genes (Maddamsetti

2021). Consistent with those findings, the LTEE genomes an-

alyzed here show evidence of purifying selection on essential

genes, which are also highly enriched for PPIs. I then asked

whether purifying selection on essential genes could explain

the maintenance of interactome resilience in the LTEE. My

analyses suggest that this is not the case: disruptions of essen-

tial genes are qualitatively similar to disruptions of nonessential

genes, in regard to their effects on network resilience (supple-

mentary figs. S1 and S2, Supplementary Material online).

These findings still leave open the broader question of whether

protein interactome resilience is under direct selection, or is a

byproduct of selection on other, unknown, correlated pheno-

types. In this vein, it would be interesting to ask whether var-

iation in interactome resilience correlates with evolvability in

the sense of the distribution of fitness effects (DFE) for bene-

ficial mutations (Mustonen and L€assig 2010; Woods et al.

2011; Łuksza and L€assig 2014; Levy et al. 2015; Ba et al.

2019), or with mutational robustness in the sense of the DFE

for deleterious mutations (Johnson et al. 2019).

This work has important limitations. First, the resampling

procedure used to generate randomized networks does not

maintain the block structure of large deletion mutations. For

this reason, I analyzed the protein interaction degree and ge-

nomic interaction distance distribution of genes affected by

large deletions in the LTEE. This analysis did not uncover any

systematic biases that would affect the broad import of my

findings. Second, the resampling procedure does not preserve

the phylogenetic structure within each population (i.e., ran-

domized networks at later time points are not subnetworks of

the randomized networks at earlier timepoints), for the sake

of computational tractability. Duplication and amplification

mutations are also ignored, owing to their rarity in these

data (Tenaillon et al. 2016), and the evolution of new inter-

actions is ignored due to a lack of data. Third, it is possible that

gene essentiality evolves in the LTEE. Even though purifying

selection on essential genes in the ancestral clone does not

appear to be sufficient to cause selection for network resil-

ience, it is possible that essential genes in the evolved clones

make a greater contribution to network resilience than essen-

tial genes in the ancestral clone. Finally, the LTEE was specif-

ically designed to minimize ecological complexity (Lenski et al.

1991). Given the significant correlation between network re-

silience and ecological complexity reported by Zitnik et al.

(2019), it is possible that network resilience may often evolve

under positive selection in nature, but not in the controlled

and largely constant abiotic conditions of the LTEE.

Finally, there is an intriguing connection between network

resilience and the deterministic mutation hypothesis for the

evolution of sex (Kondrashov 1988; Azevedo et al. 2006).

Loss-of-function mutations may have little effect on network

integrity when they occur in a genome with high network

resilience. By contrast, they may have catastrophic effects

on network integrity when they occur in a genome with

low network resilience. The deterministic mutation hypothesis

states that synergistic epistasis between deleterious muta-

tions—such as those that together cause network fragmen-

tation—confers a selective advantage to sex. Near a critical

threshold of network resilience, additional loss-of-function

mutations are more likely to fragment biological networks,

which could contribute to the synergistic epistasis required

by the deterministic mutation hypothesis for the evolution

of sex. Gene disruptions continue to accumulate over time

in each LTEE population, suggesting that it might be worth-

while to test for such synergistic interactions at a later point

(Elena and Lenski 1997), especially in the context of PPI net-

work resilience.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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