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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Revealing that language models can learn human behavioral sequences.

- Integrating the implicit knowledge of drivers in the route optimization process.

- A novel algorithm to optimize delivery routes emulating real-world driving behaviors.

- Broadening the scope of language models to diverse domains with certain grammar rules.
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Language models have contributed to breakthroughs in interdisciplinary
research, such as protein design and molecular dynamics understanding.
In this study, we reveal that beyond language, representations of other
entities, such as human behaviors, that are mappable to learnable se-
quences can be learned by language models. One compelling example is
the real-world delivery route optimization problem. We here propose a novel
approach based on the language model to optimize delivery routes on the
basis of drivers’ historical experiences. Although a broad range of optimiza-
tion-based approaches have been designed to optimize delivery routes, they
do not capture the implicit knowledge of complex delivery operating environ-
ments. Themodel we propose integrates this knowledge in the route optimi-
zation process by learning from driving behaviors in experienced drivers. A
real-world delivery route that preserves drivers’ implicit behavioral patterns
is first analogized to a sentence in natural language. Through unsupervised
learning, we then learn the vector representations of words and infer the
drivers’ delivery chains on the basis of the tailored chain-reaction-based al-
gorithm. We also provide insights into the fusion of language models and
operations researchmethods. In our approach, languagemodels are applied
to learn drivers’ delivery behaviors and infer new deliveries at the delivery
zone level, while the classic traveling salesman problem (TSP) model is
embedded into the hybrid framework for intra-zone optimization. Numerical
experiments performed on real-world data from Amazon’s delivery service
demonstrate that the proposed approach outperforms pure optimization,
supporting the effectiveness, efficiency, and extensibility of our model. As
a versatile approach, the proposed framework can easily be extended to
various disciplines in which the data follow certain grammar rules. We antic-
ipate that our work will serve as a stepping stone toward the understanding
and application of language models in tackling interdisciplinary research
problems.
INTRODUCTION
Language models, originally designed to solve problems in computational lin-

guistics, such as speech recognition,1,2 machine translation,3,4 and document
generation,5,6 treat human languages as sequences of words governed by spe-
cific grammar rules. By following this approach, itwas revealed that entities other
than languages that are mappable to learnable sequences can also be solved by
language models.7 For example, protein sequences share many similarities with
human language; amino acids can be considered letters, and their multiple
combinatorial arrangements can form structures with functions, i.e., words
and sentences.8,9 Similarly, human behaviors are also analogous to human lan-
guages. For example, a traveler’s trip chain can be represented as a sentence
consisting of departure time, origin and destination coordinates, and travel
mode.10,11 Another typical example is real-world delivery route optimization
problem studied in this paper (see the research background section in the sup-
plemental information for details), inwhich a delivery route is abstracted as a sen-
tence, with its nodes represented by words. The sentence must comply with the
grammar rules set up by various real-world constraints, such as an illegal U-turn,
road closures for construction, and unpleasant traffic conditions.

In real-world delivery route optimization, the challenges go beyond identifying
the shortest path.12–16 They encompass intricate real-world constraints to take
into account genuine delivery conditions.17 Easa’s pioneering work introduces
ll
the shortest path algorithm incorporatingmovement prohibitions, hence offering
a simpler network representation.18 However, the dynamic interplay between
real-world factors, including traffic, parking, and customer preferences, is often
neglected theoretical models. Although manual removal of the complex road
segments may be feasible for small networks, it becomes unmanageable on a
larger scale. Such divergence often results in drivers equipped with local knowl-
edge deviating from optimized paths. By learning and understanding drivers’
delivery behaviors, the planned routes will be refined to better accommodate
complex real-world urban environment.
Motivated by recent interdisciplinary research about language models and

grounded in the theoretical foundations of geometric deep learning,19 in this
paper we proposes a novel language-model-based approach to solve real-world
urban delivery route optimization problem. The primary function of the language
model is to learn and understand drivers’ delivery behaviors, allowing high-fidelity
approximations of the real-world delivery routes optimized by drivers. This
approach contributes to the development of more efficient and safer routes,
as well as improved service quality. A real-world delivery route is analogously
defined as a sentence in language, which preserves the implicit knowledge of
drivers’ behavioral patternswithout involving intensive computations. By learning
the behaviors of experienced drivers, the proposed model facilitates the transfer
of this knowledge to delivery route planning, which cannot be achieved by using
only optimization-based approaches. Instead of performing sequence-to-
sequence or step-by-step prediction using supervised learning, we first use unsu-
pervised learning to learn the vector representations of words, and then design a
tailored chain-reaction-based algorithm to infer the complete delivery sequence.
This study also provides insights into the fusion of language models and op-

erations research methods. The devised hybrid architecture consists of two
parts: the first part uses language model to learn drivers’ delivery behaviors
and infer the zone sequence of new deliveries, while the second part uses the
classic traveling salesman problem (TSP) model to optimize routing within
each zone in the sequence. To validate the effectiveness of the proposedmodel,
we conduct extensive numerical experiments using actual delivery routes. The
experimental results show that the proposed method outperforms pure optimi-
zation approach. It is worth noting that our approach is not limited to the urban
delivery route optimization problem. Adaptations can be seamlessly imple-
mented in interdisciplinary domains, including but not limited to understanding
the dynamics of complex stochastic molecular systems20–25 and protein
design,9,26–29 with different features, such as word encoding schemes and
sentence definitions.

RESULTS
Real-world delivery routes can be mapped into sentences of language
The fundamental idea behind the proposed framework lies in the analogy that

a real-world delivery route can be represented as a sentence in language. This
idea stems from the principles of geometric deep learning, particularly the para-
digmof “learning on string representations.”19 In this context, we equate the ID of
an element in a route—which can be a node, a delivery stop, or a delivery service
zone—to a word in the sentence. The rationale behind this analogy is that the
generated sequences, or “sentences,” have two key characteristics: syntax and
semantic. Drawing an intellectual connectionwithmolecular strings,30 the syntax
aspect dictates that not all combinations of characters result in valid molecules,
analogous to how not all sequences of delivery stops form feasible routes,
because of real-world limitations. Semantically, the corresponding chemical
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Figure 1. Flowchart of the learning-basedmodel The
proposed model consists of three main steps: (1)
representing real-world delivery routes as “delivery
behavior sentences,” (2) learning delivery behaviors
using a machine learning model, and (3) inferring
delivery sequences from word vectors.
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compounds possess different physicochemical and biological properties
depending on how the elements of the string are combined. Likewise, different
delivery routes have different efficiencies in route optimization. Hence, the
arrangement of delivery stops in our “sentences” carries semantic information
about the route’s efficiency. The flowchart of the proposed learning-basedmodel
is illustrated in Figure 1.

In the theory of language models, it is widely acknowledged that word se-
quences with higher occurrence probabilities are more consistent with the
grammar criteria.31,32 Thus, the probability of observing a word sequence can
function as an indicator of its grammatical correctness. For instance, assume
that we obtain the statistics of a large corpus and find:

Pðjoin;us; in;building; a; better;worldÞ >
Pðworld;better; a; building; in;us; joinÞ: (Equation 1)

It can be inferred that the sentence “Join us in building a better world” is more
grammatically correct. Similarly, the probability of element sequences in the
route is used to characterize the driver’s delivery behavior pattern, i.e., the se-
quences with higher occurrence probabilities are more consistent with the
drivers’ behaviors.

In this paper, we focus on Amazon’s delivery service for a better exposition.
Detailed descriptions of the dataset are given in the data description section in
the supplemental information, as well as in Tables S1–S3. An Amazon delivery
route starts from a delivery station (i.e., depot) and then serves several delivery
stops, each with a varying number of packages. To facilitate deliveries, Amazon
also delineates zone IDs on the basis of the geo-planned area where the stop is
located, where each zone contains a varying number of stops. Taking the delivery
zone sequence as an example, it is assumed that the statistics of the real-world
delivery data show:
2 The Innovation 4(6): 100520, November 13, 2023
PðD � 3:2A;D � 3:1A;.;D � 2:3CÞ >
PðD � 2:2A;D � 3:1A;.;D � 2:1BÞ;

(Equation 2)

where “D-3.2A, D-3.1A,., D-2.1B” are the IDs of
the delivery zones in the real-world route. We
can infer that zone sequence “D-3.2A, D-3.1A,.,
D-2.3C” is closer to the real-world delivery zone
sequence.

It should be noted that the words in our
approach are not restricted to delivery zone
IDs; they can also be fine-grained delivery stop
IDs. If we analogize the delivery stop ID to an
amino acid, then the use of the delivery zone
ID as the word is similar to the three-dimen-
sional (3D) secondary structural element
formed by amino acids. We define the main no-
tations used in the paper in Table S4. A real-
world delivery route consists of M zones and
one delivery station. The delivery station is the
starting point of a route, and its index is 0.
The zones are labeled with the number 1; .;

M. The real-world delivery behavior sentence
is extracted from the delivery route, defined as
follows:

s = ðz0; z1;.; zMÞ; (Equation 3)

where each element of the sentence is a
“word” that represents a zone or the delivery sta-
tion in a route. Each sentence represents a zone sequence, with the order of the
words in the sentence being the same as that of the driver’s delivery. The proba-
bility that this sentence exists inH (i.e., a set of zone ID sequence in the training
set) is:

Pðz0; z1;.; zMÞ =
YM
m = 0

Pðzmjz0; z1;.; zm� 1Þ; (Equation 4)

where

Pðzmjz0; z1;.; zm� 1Þ =
Countðz0; z1;.; zmÞP

z˛D
Countðz0; z1;.; zm� 1; zÞ ; (Equation 5)

and zm is the mth word in the sentence, and Countð $Þ operation indicates the
number of occurrences of a subsequence in the training set.
In the actual calculation, the Markov assumption33 is introduced to further

reduce the computational effort, i.e., only the previous k zones are considered
when calculating the conditional probabilities in Equation 6.

Pðzmjz0; z1;.; zm� 1ÞzPðzmjzm� k;.; zm� 1Þ: (Equation 6)

Training the network is equivalent to learning the grammar rules of real-
world logistics delivery
We use the Word2Vec approach in natural language processing (NLP)34,35 to

learn vector representations of words in delivery behavior sentences. We
construct the delivery behavior sentences on the basis of the actual routes in
the dataset, thereby providing an accurate reflection of the real-world delivery
www.cell.com/the-innovation
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Figure 2. Visualization of the neural network and the associated weight matrix (A)
Structure of the neural network. (B) Structure of the weight matrix.
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behaviors of drivers. To learn the driver’s delivery behavior, our objective is to
learn an optimal mapping Fð $Þ by maximizing the co-occurrence probability of
the zones in each delivery behavior sentence.

Word2Vec has two typical modeling ideas, namely continuous bag-of-words
(CBOW) and skip-gram.34,35 Taking the skip-gram structure as an example, the
idea is to give a central word and then to predict its context within a certain range,
as outlined by the following objective function:

LðqÞ =
YM
m = 0

Y
� k% i% k;is0

Pðzm+ijzm; qÞ; (Equation 7)

where q denotes the parameters to be optimized in the model (e.g., the weight
matrix in a neural network), and zm is the current word. Its negative log likelihood
form is generally used as a loss function:

LðqÞ0 = � 1
M

XM
m = 0

X
� k% i% k;is0

logPðzm+ijzm; qÞ; (Equation 8)

where

Pðzm+ijzmÞ =
exp

�
vTzm+i

vzm
�

P
z˛D

exp
�
vTz vzm

� ; (Equation 9)
Algorithm 1. Tailored chain-reaction-based algorithm

Input: Word vector for the delivery station v0, word vector for zone vm ˛
V\fv0g, delivery station ID z+0, and zone ID z+m ˛D+\fz+0g.
Output: Zone ID sequence.

1: Initialization: R)fz+0g, S)fv0g, r)v0

2: while D+ � RsB do

3: Find max
vm ˛V\S

similarityðr;vmÞ

4: Find zone ID z+m that corresponds to vm , then output z+m

5: R)RWfz+mg
6: S)SWfvmg
7: r)vm

8: end while

ll
and vz is the word vector corresponding to word z, and D is the set of all words.
The learning process of optimal mapping Fð $Þ can be explained by a neural

network with a hidden layer. Figure 2A illustrates the neural network, and
Table S5 introduces parameters needed for the neural network structure.
The steps of data processing, training, and learning outcomes of themodel are

as follows.
Step 1. (Encoding) Transform all zone IDs and station IDs in the training set

into one-hot encoding vectors.
Step 2. (Constructing samples) Taking skip-gram mode as an example, we

need to construct training samples in the form of a “feature-label” pair on the ba-
sis of the real-world route sequences. The input feature is the one-hot encoding
vector of zm , and the label is formed by concatenating the one-hot encoded vec-
tors of its context.

feature = one hotðzmÞ: (Equation 10)

label = concatðone hotðzm� kÞ;.;one hotðzm� 1Þ;
one hotðzm+1Þ;.;one hotðzm+kÞÞ:

(Equation 11)

Step 3. (Training) On the basis of the defined loss function, the network
weights W ˛RH3O and W0 ˛RO3H are updated using an optimizer based on
the constructed training samples.
Step 4. (Learning outcomes) After training, the learned word vector for the ith

zone is obtained bymultiplying its one-hot encoded vector with theweightmatrix
W˛RH3O. The matrix structure is shown in Figure 2B.

The complete real-world delivery route can be inferred from the word
vector using a tailored chain-reaction-based algorithm
The theoretical foundation of our tailored chain-reaction-based algorithm

stem from the notion that functional similarities between entities can be
deduced on the basis of their mapping and proximity in the word embedding
space.30

By projecting delivery routes to the word embedding space, we aim to infer
complete delivery routes on the basis of their proximity and relational mapping
in this space. For instance, let us consider an actual route “DES4, D-3.2A,.,
D-2.3C” from historical data, where “DSE4” denotes the delivery station, i.e.,
the starting point of the route. First, we extract the word vectors of station
“DSE4.” Given that “DSE4, D-3.2A” co-occurs in historical data, it is inferred
that the word vectors of the two elements are similar. Therefore, “D-3.2A”
can be identified by finding the zone corresponding to the next most similar
vector. From the perspective of the discrete choice model, this operation essen-
tially equates to selecting the zone with the maximized utility.36 In NLP, vector
similarity is usually measured using cosine similarity.37 Given the word vectors
v1 and v2 for the two zones, respectively, the cosine similarity is defined as
follows:

similarityðv1; v2Þ =
v1$v2

kv1kkv2k : (Equation 12)

For an unsorted zone ID sequence s+ = fz+0 ;z+1 ;.;z+Mg, where z+0 is the de-
livery station ID, z+1 ;.; z+M are the zone IDs to be sorted, we apply Algorithm 1
to obtain a sorted zone ID sequence from the word vector. Inspired by
the basic steps of chain reactions, namely initiation, propagation, and termina-
tion,38 the algorithm operates in a similar phased manner. The initiation phase
starts with the delivery station, treating it as the initial starting point. The
propagation phase then invokes an iterative process that identifies the
subsequent delivery zones to be served. The identification relies on finding
the word vector most similar to the previous zone. This exploitation of word
vector similarity, a by-product of the Word2Vec model trained on historical de-
livery routes, positions zones frequently and consecutively appearing in histor-
ical data in close proximity in the vector space. Essentially, each step in the
propagation phase retraces the paths embedded in the word vector space.
The algorithm continues its propagation phase until all delivery zones are
covered, which marks the termination of the algorithm. The final result is a
complete delivery sequence that reflects the historical patterns embedded in
the word vectors.
The details of the tailored chain-reaction-based algorithm are elaborated in Al-

gorithm 1.
The Innovation 4(6): 100520, November 13, 2023 3
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Figure 3. Comparison between real-world delivery route and theoretically optimized route (A) A real-world delivery route of Amazon’s delivery service, where each point represents a
delivery stop in the route. Stops within the same delivery service zone share the same color. (B) A delivery route optimized by the standard TSP model. (C) Two delivery routes in the
same city sharing a common zone subsequence “D-2.1B, D-2.1C, D-2.3C.” (D) A real-world intra-zone delivery route. (E) An optimal intra-zone delivery route. (F) Overview of the real-
world delivery route optimization system.
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Fusing language model and operations research method
In Amazon’s package delivery business, a delivery service area is normally

divided into zones to facilitate delivery. Figure 3A shows a real-world Amazon de-
livery route, where the driver completes deliveries in zone “D-3.1A” before pro-
ceeding to “D-2.1A,” indicating a tendency to finish one zone before moving to
another. Drivers make these decisions on the basis of their knowledge of
roadway conditions, infrastructure design, and customer preferences. With
extensive experience in delivery in practice, driversmay “reoptimize” the route se-
4 The Innovation 4(6): 100520, November 13, 2023
quences themselves instead of following the optimal routes provided by the rout-
ing system, as the lattermay lack consideration of real-world road conditions and
drivers’ preferences. Figure 3B displays an optimized delivery route derived from
solving the standard TSP that aims at minimizing the travel time. Nevertheless,
the optimized routemay conflict with drivers’ experience in delivery. In Figure S2,
combined with satellite imagery, we present a real-world case showing that de-
livery routes optimized by the standard TSP model might not be convenient for
drivers given actual road conditions. Such kind of knowledge, unfortunately, can
www.cell.com/the-innovation
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Figure 4. Performance comparison of different models (A) Statistics of samples in the data. (B) Missing rate of zone ID sequences. (C) Scatterplot showcasing sample errors across
different methods. (D) Error distribution of our method and the optimization approach. (E) Efficiency metrics of our method and the optimization approach. (F) Error analysis for 15
delivery stations with different model parameters. Here, k represents the range of contextual information, often termed as window size in NLP.
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hardly be quantified or incorporated by the prevailing route planning system in
the industry, resulting in deviated route sequences in practice from the optimal
routes.

Through the analysis of the actual delivery route data, it is found that a
large number of identical subsequences existed in the routing data at the
delivery zone level (see Figure 3C), indicating that drivers have an inherent
behavioral pattern. However, within each zone, drivers tend to follow the
shortest path, as illustrated in Figure 3D. This behavior is theoretically explained
ll
by the principle of local optimality.39,40 The drivers would strive for the
shortest path within each zone, essentially optimizing the route locally within
each zone.
Motivated by the analysis above, we design a two-step hybrid framework that

fuses the language model and operations research method to solve the real-
world delivery route optimization problem. In the first step, the language model
is used to extract the drivers’ tacit knowledge about optimal delivery patterns,
which may not be explicitly incorporated in the traditional delivery routing
The Innovation 4(6): 100520, November 13, 2023 5
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Figure 5. Model performance analysis (A) Prediction error across different delivery stations. (B) Relationship between the number of matched samples and average error. (C)
Distribution of individual error values. (D) Relationship between the length of the zone sequence and the average error.
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optimization algorithms. It provides a zone sequence that alignswith drivers’ intu-
itive preferences. Upon procuring the sequence of zones, the second step treats
each zone’s delivery as the classic TSP problemwith specific start and end stops
(see themethod section in the supplemental information). This approachoffers a
theoretically efficient route that also aligns with the on-ground experiences and
preferences of drivers. The general idea of the complete delivery route optimiza-
tion system is illustrated in Figure 3F.

Comparison of the proposed and traditional optimization model
The real-world data used in our experiments are extracted from Amazon’s de-

livery service, encompassing critical information suchas route information, travel
time data, and actual delivery sequence information (see Tables S1–S3).41 The
data contain 6,112 routes from 17 distinct delivery stations scattered across
various regions in the United States. We filtered outlier samples and divided
the dataset on the basis of the delivery stations, in order to create subsets that
align with unique geographical and operational characteristics of each station.
To overcome possible limitations imposed by sample size and ensure robust
model evaluation, we adopt a leave-one-out cross-validation strategy in our ex-
periments. Detailed statistical information on the dataset is shown in
Figures 4A and 4B.

We use a hybrid evaluation metric to determine the error between the se-
quences of the model output and the drivers’ high-quality delivery sequences
(considered to be the true values). The details of this metric and the sample cre-
ation are elaborated in the evaluation metric and sample construction process
sections of the supplemental information. Figure 4C illustrates the scatterplots
of individual sample errors for both our method and the conventional optimiza-
tion approach. Figure 4D further shows the error distributions for both methods.
Table S6 provides a comparative analysis of the error statistics for the two
methods. The proposed approach of generalized sequence modeling shows a
clear advantage over the standard TSPmodel from operations research in terms
of both mean error and variance, indicating both the robustness and generaliz-
ability of ourmethod. In contrast, the operations research approach, tailored spe-
cifically for a single task and dataset, lacks the adaptability needed for broader
applications such as protein structure prediction.

Ourmethoddecomposesa large-scale route optimization problem into several
small-scale route optimization problems. Figure 4E shows a comparison be-
tween the computational time of the proposed model and the traditional optimi-
6 The Innovation 4(6): 100520, November 13, 2023
zation approach. Although the total number of stops in the route is the same in
both solutions, the computational time of our method is much shorter than that
of the optimization approach.
The proposed model has several adjustable parameters, and the impact of

these parameters on the error is illustrated in Figure 4F and Table S7. Window
size has a significant impact on the results and the weighted average error
whenk = 8 ismuch lower than thatwhenk = 1.Fromtheperspectiveof feature
engineering, k = 8 implies that the current word, along with eight preceding and
eight succeeding words, constitutes a training sample, which contains more in-
formation than k = 1and leads tobetter results.However, it shouldbenoted that
the lengthof thezone IDsequence inour study isapproximately 20, and there isa
bottleneck in improving the model performance by adjusting the window size.
This bottleneckmanifests itself in the observation that the weighted average er-
ror when k = 12 is larger than that when k = 8. Despite the benefit of richer in-
formation with a larger window, it also introduces more missing values in the
training data.
The observed disparity in error between the skip-gram and CBOW models in

Figure 4F can be attributed to the distinctions in their underlying architectures.
The CBOWmodel predicts a target word from its context, while skip-gram does
the opposite, predicting context words from a target word. This fundamental
difference means that skip-gram often ends up with a more detailed represen-
tation for less frequent words, as it treats each context-target pair as a new
observation. Because of the aforementioned mechanism, skip-gram virtually
has more training data, as it learns from multiple context-target pairs for a sin-
gle center word. In contrast, CBOW aggregates all context words for predicting
a single center word, which can sometimes lead to a loss of detailed informa-
tion. Skip-gram tends to perform better on infrequent words because its
emphasis is on predicting contexts for specific target words. On the other
hand, CBOW might neglect such words because of its averaging mechanism
over contexts.

Performance analysis of the proposed method
In the experiments, an individual model was trained for each delivery station.

The errors of corresponding subsets are further analyzed and showcased in
Figure 5A. Here, we find that the error is related not only to the quantity of
training data but also to the quality of the samples, which we refer to as the
matching rate of the samples. See the sample construction process section
www.cell.com/the-innovation
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in the supplemental information for detailed formulas used to calculate this
matching rate. The relationship between the number of matched samples
(75% match) and the average error is shown in Figures 5B and 5C. It can be
found that the average error of the machine learning model decreases as
the number of matched samples increases. The potential and practical values
of machine learning methods are also revealed relation to the efforts required
in algorithm design. Compared with ad hoc approaches, machine learning
methods can automatically learn the drivers’ behaviors without extensive
expert experience in problem analysis and solution algorithm design for optimi-
zation problems.

A common challenge in the sequence prediction task resides in the potential
rapid escalation of error as the length of the sequence targeted for prediction ex-
tends because of weak correlations between inputs and outputs in longer se-
quences. Figure 5D shows the relationship between the length of the zone
sequence and the average error in our model. It is found that the average error
fluctuates around 0.04 as the length of the zone sequence increases without
an observable tendency to increase.
CONCLUSION
Our research introduces a pioneering attempt to apply language models,

traditionally developed for NLP, to a broader range of tasks. In particular,
any tasks involving understanding systems organized by certain grammar
rules could potentially benefit from this research. It could be pertinent to
fields in which complex systems are typically involved, such as biology,
chemistry, and physics. Specifically, we examined the real-world delivery
route optimization problem, in which drivers may need to “reoptimize”
planned route sequences themselves on the basis of actual scenarios
such as road conditions, infrastructure design, and driving preferences
rather than strictly following the optimal routes derived from the routing
system. In this direction, we have developed a hybrid architecture inte-
grating a language model with an embedded TSP model, seeking to tackle
real-world delivery route optimization problems that are challenging to
address with merely operations research methods. Numerical experiments
were performed on the real-world data from Amazon’s delivery service, and
a comparison was made between the proposed method and a pure optimi-
zation method. The results shed light on the feasibility, effectiveness, effi-
ciency, and potential adaptability of the proposed method.

The application of the proposed approach can extend far beyond the scope of
delivery route optimization. Potential applications span a variety of fields, such as
intelligent transportation, smart cities, and autonomous driving.42–47 As our
research progresses, we are optimistic about the broader applicability of this
model in tackling complex sequence prediction problems across diverse disci-
plines. This study serves as a stepping stone toward harnessing the power of lan-
guage models in practical real-world scenarios, and we look forward to the
remarkable advancements that lie ahead.
MATERIALS AND METHODS
See the supplemental information for details.
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