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Abstract

We propose a new meta-heuristic algorithm named Levy flights multi-verse optimizer

(LFMVO), which incorporates Levy flights into multi-verse optimizer (MVO) algorithm to

solve numerical and engineering optimization problems. The Original MVO easily falls into

stagnation when wormholes stochastically re-span a number of universes (solutions)

around the best universe achieved over the course of iterations. Since Levy flights are supe-

rior in exploring unknown, large-scale search space, they are integrated into the previous

best universe to force MVO out of stagnation. We test this method on three sets of 23 well-

known benchmark test functions and an NP complete problem of test scheduling for Net-

work-on-Chip (NoC). Experimental results prove that the proposed LFMVO is more compet-

itive than its peers in both the quality of the resulting solutions and convergence speed.

Introduction

Optimization problems are common in the field of science and technology [1]. These problems

are often nonlinear, multimodal or discontinuous, and very challenging to solve with tradi-

tional optimization methods. In the past few years, a number of meta-heuristic algorithms

have been successfully developed to solve these problems. These techniques are inspired by

natural phenomena or other sources using iterations and stochasticity to generate better solu-

tions for optimization problems [2, 3]. Some popular meta-heuristic algorithms are the

Genetic Algorithm (GA) [4], Ant Colony Optimization (ACO) [5], Particle Swarm Optimiza-

tion (PSO) [6], Differential Evolution (DE) [7], Harmony Search (HS) [8], Artificial Bee Col-

ony(ABC) [9], Cuckoo Search (CS) [10], Gravitational Search Algorithm (GSA) [11], Fruit Fly

Optimization algorithm (FOA) [12], Gases Brownian Motion Optimization (GBMO) [13],

Symbiotic Organisms Search (SOS) [14], and Moth-flame Optimization (MFO) [15].

Multi-verse optimizer (MVO) is a promising and up-to-date optimization algorithm pro-

posed by [16]. As the name implies, it is inspired by the theory of multi-verse in physics. The

three main concepts of the multi-verse theory (white hole, black hole, and wormhole) are the

basis for the MVO algorithm. The concepts of white hole and black hole were utilized to

explore search spaces by MVO. The wormholes help MVO exploit the search spaces. The
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MVO algorithm was first evaluated by 19 challenging test benchmarks. To further evaluate its

performance, the MVO was adopted for five practical engineering problems. The experimental

results prove that the proposed algorithm can produce very competitive results and outper-

form other algorithms described in the literature.

However, there are still some issues associated with this algorithm. When wormholes sto-

chastically re-span a number of universes around the best universe achieved over the course of

iterations, the MVO is likely to get trapped in the local optima.

To improve the global search ability of MVO and enhance the ability to escape from local

optima, MVO is combined with Levy flights (LFMVO) in this paper. Levy flights, proposed by

Paul Levy in 1937, are a type of random walk of generalized Brownian motion that include

non-Gaussian randomly distributed step sizes for the distance moved. The Levy distribution

features long tails, an infinite second order moment and convergence to a non-Gaussian stable

distribution [17]. A number of natural and artificial events can be described by Levy flights,

e.g., fluid dynamics, earthquake analysis, cooling behavior, diffusion of fluorescent molecules,

noise and foraging paths (albatross, bumblebees, deer etc.) [18, 19].

Recently, Levy flights were added to nature-inspired algorithms to enhance their perfor-

mance [18, 20–24]. In [20], Levy flights were adopted to generate new solutions (new cuckoo)

in the cuckoo search. Since its step length is ultimately much longer, the strategy is more effi-

cient for exploring the search space. In [21], the Levy-flight firefly algorithm (LFA) is intro-

duced, which blends Levy flights with the search strategy to enhance the randomization of the

firefly algorithm (FA). In [22], a Levy mutation is used in evolutionary algorithms because it is

likely to create a new solution that is farther away from its parent solution than Gaussian muta-

tion. Candela et al. [23] used Levy flights as a means to diversify ant colony optimization.

Haklı et al. [18] presented a novel particle swarm optimization algorithm using Levy flight

(LFPSO) in which a more efficient search occurs in the search space due to the long jumps exe-

cuted by the particles. Therefore, the LFPSO is likely to avoid premature convergence and to

improve the global search capability.

In this paper, the proposed method performs global search more effectively with random

walks. If the universes cannot improve self-solutions, they are re-formed with Levy flights such

that the best universe obtained so far is affected and being trapped in local optima is prevented.

Experimental results with test benchmarks and test scheduling for NoC show the superiority

of the LFMVO compared with the MVO algorithm and other algorithms.

This paper is organized as follows. The next section gives a brief overview of MVO. The follow-

ing section presents a brief overview of Levy flights. The improved MVO algorithm called

LFMVO algorithm is presented and analyzed in the LFMVO section. A comprehensive set of

experimental results is provided in the Results section. An NP complete problem of test scheduling

for NoC is presented in the Application section. Finally, the conclusions are drawn in last section.

Brief overview of a multi-verse optimizer

Multi-verse theory

Multi-verse theory is a new and well-known theory in physics. This theory implies the exis-

tence of universes beyond the one in which we live [25].

Multi-verse optimizer

The concepts of white hole and black hole were utilized to explore search spaces by MVO.

Wormholes help MVO exploit the search spaces. In MVO, a solution corresponds to a universe,

a variable in the solution corresponds to an object in the universe, the inflation rate of a solution

corresponds to the fitness of the solution, and the term time corresponds to the iteration.
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A universe with a higher inflation rate is highly probable to have white holes and tend to

send objects through white holes, whereas a universe with a lower inflation rate is highly prob-

able to have black holes and tends to receive objects through black holes. The white/black hole

tunnels are used to exchange objects between different universes. Despite the inflation rate,

objects in all universes have a high probability of shifting to the best universe via wormholes.

A roulette wheel selection (RWS) is adopted to mathematically model the exchange of

objects between universes and the white/black hole tunnels. At each iteration, one of the uni-

verses is chosen by the RWS to have a white hole based on its inflation rate.

Assume that

U ¼

x11 x12 � � � x1d

x21 x22 � � � x2d

..

. ..
. ..

. ..
.

xn1 xn2 � � � xnd

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð1Þ

where d indicates the number of parameters (variables) and n denotes the number of universes

(candidate solutions):

xij ¼

(
xkj r1 < NIðUiÞ

xij r1 � NIðUiÞ
ð2Þ

where xij expresses the jth parameter of the ith universe, xkj expresses the jth parameter of the

kth universe selected by an RWS, r1 2 [0, 1] denotes a random number, Ui denotes the ith uni-

verse, and NI(Ui) denotes a normalized inflation rate of the ith universe.

The wormhole tunnels are always built between a universe and the best universe constituted

so far to provide local changes for each universe and the high probability of refining the infla-

tion rate via wormholes as follows:

xij ¼

((
Xj þ TDR� ððubj � lbjÞ � r4þ lbjÞ r3 < 0:5

Xj � TDR� ððubj � lbjÞ � r4þ lbjÞ r3 � 0:5
r2 <WEP

xij r2 �WEP

ð3Þ

where Xj is the jth parameter of the best universe constituted so far; travelling distance rate

(TDR) and wormhole existence probability (WEP) are coefficient; ubj and lbj are the upper

bound and the lower bound of jth variable, respectively; xij denotes the jth parameter of the ith
universe; and r2, r3and r4 are random numbers in [0, 1].

WEP is defined as the existence probability of wormholes in universes. To enhance exploi-

tation during the progress of the optimization process, it increases linearly over the iterations.

WEP ¼Wmin þ l � ð
Wmax � Wmin

L
Þ ð4Þ

where Wmin indicates the minimum (commonly set to 0.2), Wmax indicates the maximum

(commonly set to 1), l is the current iteration, and L is the maximum iteration.

TDR is defined as the distance rate by which an object can be teleported by a wormhole

around the best universe obtained so far. To gain more precise exploitation/local search

A MVO with Levy Flights for NO and Test Scheduling for NoC

PLOS ONE | DOI:10.1371/journal.pone.0167341 December 7, 2016 3 / 22



around the best universe, TDR is increased over the iterations.

TDR ¼ 1 �
l1=p

L1=p
ð5Þ

where p (set to 6 in this paper) indicates the exploitation accuracy over the iterations.

The general steps of the MVO algorithm are described as follows. The optimization process

starts by creating a set of random universes. At each iteration, objects in the universes with

high inflation rates incline to shift to the universes with low inflation rates through white/

black holes. Simultaneously, objects in each universe have the chance to randomly teleport to

the best universe via wormholes. This process continues until it is terminated by satisfying an

end criterion (e.g., maximum iterations).

Brief overview of Levy flights

In general terms, Levy flights are a random walk whose step length obeys the Levy distribution.

The Levy distribution is often in accordance with a simple power-law formula L(s) * |s|−1−β,

where 0< β� 2 is an index. Mathematically a simple version of the Levy distribution can be

described as [18, 20]

Lðs; g; mÞ ¼

( ffiffiffiffiffiffi
g

2p

r

exp �
g

2ðs � mÞ

� �
1

ðs � mÞ
3=2
; 0 < m < s <1

0 ; s � 0

ð6Þ

where μ denotes a location or shift parameter and γ> 0 denotes a scale parameter.

According to Fourier transform, a Levy distribution can be defined

FðkÞ ¼ exp½� ajkjb�; 0 < b � 2 ð7Þ

where α indicates skewness or scale factor and β indicates Levy index. The inverse of this inte-

gral does not have an analytical form for the general β except for a few special cases.

For the case of β = 2, we have

FðkÞ ¼ exp½� ajkj2� ð8Þ

whose inverse Fourier transform corresponds to a Gaussian distribution.

For the case of β = 1, we have

FðkÞ ¼ exp½� ajkj� ð9Þ

which corresponds to a Cauchy distribution

pðx; g; mÞ ¼
1

p

g

g2 þ ðx � mÞ
2

ð10Þ

where μ is the location parameter and γ is the scale parameter.

For the general case, the inverse integral

LðsÞ ¼
1

p

R1
0

cosðksÞexp½� ajkjb�dk ð11Þ

can be evaluated only when s is large enough. We have

LðsÞ !
abGðbÞsinðpb=2Þ

pjsj1þb
; s!1 ð12Þ
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where Γ(z) expresses the Gamma function

GðzÞ ¼
R1

0
mz� 1e� mdm ð13Þ

When z = n is an integer, we have

GðnÞ ¼ ðn � 1Þ! ð14Þ

For exploring unknown, large-scale search spaces, Levy flights are superior to Brownian

random walks [20, 26].

The proposed LFMVO algorithm

In the original MVO algorithm, when wormholes stochastically re-span a number of the solu-

tion universes around the best solution achieved over the course of iterations, the MVO is

likely to get trapped in the local optima.

If the universes cannot improve self-solutions, they are re-formed with Levy flights such that

the best universe obtained so far is affected and being trapped in local optima is prevented.

In the proposed method, when generating new solutions Utþ1
i (for universe i), a Levy flight

is executed

Utþ1

i ¼ Ut
i þ K � ðLbþ ðUb� LbÞ�LevyðxÞÞ � Ut

i ð15Þ

where K is the Levy weight that controls the impact of the previous universe on the current uni-

verse, Lb is the lower bound of the feasible region, and Ub is the upper bound of the feasible region.

It should be noted that a larger Levy weight inclines to facilitate a global search, while a smaller

Levy weight to facilitate a local search. Therefore, the Levy weight K is crucial to the convergence

behavior of MVO. A suitable value for the Levy weight usually provides a balance between global

exploration and local exploitation and results in refined solutions. To achieve a trade-off between

exploration and exploitation and to accelerate convergence speed, we proposed a Levy weight that

linearly decreases over the course of iterations. In the early stages, a relatively large Levy weight is

adopted to coarse-tune the whole search area. At the end stages, a relatively small Levy weight is

adopted to fine-tune the current search area. This adaptive Levy weight factor (ALWF) is deter-

mined as follows.

K ¼ ðMax Iter� tÞ=Max Iter ð16Þ

where Max_Iter is the maximum iterations, t is the current iteration.

It is not trivial to generate step size s samples using Levy flights [27]. There are several

approaches to achieve step size samples, but the direct and efficient approach is to adopt the

Mantegna algorithm [28]. In Mantegna’s algorithm, the step size s can be described by

s ¼
u

jvj
1
b

ð17Þ

where u and v are drawn from normal distributions. That is

u � Nð0; s2Þ; v ¼ Nð0; s2

vÞ ð18Þ

with

s ¼
Gð1þ bÞ � sinðpb

2
Þ

Gð1þb

2
Þ � b� 2ð

b� 1
2
Þ

 !1
b

; sv ¼ 1 ð19Þ

A MVO with Levy Flights for NO and Test Scheduling for NoC

PLOS ONE | DOI:10.1371/journal.pone.0167341 December 7, 2016 5 / 22



Thus, a simple scheme can be depicted as

LevyðxÞ ¼ 0:01�
u� s

jvj
1
b

ð20Þ

where β is a constant (= 1.5) and σ is measured in Eq (19).

Based on the above, the pseudo code of the LFMVO is shown in Algorithm 1.
Algorithm1: LFMVOalgorithm
Input:NI (objectivefunction)
d (numberof variables)
n (numberof universes)
Lb = [Lb1,Lb2,. . .,Lbd] (the lowerbound of feasibleregion)
Ub = [Ub1,Ub2,. . .,Ubd] (the upperbound of feasibleregion)
Max_Iter(maximumnumberof iterations)
Output:The optimalobjectivefunctionvalueNI(BU)and the optimalsolution
BU.
Step1:Initialization
CreaterandomuniversesU usingEq (21)
InitializeWER, TDR, and BU
t = 0
Step2:Sortingand Normalization
SU = Sorteduniverses
NI = Normalizethe inflationrate of the universes
Step 3:Iteration
whilet<Max_Iter
EvaluatetheNIðUt

i Þ, i = 1,2,. . .,n
for each universeUi
UpdateWEP and TDR usingEq (4) and Eq (5)
BHI = i;
UpdateU usingEq (15)
for each objectxij
r1 = rand (0,1);
if r1<NI(Ui)
WHI = RWS(-NI);
U(BHI,j)= SU(WHI,j);
end if
r2 = rand (0,1);
if r2< WEP
r3 = rand (0,1);
r4 = rand (0,1);
if r3<0.5
xij = BU(j) + TDR � ((Ub(j)-Lb(j)) � r4 + Lb(j));

else
xij = BU(j)—TDR � ((Ub(j)-Lb(j)) � r4 + Lb(j));

end if
end if
end for
end for
t = t+1
end while
Step 4: Termination
OutputBU and NI(BU)

In step 1, the universes are randomly generated in a feasible region using Eq (23) for a given

optimization problem. Let UP represent the universe population, which can be denoted as fol-

lows:

UP ¼ fU1;U2; . . .;Ui; . . .;Ung ð21Þ
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where n is the number of universes and i = 1, 2,. . ., n. Each universe Ui can be expressed as

Ui ¼ ðxi1; xi2; . . .; xij; . . .; xidÞ ð22Þ

where d is the number of variables and j = 1, 2,. . ., d.

xij ¼ Lbj þ ðUbj � LbjÞ � randð0; 1Þ ð23Þ

where Lbj is the lower bound of the jth variable, Ubj is the upper bound of the jth variable, and

rand(0, 1) represents a random number in [0, 1].

In step 2, we sort the universe population into a non-decreasing order and normalize the

inflation rate (fitness) of the universes.

Step 3 is the process of iterative optimization. First, we evaluate the fitness of all universes

NI(Ui) using Eq (13). Then, for each universe Ui, we update WEP and TDR using Eq (4) and

Eq (5), respectively. Next, we record the black hole index BHI and update the universes U

using Eq (15). After that, we update each object xij of the universes using Eq (2) and Eq (3).

In step 4,when the end criterion is satisfied, the optimal objective function value NI(BU)
and the optimal solution BU are obtained.

Experimental Results and Discussion

To evaluate the performance of the proposed LFMVO algorithm, 23 standard benchmark

functions are employed. These functions are well-known and have been widely adopted by

many researchers. The functions are shown in Table 1, where d is the dimension of the func-

tion and fmin represents the optimum value of the function. The optimum values of functions

f1-f13 are zero except for f8 which has an optimum value of -418.9829�d.All the functions

f14-f23 have nonzero optimum values. The benchmark functions can be divided into three

groups: unimodal benchmark functions (f1-f7), multi-modal benchmark functions (f8-f13),

and fixed-dimension multimodal benchmark functions (f14-f23). The unimodal benchmark

functions have one global optimum. However, the multi-modal test functions have a global

optimum, and the number of local optima increases exponentially with the dimensions. The

fixed-dimension multimodal benchmark functions have only a few local optima.

We set the dimension of the test functions (f1-f13) to 40. To have a fair comparison, all

algorithms have the same population size (set to 60) and the same maximum number of

iterations (set to 600). We run each algorithm 40 times so that we can execute significant

statistical analysis (e.g., best, mean and standard deviation). The parameter settings of the

algorithms, which are commonly used in the literature, are provided in Table 2. For verifica-

tion of the results, we compare the LFMVO algorithm with MVO, PSO and MFO, as shown in

Tables 3–5.

Results analysis of unimodal test functions

Since a unimodal benchmark function has one global optimum, it is suitable for benchmarking

the convergence rates (exploitation) of algorithms. Table 3 lists the results of the benchmark

functions f1-f7 for different algorithms. First, we rank the algorithm from the smallest mean

solution to the largest mean solution. Then, we calculate the average rank with respect to

these seven functions and determine the overall rank, as shown in Table 3. From the rank

of each function, we see that the LFMVO results are superior to the other algorithms except

for f6 where the PSO is better. However, LFMVO obtains the overall best rank. The experi-

mental results show that the proposed algorithm has superior performance in terms of

exploitation.
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Results analysis on multi-modal test functions

The multi-modal test function has a global optimum, and the number of local optima increases

exponentially with the dimensions. It is suitable for benchmarking the exploration of algo-

rithms. Table 4 lists the results of benchmark functions f8–f13 for different algorithms. We

Table 1. The benchmark functions used in our experiments.

Test function n Range fmin

f1ðxÞ ¼
Xd

i¼1
x2

i
40 [-100,100] 0

f2ðxÞ ¼
Xd

i¼1
jxij þ

Yd

i¼1
jxij

40 [-10,10] 0

f3ðxÞ ¼
Xd

i¼1
ð
Xi

j� 1
xjÞ

2 40 [-100,100] 0

f4(x) = maxi {|xi|,1 � i � d} 40 [-100,100] 0

f5ðxÞ ¼
Xd� 1

i¼1
½100ðxiþ1 � x

2

i Þ
2
þ ðxi � 1Þ

2
� 40 [-30,30] 0

f6ðxÞ ¼
Xd

i¼1
½ðxi þ 0:5Þ�

2 40 [-100,100] 0

f7ðxÞ ¼
Xd

i¼1
ix4

i þ random½0; 1Þ
40 [-1.28,1.28] 0

f8ðxÞ ¼
Xd

i¼1
� xisinð

ffiffiffiffiffiffi
jxij

p
Þ 40 [-500,500] -418.9829*d

f9ðxÞ ¼
Xd

i¼1
½x2

i � 10cosð2pxiÞ þ 10� 40 [-5.12,5.12] 0

f10ðxÞ ¼ � 20exp � 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xd

i¼1
x2

i

q� �

� exp 1

n

Xd

i¼1
cosð2pxiÞ

� �
þ 20þ e

40 [-32,32] 0

f11ðxÞ ¼
1

4000

Xd

i¼1
x2

i �
Yd

i¼1
cos

xiffiffi
i
p

� �

þ 1
40 [-600,600] 0

f12ðxÞ ¼
p

d
f10sinðpy1Þ þ

Xd

i¼1
ðyi � 1Þ

2
½1þ 10sin2ðpyiþ1Þ� þ ðyd � 1Þ

2
g

þ
Xd

i¼1
uðxi; 10; 100; 4Þ

yi ¼ 1þ
xiþ1

4
, uðxi; a; k;mÞ ¼

(
kðxi � aÞ

m
; xi > a

0; � a < xi < a

kð� xi � aÞ
m
; xi < � a

40 [-50,50] 0

f13ðxÞ ¼ 0:1fsin2ð3px1Þ þ
Xd

i¼1
ðxi � 1Þ

2
½1þ sin2ð3pxi þ 1Þ� þ ðxd � 1Þ

2
½1þ sin2ð2pxdÞ�g

þ
Xd

i¼1
uðxi; 5; 100; 4Þ

40 [-50,50] 0

f14ðxÞ ¼
1

500

X25

j¼1

1

j þ
X2

i¼1
ðxi � aijÞ

6

0

@

1

A
2 [-65.53,65.53] 0.998004

f15ðxÞ ¼
X11

i¼1
ai �

x1ðb
2
i þ bix2Þ

b2
i þ bix3 þ x4

� �2 4 [-5,5] 0.0003075

f16ðxÞ ¼ 4x2
1
� 2:1x4

1
þ 1

3
x6

1
þ x1x2 � 4x2

2
þ 4x4

2
2 [-50,50] -1.0316285

f17ðxÞ ¼ x2 �
5:1

4p2 x2
1
þ 5

p
x1 � 6

� �2
þ 10ð1 � 1

8p
Þcosx1 þ 10 2 [-5,10]*[0,15] 0.398

f18ðxÞ ¼ ½1þ ðx1 þ x2 þ 1Þ
2
ð19 � 14x1 þ 3x2

1
� 14x2 þ 6x1x2 þ 3x2

2
Þ��

½30þ ð2x1 � 3x2Þ
2
� ð18 � 32x1 þ 12x2

1
þ 48x2 � 36x1x2 þ 27x2

2
Þ�

2 [-5,5] 3

f19ðxÞ ¼ �
X4

i¼1
ci expð�

X3

j¼1
aijðxj � pijÞ

2
Þ 3 [-0,1] -3.86

f20ðxÞ ¼ �
X4

i¼1
ci expð�

X6

j¼1
aijðxj � pijÞ

2
Þ 6 [-0,1] -3.32

f21ðxÞ ¼ �
X5

i¼1
½ðX � aiÞðX � aiÞ

T
þ ci�

� 1 4 [0,10] -10.1532

f22ðxÞ ¼ �
X7

i¼1
½ðX � aiÞðX � aiÞ

T
þ ci�

� 1 4 [0,10] -10.4029

f23ðxÞ ¼ �
X10

i¼1
½ðX � aiÞðX � aiÞ

T
þ ci�

� 1 4 [0,10] -10.5364

doi:10.1371/journal.pone.0167341.t001
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Table 3. Results of unimodal benchmark functions.

Functions Statistics LFMVO MVO PSO MFO

f1 Best 3.3178e-006 0.6989 1.5809e-005 2.2253

Mean 8.6397e-006 1.4317 9.6071e-005 4.5093e+003

STD 1.0386e-005 0.3460 5.9722e-005 7.1401e+003

Rank 1 3 2 4

f2 Best 1.5898e-049 0.7038 0.0020 0.6584

Mean 1.5107e-047 28.9175 0.0324 44.1369

STD 4.2885e-047 52.3235 0.0329 29.2929

Rank 1 3 2 4

f3 Best 1.4079e-005 152.5786 101.6546 9.8165e+003

Mean 6.3973e-005 374.9805 177.3445 3.2987e+004

STD 4.7714e-005 132.9893 53.1514 1.6263e+004

Rank 1 3 2 4

f4 Best 8.1960e-004 0.8698 0.9602 51.6426

Mean 0.0015 2.8432 1.4980 68.4824

STD 4.6794e-004 1.3255 0.2266 6.6460

Rank 1 3 2 4

f5 Best 38.7824 48.3483 34.5072 549.6379

Mean 38.9045 621.7285 115.1391 2.0279e+006

STD 0.0406 771.9059 74.2353 1.2651e+007

Rank 1 3 2 4

f6 Best 8.2804 0.9215 6.6348e-006 3.4127

Mean 8.6489 1.3681 1.0254e-004 4.5101e+003

STD 0.1465 0.3078 9.8357e-005 7.1438e+003

Rank 3 2 1 4

f7 Best 4.0043e-007 0.0169 0.0715 0.0999

Mean 1.1291e-004 0.0367 0.2383 4.4739

STD 1.0191e-004 0.0116 0.0829 8.4590

Rank 1 2 3 4

Average Rank 1.28 2.71 2 4

Overall Rank 1 3 2 4

doi:10.1371/journal.pone.0167341.t003

Table 2. The parameter settings of the algorithms.

Algorithm Tuning Parameter Value

LFMVO WEP_Max 1

WEP_Min 0.2

p (Exploitation accuracy) 6

β (Levy index) 1.5

MVO [16] Wmax (max WEP) 1

Wmin (min WEP) 0.2

p (Exploitation accuracy) 6

PSO [29] c1 (Cognitive constant) 2

c2 (Social constant) 2

w (Inertia constant) 0.6

MFO [15] b(Logarithmic spiral) 1

r (convergence constant) linearly decreased from -1 to -2

doi:10.1371/journal.pone.0167341.t002
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also adopt the rank scheme used in the previous sub-section. From the rank of each function,

we can determine that the LFMVO are superior to those of other algorithms except for f11 and

f13, where the PSO outperforms the LFMVO algorithm. Nevertheless, the LFMVO ranks best

overall. The experimental results demonstrate that the performance of the LFMVO is highly

competitive with respect to exploration and escape from poor local optima.

Results analysis on fixed-dimension multimodal benchmark functions

Compared with functions f8-f13, functions f14-f23 are simpler due to their lower dimension

and fewer local minima. The results of benchmark functions f14-f23 for different algorithms

are shown in Table 5. Though most algorithms were able to easily reach optima for functions

f14-f23, we still rank these algorithms. Each of the algorithms can find the optimum at the

best condition. For functions f16-f19, there are no differences among the approaches. From

Table 6, we find that the LFMVO reaches better solutions than other algorithms.

Convergence analysis

To investigate the convergence behavior of the proposed algorithm, we compare the conver-

gence curves of the LFMVO, MVO, PSO and MFO for four test functions.

The convergence curves of functions f2 and f7 (unimodal test functions) are illustrated in

Fig 1 and Fig 2. The convergence curves show that the LFMVO algorithm can successfully

improve the fitness of all universes and find a better solution over the course of iterations. The

Table 4. Results of multi-modal benchmark functions.

Functions Statistics LFMVO MVO PSO MFO

f8 Best -1.7623e+004 -1.1953e+004 -4.7331e+003 -1.3585e+004

Mean -1.4886e+004 -1.0285e+004 -8.6352e+003 -1.1249e+004

STD 5.4972e+003 792.9835 1.2979e+003 1.1557e+003

Rank 1 3 4 2

f9 Best 0 107.0923 50.7752 117.6214

Mean 0 171.9808 75.9237 217.1745

STD 0 35.2283 14.5150 42.4181

Rank 1 3 2 4

f10 Best 2.2204e-014 0.7559 0.0024 1.1029

Mean 2.4558e-013 1.7515 0.0941 16.9435

STD 6.2728e-013 0.5808 0.2946 5.8916

Rank 1 3 2 4

f11 Best 2.5505e-007 0.6177 2.1519e-007 1.0064

Mean 0.0172 0.8146 0.0060 43.9017

STD 0.0056 0.0668 0.0080 67.4905

Rank 2 3 1 4

f12 Best 7.3649e-008 0.0351 1.0481e-007 3.7687

Mean 0.0008 2.3601 0.0019 1.9200e+007

STD 0.0036 1.3190 0.0123 6.8287e+007

Rank 1 3 2 4

f13 Best 0.0384 0.0953 2.6017e-006 17.2521

Mean 0.0921 0.1809 0.0050 1.0252e+007

STD 0.0417 0.0898 0.0082 6.4837e+007

Rank 2 3 1 4

Average Rank 1.33 3 2 3.66

Overall Rank 1 3 2 4

doi:10.1371/journal.pone.0167341.t004
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Table 5. Results of fixed-dimension multi-modal benchmark functions.

Functions Statistics LFMVO MVO PSO MFO

f14 Best 0.9980 0.9980 0.9980 0.9980

Mean 0.9980 0.9980 1.6429 1.4923

STD 0 0 0.9107 1.2829

Rank 1 1 3 2

f15 Best 3.3355e-004 3.0828e-004 3.0803e-004 5.7996e-004

Mean 2.4005e-004 5.2835e-004 8.0481e-004 9.4639e-004

STD 7.3980e-004 0.0117 2.0810e-004 3.7484e-004

Rank 1 2 3 4

f16 Best -1.0316 -1.0316 -1.0316 -1.0316

Mean -1.0316 -1.0316 -1.0316 -1.0316

STD 0 0 0 0

Rank 1 1 1 1

f17 Best 0.39789 0.39789 0.39789 0.3979

Mean 0.39789 0.39789 0.39789 0.3979

STD 0 0 0 0

Rank 1 1 1 1

f18 Best 3.0000 3.0000 3.0000 3.0000

Mean 3.0000 3.0000 3.0000 3.0000

STD 0 0 0 0

Rank 1 1 1 1

f19 Best -3.8628 -3.8628 -3.8628 -3.8628

Mean -3.8628 -3.8628 -3.8628 -3.8628

STD 0 0 0 0

Rank 1 1 1 1

f20 Best -3.3220 -3.3220 -3.3220 -3.3220

Mean -3.2619 -3.2675 -3.2655 -3.2249

STD 0.0609 0.0610 0.0601 0.0557

Rank 3 1 2 4

f21 Best -10.1532 -10.1532 -10.1532 -10.1532

Mean -7.7833 -7.6859 -7.5651 -7.6339

STD 2.5717 2.8304 2.8225 3.0626

Rank 1 2 4 3

f22 Best -10.4029 -10.4029 -10.4029 -10.4029

Mean -9.8284 -8.2990 -9.2505 -8.2915

STD 2.8397 2.7932 2.3655 3.2963

Rank 1 3 2 4

f23 Best -10.5364 -10.5364 -10.5364 -10.5364

Mean -10.3201 -8.7133 -10.3335 -9.5119

STD 2.2845 2.8921 1.2830 2.5077

Rank 2 4 1 3

Average Rank 1.30 1.70 1.90 2.30

Overall Rank 1 2 3 4

doi:10.1371/journal.pone.0167341.t005

Table 6. Basic Information of Benchmark Circuits.

Benchmark Number of Cores

d695 10

p22810 28

p93791 32

doi:10.1371/journal.pone.0167341.t006
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results of f2 and f7 demonstrate that the proposed algorithm has a very fast convergence speed.

The reason is that objects in the universes with high inflation rates incline to shift to the universes

with low inflation rates through white/black holes, so the fitness of all universes is get better over

the course of iterations. Moreover, the proposed Levy flights phase can produce universes with

long jumps that leads to quick convergence toward hopeful areas of the search spaces.

The convergence curves of functions f9 and f10 (multimodal test functions) are illustrated

in Fig 3 and Fig 4. The graphical results of f9 and f10 (multimodal test functions) show the

superior local optima avoidance and global search ability of the LFMVO algorithm. The reason

is that regardless of inflation rate, wormholes incline to exist stochastically in any universe

which drive universes maintain the diversity over the course of iterations. In addition, Levy

flights stage has the ability to escape from local optima and converge to the global optimum

rapidly. We have provided the explanation between convergence and application in sub-sec-

tion Convergence analysis.

The above results demonstrate the superior performance of the LFMVO algorithm in solv-

ing different benchmark functions compared with well-known algorithms. To further investi-

gate the performance of the proposed LFMVO algorithm, a real engineering problem, which

proved to be an NP complete problem, is solved in the following section.

The application of the LFMVO on NoC test scheduling optimization

In this section, we apply the LFMVO to practical engineering applications to investigate the

applicability and feasibility of the proposed algorithm. We estimate the performance of the

Fig 1. Sample graphs for convergence process comparison of LFMVO, MVO, PSO, and MFO over function

f1.

doi:10.1371/journal.pone.0167341.g001
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LFMVO in terms of an engineering design problem—an NoC test scheduling problem. We

describe the engineering applications generally and present the relevant mathematical models

in the following paragraphs.

The NoC design paradigm has been proposed as an alternative to the traditional System-

on-Chip (SoC) design paradigm for the next generation of complex Very Large Scale Integra-

tion (VLSI) [30]. The NoC is composed of IP cores, routers, resource interfaces and intercon-

nection links. Due to the packet-switching network, the NoC provides high performance

interconnection to embedded IP cores. However, testing embedded cores for NoC-based sys-

tems poses new challenges compared to traditional SoC [31].

Like traditional bus-based SoC, the general issues of the NoC system testing are composed

of the test architecture design (test wrapper and TAM) and the test scheduling approaches.

The test wrapper is the logic added around an embedded core, which is used to isolate the

embedded core from surrounding logic and to offer test access to the core via a TAM. The

TAM is the physical mechanism used to transport test stimuli and test responses for the cores.

The test scheduling approach is employed to decide the test organization that targets test effi-

ciency while considering all test constraints [32].

Testing is usually executed using automated test equipment (ATE), which offers test stimuli

and estimates the test responses. ATE provides a limited number of tester pins (test channels)

that can be used to send data to/receive data from the core-under-test (CUT). Inefficient use of

tester pins (tester channels) has a negative impact on test cost [31].

In testing the embedded cores of NoC, we aim to minimize the test time while satisfying the

test pins constraints and power constraints. The test time depends on the test architecture (test

Fig 2. Sample graphs for convergence process comparison of LFMVO, MVO, PSO, and MFO over function

f7.

doi:10.1371/journal.pone.0167341.g002
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wrapper and TAM) and the corresponding test schedule with the test pins and power con-

straints. Here, we consider only the test wrapper proposed in [33] and a dedicated test access

mechanism (TAM). The test scheduling problem for the NoC system can be defined as follows:

in a NoC system, given the set parameters of cores Co, such that each core has a test time T(c)
associated with the TAM width, the maximum test channels Nt for NoC, and the maximum

power limit PoL for NoC, develop a test schedule, such that 1) Nt is not violated, 2) PoL is not

violated, 3) the overall test time is minimized [18].

The embedded cores in a TAM are tested in series, and different TAMs are tested in paral-

lel. The total test time is the sum of all the maximum test times for all the TAMs that are tested

in parallel.

We introduce binary variables yij (1� i� N and 1� j� B) that are used to determine the

assignment of cores to TAMs in the NoC. Each core in the system must be assigned to exactly

one TAM.

We can formulate this unity condition by yij defined in Eq (24) with the unity condition for-

mulated in Eq (25).

yij ¼

(
1; if core i is assigned to TAM j

0; otherwise
ð24Þ

XB

j¼1
yij ¼ 1; 1 � i � N ð25Þ

Fig 3. Sample graphs for convergence process comparison of LFMVO, MVO, PSO, and MFO over function

f9.

doi:10.1371/journal.pone.0167341.g003
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The time needed to test all cores on TAM j is given by

XN

i¼1
TiðwjÞyij ð26Þ

Since all the TAMs can be tested in parallel, the overall test time equals

Tsum ¼ max1�j�B

XN

i¼1
TiðwjÞyij ð27Þ

The core test time is associated with the transmit bandwidth of the test data. Assuming that

core i is assigned to TAM bandwidth w, the test time Ti(wj) is defined by Eq (28):

TiðwjÞ ¼ f1þmaxðSin; SoutÞg � npþminðSin þ SoutÞ ð28Þ

where Sin (Sout) denotes the length of the longest wrapper scan-in (scan-out) chain for a core

and np denotes the number of test vectors. Ti(wj) is calculated with a Best Fit Decreasing

(BFD) algorithm for wrapper design from [31].

The total test pins used by the cores cannot exceed Pinmax during the whole test process.

We can formulate the test pins used, Pint
used, during time slot t as follows:

Pint
used ¼

XN

i¼1

Pini � l
t
i � Pinmax ð29Þ

where Pinmax is the total number of test pins available for testing.

Fig 4. Sample graphs for convergence process comparison of LFMVO, MVO, PSO, and MFO over function f10.

doi:10.1371/journal.pone.0167341.g004
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l
t
i is defined by Eq (30):

l
t
i ¼

(
1; if TSi � t � TEi

0; otherwise
ð30Þ

where TSi and TEi are the test start time and test end time of core i, respectively.

Although increasing the number of TAMs can effectively shorten the test time and reduce

the test cost, it can lead to increasing test power. Therefore, to ensure the viability of the test,

power must be constrained during the test.

In any test slot t, power consumption must satisfy

Pt
m ¼

XN

i¼1

Ptesti � l
t
i � Pmax ð31Þ

where Ptesti is the power consumption on core i, and Pmax is the maximum power consumption

allowed for the system.

Therefore, test scheduling for NoC can be formulated as follows:

minTsum ¼ max1�j�B

XN

i¼1
TiðwjÞyij

s:t:
XN

i¼1

Ptesti � l
t
i � Pmax

XN

i¼1

Pini � l
t
i � Pinmax ð32Þ

For the experiments, we used three SOCs from the ITC’02 SoC Test Benchmarks [34]:

d695, p22810 and p93791 (see Table 6). We change the problem structure to use much bigger

cases for the sake of observing convergence. In others words, we artificially constructed a

hybrid system named hy629 including one d695, one p22810 and one p93791.

To compare conveniently, we used the same parameters as in the previous section. Every

algorithm was run independently 40 times, and the best results of each algorithm for d695,

p22810, p93791 and hyd629 are expressed in Tables 7–10, respectively.

The shortest test results times among the four algorithms are indicated by bold font for

each method. From Table 7, we find that the four algorithms obtain the same results in most

cases because d695 has the smallest scale among the three benchmarks. However, as the scale

increases, the proposed algorithm yields the smaller test time in each category than the three

reference methods. The experimental results of Tables 8–10 verify this statement. To further

investigate the performance of the LFMVO (especially on the border/critical cases), we show

the boxplots of the four algorithms for the different test benchmarks in Figs 5–8. Figs 5–7

show the condition Pinmax = 256 and Pmax = 100%. Fig 8 shows the condition Pinmax = 512

and Pmax = 100%. From Figs 5–8, we can see that the LFMVO outperforms other algorithms

with respect to robustness and optimization accuracy. The reason of the superior results of

LFMVO on application is that this proposed algorithm efficiently gains a balance between

exploration and exploitation. For one, the concepts of white/black holes and Levy flights pro-

mote exploration, which can maximize the efficiency of resource searches in uncertain search

space. For another, adding the existence of wormholes guarantees exploitation around the

most hopeful area of the search space. In general, our proposed algorithm yields the higher

performance in each statistical parameter than the three reference methods.
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Table 7. Experimental results for d695 with different test pins.

Pinmax Pmax Test Time

LFMVO MVO PSO MFO

256 100% 9869 9869 9869 9869

256 50% 9869 9869 9869 9869

256 30% 13164 13164 13164 13164

256 20% 20163 20163 20503 20528

192 100% 12663 12663 12663 12663

192 50% 12663 12663 12663 12663

192 30% 13428 13428 13428 13428

192 20% 20188 21022 21010 20751

128 100% 18869 18869 18869 18869

128 50% 18869 18869 18869 18869

128 30% 18869 18869 18869 18869

128 20% 21401 21989 21989 21401

doi:10.1371/journal.pone.0167341.t007

Table 8. Experimental results for p22810 with different test pins.

Pinmax Pmax Test Time

LFMVO MVO PSO MFO

256 100% 136400 137436 138239 137586

256 50% 135998 137336 139132 138049

256 30% 135907 139229 139939 139388

256 20% 136341 140669 141498 139944

192 100% 180942 181393 181161 181283

192 50% 180952 181284 182496 181800

192 30% 180954 181510 184108 181995

192 20% 181376 181376 184111 182137

128 100% 271331 271360 271429 271343

128 50% 271333 271365 271529 271347

128 30% 271332 271407 271644 271356

128 20% 271340 271376 271655 271420

doi:10.1371/journal.pone.0167341.t008

Table 9. Experimental results for p93791 with different test pins.

Pinmax Pmax Test Time

LFMVO MVO PSO MFO

256 100% 306233 310681 317253 312840

256 50% 307278 313360 342174 310842

256 30% 368506 373062 397351 387611

256 20% 534687 564496 567322 553547

192 100% 407861 410490 415412 410118

192 50% 407856 408154 408766 410896

192 30% 408246 415666 453412 422115

192 20% 551352 568489 577414 573920

128 100% 611745 611777 611762 611766

128 50% 611748 611766 611759 611801

128 30% 611748 611778 611774 611865

128 20% 611789 634631 658180 611974

doi:10.1371/journal.pone.0167341.t009
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Conclusions

A new algorithm named LFMVO is proposed in this paper, and it improves the performance

of the MVO by incorporating Levy flights. The Levy flights component is introduced to

enhance the global search ability of the MVO and its ability to escape from local optima.

Experimental results on three sets of 23 well-known benchmark functions have verified that

the proposed LFMVO has outstanding performance in speed of convergence and precision of

the solution for global optimization in most cases. A real engineering application using NoC

test scheduling optimization confirms that our proposed algorithm outperforms several state-

of-the-art algorithms. This superior performance proves that the Levy flights are a promising

way of strengthening the searching performance of MVO. Current studies implies that the

LFMVO is a powerful and universal approach; it should be investigated further in several

applications of engineering optimization problems, such as cloud computing, big data, smart

city and vehicular named data networks [35–45]. Our future work is to extend the LFMVO to

these fields.

Fig 5. The boxplot of LFMVO, MVO, PSO, and MFO for d695.

doi:10.1371/journal.pone.0167341.g005

Table 10. Experimental results for hybrid systems hyd629 with different test pins.

Pinmax Pmax Test Time

LFMVO MVO PSO MFO

512 100% 243749 261107 280109 271678

512 50% 245305 265048 282099 271730

512 30% 246828 264513 284344 284127

512 20% 247289 275809 285549 284513

doi:10.1371/journal.pone.0167341.t010
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Fig 6. The boxplot of LFMVO, MVO, PSO, and MFO for p22810.

doi:10.1371/journal.pone.0167341.g006

Fig 7. The boxplot of LFMVO, MVO, PSO, and MFO for p93791.

doi:10.1371/journal.pone.0167341.g007
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