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Simple Summary: Intracellular Ca2+ signaling is a critical factor in breast cancer metastasis. In the pro-
liferation stage, increases in intracellular Ca2+ concentration through voltage-dependent Ca2+ chan-
nels, P2Y2 channels, transient receptor potential (TRP) channels, store-operated Ca2+ channels
(SOCCs), and IP3 receptors and a decrease in intracellular Ca2+ concentration through plasma
membrane Ca2+ ATPases and secretory pathway Ca2+ ATPases (SPCA) activate breast cancer cell
proliferation. TRPM7, SOCC, inositol trisphosphate receptor (IP3R), ryanodine receptor (RyR),
and sarco-/endo-plasmic reticulum Ca2+-ATPase (SERCA) increase the expression of epithelial-to-
mesenchymal transition (EMT)-related proteins; meanwhile, SPCA and the Na+/Ca2+ exchanger
(NCX) control the activation of EMT-related proteins. Increased Ca2+ through TRPC1, TRPM7/8,
P2X7, and SOCC enhances breast cancer cell migration. The stromal interaction molecule (STIM)-Orai
complex, P2X7, and Ca2+ sensing receptors are involved in invadopodia. Various pharmacological
agents for Ca2+ channels have been proposed against breast cancer and have provided potential
strategies for treating metastatic processes.

Abstract: Metastatic features of breast cancer in the brain are considered a common pathology in fe-
male patients with late-stage breast cancer. Ca2+ signaling and the overexpression pattern of Ca2+

channels have been regarded as oncogenic markers of breast cancer. In other words, breast tumor
development can be mediated by inhibiting Ca2+ channels. Although the therapeutic potential of
inhibiting Ca2+ channels against breast cancer has been demonstrated, the relationship between
breast cancer metastasis and Ca2+ channels is not yet understood. Thus, we focused on the metastatic
features of breast cancer and summarized the basic mechanisms of Ca2+-related proteins and chan-
nels during the stages of metastatic breast cancer by evaluating Ca2+ signaling. In particular, we
highlighted the metastasis of breast tumors to the brain. Thus, modulating Ca2+ channels with Ca2+

channel inhibitors and combined applications will advance treatment strategies for breast cancer
metastasis to the brain.

Keywords: Ca2+ channels; breast cancer; Ca2+ signaling; brain metastasis

1. Introduction

Cancer metastasis occurs in several stages, including proliferation, epithelial-to-
mesenchymal transition (EMT), invasion, transport, colonization, and angiogenesis
(Figure 1) [1]. In fully developed tumorigenesis stages, circulating tumor cells move into
another tissue and transform into mesenchymal stem cell-like cells as a result of EMT [2,3].
EMT is the initiation step in cancer metastasis [4]. Tumor cells are transported through
the bloodstream after invading blood vessels [5–7] in a process called intravasation [8].
The metastasized tumor cells attach and grow via colonization; then, the blood vessels that
supply nutrients are generated during angiogenesis, leading to cancer development [2,9,10].
In many stages of metastasis, the proteins and factors related to metastasis are intricate [11].
Therefore, messenger signaling to block metastasis and tumorigenesis is necessary for
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the fundamental processes that regulate initial signaling factors, but protein signaling is not.
Breast cancer is the most common cancer type, and it has been considered one of the most
malignant cancers in women worldwide [12,13]. Breast cancer subtypes include triple-
negative and triple-positive breast cancer resulting from the existence and nonexistence of
estrogen receptors, progesterone receptors, or human epidermal growth factor receptor-2
(HER2) [14,15]. Each subtype has the following cell lines: triple-negative (MDA-MB-231,
MDA-MB-486, and MCF-10A [16,17]), triple-positive (BSMZ, BT474, and EFM192A [16]),
and hormone receptor-positive cell lines that express estrogen receptors and progesterone
receptors in the absence of HER2 (MCF-7 and T47D [16]). Genotypic or phenotypic het-
erogeneity of breast cancer is diverse. While triple-negative breast cancer generally has
the most aggressive behavior and poor clinical outcomes [18–20], triple-positive breast
cancer has also been found to exhibit aggressive behavior, despite the availability of
antibody-targeted therapy or chemotherapy [21].
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Figure 1. The metastatic pathway of breast cancer cells. Proliferated breast cancer cells are trans-
formed into mesenchymal-like cells and undergo invasion and intravasation to blood vessels. Trans-
porting tumor cells perform extravasation from blood vessels and generate a cancerous environment
through colonization and angiogenesis.

In this review, we elucidate the essential processes of metastasis in breast cancer. In par-
ticular, Ca2+ signaling molecules are introduced, and the processes involved in the fun-
damental modulation of Ca2+ signaling modules and potential strategies against breast
cancer are addressed.

1.1. Ca2+ Signaling-Associated Molecules

The physiological role of Ca2+ signaling is commonly known to include muscle con-
traction to crosslink actin, myosin, and muscle fibers [22]. In addition, Ca2+ signaling
regulates physiological and pathological cellular pathways, including cell proliferation,
differentiation, migration, muscle contraction, neurotransmitter release, and fluid secre-
tion [23–25]. The regulation of cellular Ca2+ as a key signaling messenger is precisely
modulated by numerous Ca2+ channels and transporters associated with the membrane
of intracellular compartments or plasma membranes [26]. The concentration of intracel-
lular Ca2+ ([Ca2+]i) in the resting state is sustained up to 100 nM, allowing the use of
evoked Ca2+ for the signaling pathways involved in cellular functions [26]. Generally,
evoked intracellular Ca2+ passes through the endoplasmic reticulum (ER) membrane via
two mechanisms: the outward movement to the cytoplasm through the inositol trispho-
sphate receptor (IP3R) [27–29] and the ryanodine receptor (RyR) from intracellular Ca2+
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stores [30–32]. Elicited Ca2+ is attenuated by movement into the ER via sarco-/endoplasmic
reticulum Ca2+-ATPase (SERCA) or movement to the extracellular matrix via plasma mem-
brane Ca2+-ATPase (PMCA) [33,34]. The types of Ca2+ channels in the plasma membrane
are discussed in the following section. RyR is activated by several molecules or drugs such
as cADP ribose [35,36], 4-chloro-m-cresol [37], and suramin [38], and SERCA is stimulated
by adenosine triphosphate (ATP) [34]. IP3R is activated by IP3 via extracellular signal-
ing through the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C
(PLC) [27,29,39].

1.2. Types of Ca2+ Channels

Plasma membrane-localized Ca2+ channels are classified into three types: voltage-
gated Ca2+ channels (VGCCs), ligand-gated Ca2+ channels (LGCCs), and store-operated
Ca2+ channels (SOCCs) [26]. VGCCs are stimulated by depolarization of the plasma
membrane through a concentration gradient of [Ca2+]i [40]. Exceptionally, the Na+/Ca2+

exchanger (NCX) is activated by changes in Ca2+ concentration to control [Ca2+]i by ex-
changing Ca2+ and Na+ [41]. LGCCs in the plasma membrane are composed of numerous
types of channels, such as ATP receptors and ionotropic glutamate receptors (e.g., α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors or N-methyl-D-aspartate
receptors) [42–44]. LGCCs in the plasma membrane, which are structurally classified
as G protein-coupled receptors (GPCRs), consist of seven transmembrane domains and
have the largest number of subtypes in cell-surface receptor groups [45]. IP3R, RyR,
and two-pore Ca2+ channels are also present in LGCCs. As there are numerous GPCR
subfamilies, these receptors are targets of various therapeutic drugs [46]. In particular,
GPCRs are stimulated by neurotransmitters and neurotransmitter-like agonists, including
noradrenaline and cholinergic compounds and molecules such as carbamylcholine and
vasopressin [47]. Stimulation of GPCRs is initiated by the phosphorylation of guanidine
diphosphate for guanidine triphosphate through the α-subunit of G-proteins (Gα) [48].
Activated G-proteins dissociate Gα to deliver several intracellular signals according to
each Gα subunit: Gs (adenylyl cyclase increases), Gi (adenylyl cyclase decreases), and Gq
(PLC increases) [49]. Each signal mediates a tremendous number of cellular functions
by increasing or decreasing Ca2+ signaling. Lastly, SOCCs are affected by decreasing
the concentration of Ca2+ in the ER by delivering signals from the oligomerized stromal
interaction molecule (STIM), which senses Ca2+ depletion on the ER membrane and sub-
sequently activates Orai channels [50,51]. In addition, transient receptor potential (TRP)
channels play various important roles in the cell life cycle, including the transduction of
neurotransmitters and immunization, and are activated by temperature, pH, and specific
compounds [52,53]. Furthermore, SOCC-related proteins, including Orais and STIMs, show
different characteristics against the estrogen receptor [54]. In the estrogen receptor-positive
cell line MCF-7, store-operated Ca2+ entry (SOCE) is mediated by the combination of
STIM1/2 and Orai3; meanwhile, in the estrogen receptor-negative cell line MDA-MB-231,
SOCE is mediated by the combination of STIM1 and Orai1 in activated SOCCs [54].

Recent studies have demonstrated that Ca2+ plays a crucial role not only in malignant
proliferation but also in cancer metastasis [55–60]. Breast cancer is considered a metastatic
cancer due to its aggressive features [61]. Thus, in this review, we focus on the characteris-
tics of breast cancer in the context of Ca2+ signaling and cancer metastasis, especially from
breast to brain. Furthermore, we discuss potential strategies to overcome the disadvantages
of breast cancer-targeted therapy, taking Ca2+ signaling into consideration.

2. The Relationship between Breast Cancer Metastasis and Ca2+ Channels

The large range of physiological, pharmacological, and clinical roles of Ca2+ signal-
ing in breast cancer are well known, including the expression patterns of the channels,
the effect of channel activity on tumorigenesis, and therapeutic targets [62–64]. Several
Ca2+-related proteins and channels are overexpressed in breast cancer cells, including
IP3R [65], Orais [66–68], PMCA [69,70], and TRP channels [71–74]. Each channel plays
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a critical role in cancer cell viability. In this section, we summarize the effects of Ca2+

channels on the growth and metastatic stages of breast cancer.

2.1. Proliferation in the Initial Metastatic Stage

Cancer metastasis is initiated from an excessively developed primary tumor and
its subsequent transport to the bloodstream [1]. To treat metastatic tumors, their vigor-
ous proliferation and immoderately active cell cycle must be controlled to block cancer
growth. One of the Ca2+-ATPases, secretory pathway Ca2+-ATPase (SPCA, localized on
Golgi and transports Ca2+ into the Golgi), has been shown to be activated in breast cancer.
This pathway induces tumorigenesis by activating extracellular signal-regulated kinase
(ERK)1/2 activity and increasing tumor proliferation [75,76]. SPCA1-silenced MDA-MB-
231 (triple-negative) cells with SPCA1 siRNA exhibit a lower rate of cell growth and
decreased insulin-like growth factor receptor expression [75]. SPCA2 shows different
expression patterns according to the presence of the estrogen receptor [76]. SPCA2 is
overexpressed in estrogen receptor-positive MCF-7 cells, but is barely expressed in es-
trogen receptor-negative MCF-10A cells [76]. SPCA2 silencing with shRNA decreases
MCF-7 cell proliferation; however, SPCA2 overexpression increases MCF-10A cell prolif-
eration [76]. SPCA2 can induce store-independent Orai1 Ca2+ influx [77]. The increased
proliferation of breast cancer cells (MCF-7 wild-type and SPCA2-overexpressed MCF-10A)
is induced by Ca2+ influx from SPCA2-stimulated Orai1 [76]. Inhibition of PMCA2 de-
creases cancer proliferation [78] and leads to cancer cell death [79] in MDA-MB-231 cells.
Additionally, downregulation of PMCA2, which is overexpressed in MDA-MB-231 cells,
enhances the anticancer effect of doxorubicin [78]. T-type VGCC, CaV3.1, and CaV3.2 are
blocked by NNC-55-0396, a T-type Ca2+ channel blocker, and each relevant siRNA attenu-
ates breast cancer proliferation regardless of estrogen receptor-positive or -negative cell
lines (MCF-7, MDA-MB-231, and MCF-10A) [80]. Increased [Ca2+]i through IP3R3 induces
MCF-7 breast cancer cell growth [81]. Additionally, TNF-αinduces the release of ATP,
and the ATP-stimulated Ca2+ channel P2Y2 receptor induces tumor growth and invasion of
MDA-MB-231 cells (estrogen receptor-negative), but MCF-7 (estrogen receptor-positive)
cells, which has a low metastatic feature, induces less release of ATP and reveals low P2Y2
receptor activation [82].

TRP channels play critical roles in cell viability by increasing channel activities, includ-
ing TRP canonical (C), TRP melastatin (M), and TRP vanilloid (V) in breast cancer cells and
tissues [74,83–85]. TRP channels are classified into six subfamilies, including TRPC, TRPM,
TRPV, TRP ankyrin (A), TRP canonical (C), and TRP mucolipin (ML), which are composed
of six transmembrane domains [52,53]. These nonselective Ca2+-permeable channels have
a superfamily of at least 20 subtypes that function in various ways [26,52] and can regulate
breast cancer tumorigenesis. TRPC channels, including TRPC3, TRPC5, and TRPC6, are
typical oncogenic proteins that can be used to diagnose breast cancer [72,84,86]. Increases
in extracellular Ca2+ concentration ([Ca2+]ex) induce overexpression of the TRPC1 channel
and increase proliferation through epidermal growth factor receptor (EGFR) signals with
ERK1/2 phosphorylation in MCF-7 cells [83]. TRPC6 is more highly expressed than other
TRPC channels in human breast cancer MCF-7/MDA-MB-231 cell lines (regardless of breast
cancer subtypes) and tissues, but TRPC3 is highly expressed only in the estrogen receptor-
negative MDA-MB-231 cells and tissues [84]. In particular, activated TRPC6 increases
cellular proliferation [84]. TRPM7 is overexpressed in human breast adenocarcinoma
tissue, whereas TRPM7 silencing attenuates MCF-7 cell proliferation [85]. Increased [Ca2+]i
induces cell proliferation through TRPV6-mediated Ca2+ influx [87] and TRPV6 inhibition,
which are upregulated by sex hormones leading to T47D (hormone receptor-positive)
cancer cell death [74]. A schematic illustration of Ca2+ channels that increase breast cancer
proliferation is shown in Figure 2.
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2.2. EMT

To invade blood vessels, primary tissue cells must undergo cellular shape and con-
struction transformation, which is known as EMT. In other words, epithelial tumor cells
that reside in the primary tumor tissue turn into mesenchymal tumor cells that surround
the bloodstream and invade the extracellular matrix (ECM) [3,88]. During EMT, the ex-
pression of several Ca2+ channels and transporters is modulated by transforming growth
factor (TGF-β) [89] and epidermal growth factor (EGF) [90] in human breast cancer cells
(Figure 3). In TGF-β-induced MCF-7 EMT, IP3R, and SERCA3 proteins are overexpressed,
while NCX1 is downregulated [89]. TGF-β stimulates store-operated Ca2+ entry (SOCE)
by upregulating STIM1 and Orai1 expression through the overexpression of the transcrip-
tion factor Oct4 in MCF-7 cells (estrogen receptor-positive), but not in MDA-MB-231 cells
(estrogen receptor-negative) [91]. SERCA2, IP3R1/3, RyR2, and Orai1 are overexpressed
during EGF-induced EMT in MDA-MB-468 [90,92]. Additionally, EGF-stimulated EMT,
which transforms breast cancer MDA-MB-468 cells into a mesenchymal-like shape, in-
creases the expression of ATP-binding cassette subfamily C member 3 (ABCC3) after Ca2+

signaling of TRPC1 [93].
The Ca2+-ATPase SPCA2, which is encoded by the ATP2C2 gene, is an epithelial

marker that inhibits cell-adhesion protein E-cadherin biogenesis in breast cancer cells
regardless of estrogen receptor existence (MCF-7 and MDA-MB-231) [94]. Activation
of SPCA induces cell-to-cell contacts and continuously stimulates E-cadherin-induced
Hippo-YAP signaling to inhibit EMT formation in MCF-7 cells [94]. Meanwhile, SPCA2-
silenced MCF-7 cells show EGF-induced expression of EMT-related proteins, including
zinc finger E-box-binding homeobox 1, N-cadherin, snail family transcription repressor
2, fibronectin, and vimentin [94]. Interestingly, SPCA2 upregulation in MDA-MB-231
cells decreases EMT-related protein expression and attenuates metastasis in the MDA-
MB-231-injected breast cancer mouse model [94]. SOCE intensifies TGF-β-induced EMT
in MDA-MB-231 and MCF-10A cells by upregulating STIM1 [95] and TRPC1 [96]. Addi-
tionally, TRPC1 is involved in the regulation of hypoxia-induced EMT in MDA-MB-468
cells [97]. As EMT regulatory factors, signal transducer and activator of transcription 3
(STAT3) phosphorylation and vimentin expression are induced by Ca2+ signaling through
TRPM7 [98]. To initiate EMT, the binding among primary cells must collapse, and there
must also be a reduction in the expression of the binding protein E-cadherin [99]. Thus,
Ca2+ signaling can attenuate E-cadherin expression [100]. EMT is also activated by hypoxia
and vascular endothelial growth factor (VEGF) [101]. Furthermore, ATP-mediated Ca2+

increase-stimulated EMT is induced by the stimulation of EGF and hypoxia in MDA-
MB-468 and MDA-MB-231 cells [102,103]. Treatment with a Ca2+ chelating agent such as
1,2-bis (o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) or ethylene glycol-bis
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(β-aminoethyl ether)-N,N,N′N′-tetraacetic acid (EGTA) also attenuates EGF- or hypoxia-
induced EMT, which is stimulated by TRPM7 Ca2+ signaling in MDA-MB-468 cells [98].
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store-operated Ca2+ channels (SOCC), inositol trisphosphate receptor (IP3R), ryanodine receptor
(RyR), and sarco-/endo-plasmic reticulum Ca2+-ATPase (SERCA) are activated when the breast
cancer cells are stimulated by TGF-β or EGF; on the other hand, SPCA and NCX are downregulated
in the TGF-β- and EGF-induced EMT stage.

2.3. Migration and Intravasation

Breast cancer cells are transported to target tissues by migrating through blood
vessels and invading the bloodstream. Intracellular Ca2+ signaling regulates cellular
movement with proteins that induce migration (Figure 4), including myosin light chain
kinase [104], myosin II [105,106], calpain [107], Ca2+/calmodulin-dependent protein ki-
nase II (CaMKII) [108,109], and focal adhesion kinase (FAK) [110]. In breast cancer cells
(MDA-MB-231), SOCE induces cellular migration [111]. Knockdown of Orai1 mRNA
expression attenuates breast cancer cell migration, and Orai1 overexpression induces mi-
gration through increased Ras and Rac levels, using defects in focal adhesion to move
the cells [111]. Migratory cells are needed to alter cytoskeletal structures with the formation
of invadopodia to adhere to the forward region in the direction of progress and degrade
the ECM [112,113]. STIM1 knockdown in MDA-MB-231 cells attenuates invadopodia
formation and cancer invasion [114]. Additionally, elevated [Ca2+]i, which is induced by
phospholipase C, activates the ERK 1/2 signaling pathway and subsequently stimulates
MDA-MB-231 breast cancer cell migration [115]. The expression of each TRP subtype
can be distinguished according to the histologic grade and invasive degree of cancer [72].
TRPM8 and TRPC1 are generally expressed in tissues smaller than 2 cm and in grade
I tissue, and TRPM7 is expressed in tissue larger than 2 cm and in grade II tissue [72].
In addition, TRPM7 induces breast cancer migration regardless of the cellular subtypes
(MDA-MB-231 and MCF-7) [116]. Although TRPC6 and TRPV6 have no relationship with
histologic grade, TRPV6 is found in the invasive area, and silencing of TRPV6 expression
reduces breast cancer cell migration [72].
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TRPC1, TRPM7/8, P2X7, and SOCC induces migration and intravasation.

For intravasation, invadopodia must be established [112]. Invadopodia formation is
initiated by the activation of the nonreceptor tyrosine kinase Src (proto-oncogene tyrosine-
protein kinase) [117–119]. STIM1-Orai1 stimulation induces Src activation and recruits
metalloproteinases that degrade the ECM, leading to invadopodia formation in MCF-
7 cells [120]. The ATP-gated channel P2X7 induces the release of gelatinolytic cysteine
cathepsins from invadopodia to degrade ECM in MDA-MB-435 cells (triple-negative breast
cancer) [121]. [Ca2+]ex and [Ca2+]i also regulate the intravasation of breast cancer cells
through the extracellular Ca2+-sensing receptor (CaSR) with mitogen-activated protein
kinases [122]. Increased [Ca2+]ex activates CaSR and subsequently stimulates EGFR to
induce invasion, whereas CaSR knockdown attenuates the intravasation of MDA-MB-231
cells [122].

2.4. Colonization and Angiogenesis

Tumor cells invading other tissues colonize by clustering their cells to form tumor
tissue and carry out angiogenesis, thus creating an appropriate environment for tumori-
genesis. Although it has a significant role in brain metastasis, the relationship between
colonization and Ca2+ signaling has not been clearly elucidated. The mitochondrial Ca2+

uniporter is located at the mitochondrial membrane of breast cancer cells and regulates
tumor proliferation [123–125], and triple-negative breast cancer cells (MDA-MB-231 and BT-
549) express this transporter to a greater degree than non-triple-negative breast cancer cells
(T47D, BT-474, and MCF-7) [126]. Downregulation of the mitochondrial Ca2+ uniporter
through extracellular vesicles suppresses MDA-MB-231 cell colonization [126]. Addition-
ally, the Ca2+-binding protein S100A4 promotes MDA-MB-231 cell colonization [127,128].
S100A4 is an agonist of GPCR signaling, including the PLCβ-IP3 pathway [129], which is
known to promote metastasis in breast cancer [130]. S100A4 knockdown reduces the brain
colonization of MDA-MB-231 cells [127], and S100A4 expression is increased in colonized
MDA-MB-231 cells [128].

IP3R is located within the ER membrane and is also expressed in the nuclear en-
velope [131]. Ca2+ signaling through IP3R in the nucleus plays a critical role in in-
ducing angiogenesis in breast cancer cells (MDA-MB-468) and regulates angiogenesis-
related genes, including early growth response-1, C-X-C motif chemokine ligand 10
(CXCL10), C-C motif chemokine ligand (CCL)-2, and dentin matrix acidic phospho-
protein 1 (DMP1) [132]. S100A4 plays critical roles in various angiogenic pathways
in MDA-MB-231 cells through upregulation of matrix metalloproteinase-13 [133], TGF-
β1-induced ERK1/2 signaling [134], and osterix, which is a transcription factor for bone
formation [135]. In addition, a recent study showed that SOCE activity is elevated by
angiotensin-converting enzyme (ACE)2/angiotensin-1(1–7) according to breast cancer cell
subtypes [136]. (ACE)2/angiotensin-1(1–7), which is more highly expressed in MCF-7 cells
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than in MDA-MB-231 cells, increases SOCE to inhibit migration [136]. (ACE)2/angiotensin-
1(1–7)-silenced MCF-7 cells show decreased migration, while (ACE)2/angiotensin-1(1–7)-
overexpressing MDA-MB-231 cells show increased migration [136].

3. Metastasis of Breast Tumor to the Brain

Brain metastasis from breast cancer is the most common, and secondary brain tumors
from breast cancer are diagnosed more often than primary brain tumors [137]. Metastatic
features of cancer cells toward specific organs were demonstrated in Stephen Paget’s seed
and soil theory, which was analyzed using autopsy records of breast cancer patients [138].
The microenvironment of cancer cells facilitates metastasis (seed growth) under favorable
circumstances. Paget postulated that various cytokines secreted from cancer cells, including
CCL2, CCL5, and interleukin-6, and a specific microenvironment communicates to attract
cancer cells toward specific organs [138]. Accordingly, roughly 20% of breast cancer patients
show central nervous system metastases, and these cases are increasing [139].

Ca2+ signaling in breast cancer is prominent in breast cancer metastasis. Therefore,
controlling the activity of Ca2+ channels in breast tumor cells can lead to new therapeutic
methods for brain metastases resulting from breast cancer. Several studies have suggested
Ca2+ channels as new therapeutic targets for metastasis. Additional investigations have
addressed the attenuation of Ca2+ signaling, which modulates the adhesive function and
permeability. For example, MDA-MB-231 cells can cross the human brain microvascular en-
dothelial cell (HBMEC) monolayer by stimulating vascular permeability factor (VPF) [140]
and stromal cell-derived factor-1α (SDF-1α) [141]. VEGF/VPF stimulation also increases
MDA-MB-231 cell adhesion onto the HBMEC monolayer and induces the redistribution of
F-actin and disruption of vascular endothelial cadherin, which increases migration [140].
Treatment with the Ca2+-chelating agent BAPTA attenuates VEGF/VPF-induced cell ad-
hesion, F-actin redistribution, and cadherin disruption [140]. Treatment with SDF-1α
increases FAK phosphorylation by stimulating PI-3K signaling, which increases MDA-MB-
231 cell migration, and SDF-1α is overexpressed in breast tissues compared to in normal
tissues [141]. BAPTA attenuates SDF-1α-induced cellular permeability in a co-culture
of MDA-MB-231 cells and HBMECs [141]. Beyond the role of Ca2+ signaling in adhe-
sion and permeability, additional mechanisms of cell-cell crosstalk present a challenge
in the metastatic process.

Additionally, Sharma et al. showed that regulating CaV3.2 through specific radiofre-
quencies with an amplitude of 27.12 MHz attenuated brain metastatic breast cancer cells
in vivo [142]. The study demonstrated that specific frequencies modulate several cancers
in patients receiving noninvasive cancer therapy. The mouths of the patients were used to
deliver frequencies via antenna, and it was found that a frequency of 27.12 MHz was breast
cancer-specific [142]. These frequencies revealed antitumor effects in a xenograft mouse
model and in brain tumor patients, suppressing brain metastases from breast cancer [142].
As previously mentioned, activation of CaV3.2 through 27.12 MHz frequencies increases
Ca2+ influx to the activated p38 pathway, which attenuates tumor progression [142].

Mechanosensitive Ca2+ channels are also involved in the metastasis of cells. Piezo
channels, expressed in MCF-7 cells, regulate intracellular functions such as integrin ac-
tivity in HeLa cells [143], regulation of neuronal-glial specification in human neuronal
stem cells [144], maintenance of homeostatic cell numbers in epithelia [145], and sensing
confinement of Chinese hamster ovary (CHO) cells [146]. Piezo2 is involved in mechan-
otransduction and force transmission in MDA-MB-231 cells [147]. Piezo2 activation is
required for actin cytoskeletal reorganization and FAK phosphorylation through Fyn
kinase [147]. Piezo2 activates the RhoA signaling cascade to promote brain metastasis
in breast cancer. Piezo2 knockdown decreases the invasion of MDA-MB-231-BrM2 cells,
which metastasize cells from breast cancer to the brain [147]. Additionally, when triple-
negative breast cancer cells migrate to the brain, astrocytes activate the S100A4-related
pathway (protocadherin 7 (PCDH7)-PLCβ-Ca2+-CaMKII/S100A4) [148]. In brain metasta-
sis tissues from patients, PCDH7 expression is higher than that in lung metastasis tissue
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and mediates cellular interaction between astrocytes and cancer cells [148]. Furthermore,
PCDH7 expression induces the penetration of tumor cells over the blood-brain barrier,
which then increases tumor cell intravasation in the brain [148]. The cell-to-cell interaction
between mouse astrocytes and MDA-MB-231 cells in the PCDH7-stimulated mouse model
activated PLCβ-Ca2+-CaMKII/S100A4 signaling in MDA-MB-231 cells [148]. Moreover,
the brain is highly responsive to estrogen [149], and brain metastasis is revealed in estrogen
receptor-positive areas. Interestingly, estrogen receptor-negative breast cancer cells can
be affected by estrogen through the involvement of astrocytes [127]. When astrocytes
are stimulated by estrogen, the migratory ability of MDA-MB-231 cells cocultured with
astrocytes reportedly increases, according to a wound-healing migration assay [127]. In this
case, silencing S100A4 expression attenuates astrocyte-induced migration and colonization
of MDA-MB-231 cells [127]. As mentioned previously, Ca2+ signaling is crucial for can-
cer development and progression. Therefore, more studies focusing on the relationship
between cancer and Ca2+ should be conducted.

4. The Pharmacological Application of Ca2+ Signaling Blockers to Breast Cancer

Various attempts to use antagonists of Ca2+ channels have been proposed to control
breast cancer tumorigenesis. The mediation of [Ca2+]i signaling is critical for cellular
functions regardless of the cellular type (tumor vs. nontumor). In other words, the applica-
tion of Ca2+ signaling blockers for anticancer drugs requires in-depth studies of the basic
mechanisms underlying Ca2+ signaling and cancer cells. Thus, we summarized the studies
that have used Ca2+ channel blockers for breast cancer medication to understand the as-
sociated mechanisms (Table 1). Recent studies have shown that the L-type Ca2+ channel
blockers amlodipine, diltiazem, and verapamil have been used to modulate high blood
pressure [150–152] and attenuate HT39-transplanted breast cancer growth [153]. Mice with
increased Ca2+ concentration in serum exhibit a larger amount of HT39 tumor tissue,
while treatment with amlodipine attenuates Ca2+ signaling in HT39 cells with a decrease
in tumor size [153]. The T-type Ca2+ channel blockers mibefradil (another hypertension
drug [154]) and pimozide (chronic psychosis drug [155]) inhibit MCF-7 breast cancer cell
growth by inhibiting T-type Ca2+ current; furthermore, combined treatment with pimozide
and mibefradil shows synergistic effects on cell growth in MCF-7 cells, decreasing cell
growth [156].

As mentioned in Section 2.1, TRP channels are prominent in breast cancer. Among
these, TRPM channels are considered therapeutic targets for antagonists. The TRPM7
inhibitor 2-aminoethyl diphenylborinate (2-APB [157]) attenuates MDA-MB-231, AU565,
and T47D cell proliferation, increasing S phase and decreasing G0/G1 phase in the breast
cancer cell cycle [158]. Moreover, TRPM7-silenced MDA-MB-231 cells have no antitumor
effects when 2-APB is administered [158]. Treatment with the antifungal agent clotrimazole,
which inhibits TRPM2 activity [159], decreases MDA-MB-231 cell invasion, which is accom-
panied by apoptosis and G1-phase arrest [160]. Clotrimazole increases cleaved poly (ADP-
ribose) polymerase (PARP), cleaved caspase-3, and B-cell lymphoma-2 (Bcl-2)-associated X
expression, which induces apoptotic signaling in MDA-MB-231 cells [160]. Inhibition of
Ca2+ signaling with the voltage-independent Ca2+ channel inhibitor carboxyamidotriazole
reduces MCF-7 proliferation by arresting G2/M phase cell cycle, decreasing BCL-2 (which
blocks apoptotic signaling) expression, and increasing p21 expression, which induces
apoptotic signaling [161]. Furthermore, treatment with carboxyamidotriazole reduces
mitochondrial membrane potential [161], which is highly activated in cancer stem cells to
produce reactive oxygen species (ROS) [162]. In addition, administration of the SERCA
inhibitor thapsigargin inhibits S100A4 protein expression in MDA-MB-231 breast cancer
cells [163].
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Table 1. The Ca2+ channel blockers with potential anticancer effects.

Reagents Description Effect Ref.

Amlodipine Medication for high blood pressure
and L-type Ca2+ channel inhibitor

Decrease of HT39-transplanted breast cancer
growth [153]Diltiazem

Verapamil

Mibefradil Hypertension drug Decrease of MCF-7 growth through
inhibition of T-type Ca2+ current

[154]
Pimozide Chronic psychosis drug [155]

2-APB TRPM7 inhibitor Decrease of MDA-MB-231, AU565, and T47D
cell growth through pausing cell cycle [158]

Clotrimazole TRPM2 inhibitor Decrease of MDA-MB-231 cell growth
through G1-phase arrest [160]

Carboxyamidotriazole Reduce mitochondrial membrane
potential Attenuation of ROS [162]

Thapsigargin SERCA inhibitor Inhibition of S100A4 expression
in MDA-MB-231 [163]

In addition, Ca2+ channel blockers enhance the therapeutic effect of traditional drugs
or overcome resistance to insignificant drugs. In an attempt to improve their therapeutic
effect on breast cancer, mibefradil enhanced the apoptotic effect of the anticancer drug
2-deoxy-D-glucose (2-DG) by arresting the cell cycle in MDA-MB-231 cells [164]. Further-
more, clotrimazole increases the inhibitory effect of imatinib mesylate on T74D cells to
mediate kinase inhibition [165]. Mibefradil is a T-type Ca2+ channel blocker that arrests
the cell cycle at the G1 phase and evaluates glucose metabolism [164]. The application of
only 2-DG also inhibits MDA-MB-231 cell growth. Although the inhibition rate is very
low (approximately 10%), the combination of mibefradil and 2-DG leads to a synergistic
antitumor effect (approximately 30% of inhibition rate) [164]. The combination of imatinib
mesylate and clotrimazole synergistically decreases T74D cell growth by increasing lactate
dehydrogenase and nitric oxide leakage [164], which induces membrane damage and
apoptosis in cancer cells [166,167]. Doxorubicin and daunorubicin are the most well-known
anthracycline antibiotics and are also first-line drugs for malignancies [168]. They have
structural features that can be intercalated into DNA bases and inhibit topo ii/DNA ternary
complexes [169]. Additionally, the quinone ring, a common structure for anthracyclines
such as doxorubicin and daunorubicin, induces ROS production [170–173]. Doxorubicin
and daunorubicin are typical anticancer reagents; however, they are hindered by multidrug
resistance in breast cancer [174,175]. The addition of diltiazem to doxorubicin-treated
MCF-7 cells increases the expression of apoptosis-related p53 genes [174]. The combina-
tion of daunorubicin and amlodipine reportedly predominantly attenuates tumor volume
in the MCF-7 xenograft tumor model via mitochondrial destruction [175]. Despite these
applicable combinations, more studies on effective combinations of Ca2+ channel blockers
and traditional anticancer drugs should be conducted. These combined treatments are sug-
gested as novel therapeutic strategies against breast cancer and breast-to-brain metastatic
cancer.

As mentioned above, Ca2+ channel blockers have pharmacological potential. However,
the therapeutic application of Ca2+ channel blockers is challenging, as each reagent does
not act on a single channel or transporter. The TRPM7 inhibitor 2-APB inhibits IP3R [176],
Orai1/2-induced SOCE [177], and other TRP channels [178]. In contrast, 2-APB induces
Orai3-induced Ca2+ influx [177]. Additionally, the Ca2+ channel blocker clotrimazole can
inhibit Ca2+-activated potassium channel 3.1 [179], which drives Ca2+ through SOCE [180].
Although several Ca2+ channel blockers are pharmacologically complicated to use as
therapeutic strategies, the specific mechanisms of Ca2+ channel blockers need to be clarified.
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5. Future Perspective

The relationship between Ca2+ channels and breast cancer has been assessed for
several decades; however, the effect of Ca2+ channels on the metastasis of breast cancer
to the brain requires further investigation. The treatment of breast cancer by modulating
Ca2+ channel expression and its activity has been considered a cancer therapeutic strategy
using various Ca2+ channel blockers. Although Ca2+ signaling is closely related to cancer
metastasis in various organs, the application of Ca2+ channel modulation for breast cancer
metastasis has not been sufficiently studied. Based on the scope of metastatic breast
cancer in this review, several studies have shown that Ca2+ channels have the potential to
control metastatic stages and the movement of metastatic breast cancer cells to the brain by
modulating adhesive function and permeability. Over the past several years, the number of
cases of brain metastases from breast cancer has increased, and the entire metastatic process
has not been fully elucidated. In addition, other metastatic processes should be highlighted
beyond adhesive and invasive processes. For example, cellular-secreted processes and gene
transcription activities are associated with Ca2+ signaling. In other words, communication
between cancer cells and other tissues will commence with the untact mode, such as
cytokine release. This mode builds up prior to the contact mode, which includes adhesion.
As mentioned at the beginning of this article, Ca2+ is an attractive source of the untact
mode for transferring the on-mode of metastatic signals through simple mobilization from
abundant sources. Therefore, blocking Ca2+ channels as gatekeepers and modulating Ca2+

signaling can be attractive candidates for therapeutic approaches, and suitable combination
therapies are suggested as relevant options for metastatic breast cancer therapy.
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ERK: extracellular signal-regulated kinases; FAK: focal adhesion kinase; GPCR: G protein-coupled
receptor; HBMEC: human brain microvascular endothelial cell; HER2: human epidermal growth
factor receptor 2; human IP3R: inositol trisphosphate receptor; [Ca2+]i: intracellular Ca2+; LGCC:
ligand-gated Ca2+ channels, NCX: Na+/Ca2+ exchanger; PARP: poly (ADP-ribose) polymerase; PLC:
phospholipase C; PMCA: plasma membrane Ca2+-ATPase; PCDH7: protocadherin 7; ROS: reactive
oxygen species; RyR: ryanodine receptor; SERCA: sarco-/endo-plasmic reticulum Ca2+-ATPase;:
secretory pathway Ca2+ ATPase; SOCC: store-operated Ca2+ channel; SOCE: store-operated Ca2+

entry; SDF-1α: stromal cell-derived factor-1α; STIM: stromal interaction molecule; STAT3: signal
transducer and activator of transcription 3; TGF: transforming growth factor; TRP: transient receptor
potential (TRP canonical (C), TRP melastatin (M), and TRP vanilloid (V), TRP ankyrin (A), TRP
canonical (C), and TRP mucolipin (ML)); VEGF: vascular endothelial growth factor; VPF: vascular
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permeability factor; VGCC: voltage-gated Ca2+ channel; Gα: α-subunit of G-proteins.
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