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Abstract
Similarity measure (SM) proves to be a necessary tool in cognitive decision making processes. A single-valued neutrosophic 
set (SVNS) is just a particular instance of neutrosophic sets (NSs), which is capable of handling uncertainty and imprecise-
ness/vagueness with a better degree of accuracy. The present article proposes two new weighted vector SMs for SVNSs, 
by taking the convex combination of vector SMs of Jaccard and Dice and Jaccard and cosine vector SMs. The applications 
of the proposed measures are validated by solving few multi-attribute decision-making (MADM) problems under neutro-
sophic environment. Moreover, to prevent the spread of COVID-19 outbreak, we also demonstrate the problem of selecting 
proper antivirus face mask with the help of our newly constructed measures. The best deserving alternative is calculated 
based on the highest SM values between the set of alternatives with an ideal alternative. Meticulous comparative analysis 
is presented to show the effectiveness of the proposed measures with the already established ones in the literature. Finally, 
illustrative examples are demonstrated to show the reliability, feasibility, and applicability of the proposed decision-making 
method. The comparison of the results manifests a fair agreement of the outcomes for the best alternative, proving that our 
proposed measures are effective. Moreover, the presented SMs are assured to have multifarious applications in the field of 
pattern recognition, image clustering, medical diagnosis, complex decision-making problems, etc. In addition, the newly 
constructed measures have the potential of being applied to problems of group decision making where the human cognition-
based thought processes play a major role.

Keywords  Similarity measure · Neutrosophic set · Single-valued neutrosophic set · Convex vector similarity measure · 
Multi-attribute decision making

Introduction

Human beings remain constantly in a state of making deci-
sions due to the intrinsic nature of their mind. They are natu-
ral decision makers since every action ultimately results in 
a decision, no matter how significant it might be. Several 
cognitive factors like people’s level of expertise, behavioral 
style, and decision maker’s credibility have a huge psycho-
logical impact on the decision making process. According 

to psychologists, the decision making process can be 
understood by considering both individual judgments and 
taking into account both rational and irrational aspects of 
behavior. Thus, for proper representation of decision maker 
interests, we are bound to consider those cognitive aspects. 
This implies that decisions considering cognitive aspects 
are comparatively better and they closely depict the deci-
sion maker’s preferences. Human cognition-based methods 
or techniques not only help the decision makers in express-
ing their preferences regarding a certain scenario but also 
helps visualize people’s intentions or underlying thought 
processes.

It is worth mentioning that various disciplines in the field 
of operations research, economics, management science, 
etc., flourished with convincing outcomes when the notion 
of MADM was introduced to their researchers in respective 
domains. However, it is noticed that the decision makers 

 *	 Palash Dutta 
	 palashdutta@dibru.ac.in

	 Gourangajit Borah 
	 gjit1993@gmail.com

1	 Department of Mathematics, Dibrugarh University, 
Dibrugarh 786004, Assam, India

/ Published online: 21 May 2021

Cognitive Computation (2021) 13:1019–1033

http://orcid.org/0000-0002-1565-4889
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-021-09883-0&domain=pdf


1 3

involved in MADM problems are unable to come up with the 
proper justification of the involved decision parameters, due 
to reasons like lack of information about the public domain, 
poor information processing capabilities, complexity of the  
scenario, shortage of time, etc. This results in incorrect pref-
erence ordering of alternatives. We encounter a wide litera- 
ture on MADM problems, where the attribute values take the 
form of crisp numbers [3], fuzzy numbers [4], interval-valued  
fuzzy numbers [5], interval-valued intuitionistic fuzzy num-
bers [6], and so on.

For the first time, neutrosophic sets (NSs) were developed 
by Smarandache [1, 2], which are capable of dealing with 
imprecise or unclear information. These sets are character-
ized by three independent functions namely, truth, indeter-
minacy, and falsity membership functions. Noteworthy that, 
fuzzy sets and intuitionistic fuzzy sets can only deal with 
partial or incomplete information, but on the other hand, 
NSs tackle inconsistent information to a pretty decent extent. 
The widespread application of NSs to MADM problems, 
where the decision makers express the ratings of alterna-
tives with the help of NSs is gaining huge attention among 
researchers recently [7–9]. Single-valued neutrosophic set 
(SVNSs) were first proposed by Wang et al. [10], where 
he discussed some of their preliminary ideas and the arith-
metic operations between SVNSs. Furthermore, Wang real-
ized that interval numbers could better represent the truth, 
the indeterminacy, and the falsity degree of a particular 
statement, over the classical non-fuzzy or crisp numbers. 
Hence, Wang et al. [11], proposed interval neutrosophic 
sets (INSs). Thereafter, various methods were developed 
for MADM problems involving SVNSs and INSs, such as 
TOPSIS method [12, 13], weighted aggregation operators 
[14–18], subsethood measure [19], inclusion measures [20], 
and outranking method [21, 22]. As a result, MADM prob-
lems are tackled with an efficient and significant tool known 
as similarity measure (SM) [23–27]. The highest weighted 
SM value between the set of alternatives and the positive 
ideal alternative corresponds to the deserving or best alter-
native. Broumi and Smarandache [28], considered NSs and 
hence defined the Hausdorff distance measure between two 
such sets. Later on, it was Majumdar and Samanta [29] who 
utilized the concepts of membership degrees, matching func-
tion, and distance measure, for defining certain SMs between 
two SVNSs. The correlation coefficient for SVNSs was then 
improved by Ye [30]. Moreover, Ye [31] also introduced 
vector SMs for SVNSs and INSs, where SVNS acts as a 
vector in three dimensions. Also, Ye [32] utilized the vector 
concept in improving the cosine SM, so that it can be applied 
to problems of medical decision-making. It was Broumi and 
Smarandache [33] who tackled pattern recognition problems 
by extension of the cosine SM for SVNSs onto INSs. Con-
sequently, Pramanik et al. [34] proposed hybrid vector SM 
for SVNSs and INSs.

In the recent 5 years, SVNSs have seen widespread 
applications in the realm of cognitive decision-making. For 
instance, Chai et al. [35] enriched the literature of SVNSs by 
proposing certain novel similarity measures. Saqlain et al. 
[36] proposed the concept of tangent similarity measure for 
single and multi-valued hypersoft sets under a neutrosophic 
setting. Likewise, Qin and Wang [37] proposed certain 
entropy measures for SVNSs with applications to MADM 
problems. Basset et al. [38] gave the form for cosine similar-
ity measure for treatment of bipolar disorder diseases with 
the help of bipolar neutrosophic sets. Tan and Zhang [39] 
illustrated the decision-making procedure which is helpful in 
outrage/havoc assessment of typhoon disaster havoc by appli-
cation of Refined SVNSs. Ye [40] carried out fault analysis 
of a steam turbine with the help of cotangent function-based 
SMs for SVNSs to maximize its efficiency. Moreover, Ye [41] 
discussed certain bidirectional projection measures of SVNSs 
for their applications in mechanical design. Mondal et al. [42] 
demonstrated a MADM strategy based on hyperbolic sine 
similarity measures for SVNSs. Thereafter, certain entropy 
and cross-entropy measures for SVNSs were proposed by Wu 
et al. [43]. Ye and Fu [44] in their paper, showed the useful-
ness of tangent function-based SM for the treatment of the 
multi-period medical condition. In the same year, Ye [45] 
demonstrated how a dimension root SM can be applied for 
the diagnosis of faults in hydraulic turbines. Garg and Nancy 
[46] proposed certain novel ideas of biparametric distance 
measures for SVNSs. The concept of SVNSs when applied 
to graphs, or precisely, “single-valued neutrosophic graphs”, 
was a significant and enticing theory which was proposed by 
Broumi et el. [47]. Unlike simple graphs, a stronger version 
of it known as hypergraphs had many remarkable applica-
tions in the literature. In simple graphs where a single edge 
can connect exactly two vertices only, but a hyperedge in a 
hypergraph can connect a set of vertices. In this context, Yu 
et al. [48] applied the learning method involving hypergraphs 
to model the pair-wise coherency between images. Another 
term for it is ‘transductive image classification’. Moreover, 
Yu et al. [49] applied the complex concept of multimodal 
hypergraphs to propose a sparse coding technique for the 
prediction of click data and image re-ranking, and as a con-
sequence of which we get minimum margin for an era in 
a text-based image search. The application of hypergraphs 
tends to improve the visual efficacy which was established 
by Yu et al. [50] in their journal article. Moreover, in their 
article, they also proposed a novel ranking model which takes 
into account the click features and visual features. Later, a 
significantly effective and novel framework by the name of 
Muli-task Manifold Deep Learning (M2DL) for estimating 
face poses via multi-modal information was introduced by 
Hong et al. [51].

Therefore, it is clear that in the context of decision mak-
ing, the psychological aspects play a significant role. The 
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process through which we “perceive”, “interpret”, and “gen-
erate” our responses towards the thought process of people 
undergoing social interactions is termed as Social Cognition. 
Social functioning outputs have a strong linkage to social 
cognition, such that when such aspects are not considered 
the quality of decisions is degraded, while people achieve 
an enhanced degree of satisfaction with decisions when such 
factors are considered. A person needs to first understand 
the process of social interactions to handle social cognition 
tasks. For example, suppose a family decides to celebrate 
the birthday of one of its members and it is trying to figure 
out the best restaurant in the city for the celebration. Here, 
the intention of the family members comes into play rather 
than only the preferences towards the alternatives and their 
respective criteria. Now, the person whose birthday needs 
to be celebrated is the crucial one who needs to be content 
with the decision. Ironically, if some other members opt for 
a restaurant according to their liking which eventually makes 
the person (whose birthday is to be celebrated) unhappy, 
then the decision will be considered to be a bad/inappropri-
ate one.

However, there exist certain cognitive limitations in peo-
ple’s minds like initial impression and emotional satisfaction 
at the time of making decisions, which restrict them from 
making rational decisions in MCDM scenarios. For instance, 
suppose there is a real estate dealer who is interested in buy-
ing a house from four options that are presented to him/her 
by the estate agency. Now, if the dealer enters one of these 
houses and suddenly feels uncomfortable, then no matter 
how good the deal of the house is at that price, the dealer 
will restrict himself from buying it since his feeling does not 
allow him to do so. Consider another scenario, where a per-
son wants to buy a second-hand truck. Even though the truck 
might be in excellent working condition and the car dealer 
offers him a good deal, but if the person who is interested in 
buying somehow feels that the dealer is tricking him, then 
he would not buy it. Here, the first impression of the person 
restricts him from making a final decision. Similarly, there 
are many such examples. From the literature, it is evident 
that MCDM techniques including cognitive aspects are close 
to inexistent. However, few researchers have tried to estab-
lish the linkage of social cognition into decision making 
problems (for details please refer to Bisdorff [52], Carneiro 
et al. [53], Homenda et al. [54], and Ma et al. [55]).

Motivation of Our Work

Uncertain or imprecise information is an indispensable fac-
tor in most real-world application problems. In this regard, 
NSs are well equipped with handling inconsistent informa-
tion and indeterminate decision data with a better perspec-
tive over fuzzy sets and intuitionistic fuzzy sets. It is due 
to their characteristic independent membership functions 

of truth, indeterminacy, and falsity. The cognitive decision-
making problems are innate to possession of factors like 
vagueness, error, contradiction, and redundancy data. In this 
context, NSs which are capable of handling such imprecise-
ness or vagueness shall prove to be a good fit while solving 
multi-attribute decision-making and multi-attribute group 
decision-making problems. SVNSs are a particular sub-
class of NSs, which we will be using to tackle a MADM 
method. INSs are also a similar subclass of NSs, which are 
exempted in this study. There is a common practice of apply-
ing the vector SMs in decision-making problems [57–59]. 
However, motivated by the works of Ye [56] and Pramanik 
et al. [34], we propose two convex vector SM by taking the 
convex combination of Jaccard and Dice SMs and Jaccard 
and cosine SMs, respectively. In this article, our proposed 
measures for SVNSs are developed extending the concept 
of variation coefficient similarity method [56], under the 
neutrosophic setting. We discuss some basic properties of 
the newly constructed measures and thereby demonstrating 
their valid structural formulation. The application of our 
proposed measures is shown while tackling few practical 
MADM scenarios. The final yielded outcomes, affirms the 
accuracy and good fit of our proposed measures.

Structure of the Paper

Hence, the rest of the paper is set out as follows: in “Pre-
liminaries and Existing Methods”, we give a brief overview 
of the concepts related to neutrosophic sets, SVNSs, and 
also, we review certain existing weighted vector SMs for 
SVNSs. In “Proposed Method”, our proposed definitions of 
weighted convex vector similarity measures are discussed, 
while the subsequent “MADM based on Proposed Similar-
ity Measure for SVNSs” firstly elaborates the procedure to 
solve any MADM problem based on the proposed method. 
Then, to validate the applicability of our proposed meas-
ures, we illustrate few practical MADM scenarios which for 
instance are optimum profit for an investment company and 
the selection of proper face masks, to prevent the spread of 
the COVID-19 pandemic. In addition, they are supported 
by meticulous comparative analysis showing the feasibility 
of our proposed measures with the existing methods in the 
literature. Finally, “Conclusion” provides the conclusions 
for the article.

Preliminaries and Existing Methods

Here, in this section, we briefly review some of the concepts 
of NSs, SVNSs, and their basic arithmetic operations, the 
ideas of which will be necessitated in the subsequent sec-
tions of our study.
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Definition 1   (Neutrosophic Sets) [1, 2]

Suppose we consider U to be a space of objects (points) 
and let us denote the generic element in U by x . Then a  
neutrosophic set P in U is characterized by three inde- 
pendent functions, a truth membership function TP(x) , an 
indeterminacy membership function IP(x) , and a falsity 
membership function FP(x) . The three functions are stand-
ard and non-standard subsets of the interval 

]
−0, 1+

[
 , and the 

following condition is satisfied,

Noteworthy that, neutrosophic sets introduced by 
Smarandache [1] were more from a philosophical point  
of view and they had very scarce applications in the field 
of science and engineering. As a better successor to it,  
Wang et al. [10] introduced a subclass of the neutrosophic 
sets, which are called single-valued neutrosophic sets 
(SVNSs).

Definition 2   (Single-Valued Neutrosophic Sets) [10]

Suppose we consider U be a space of objects (points) 
and let us denote the generic element in U by x . Then a 
single-valued neutrosophic set P in X is characterized by 
three independent functions, a truth membership function 
TP(x) , an indeterminacy membership function IP(x) , and a 
falsity membership function FP(x) . We denote the SVNS 
P as

P =
�
⟨x, TP(x), IP(x),FP(x)⟩�x ∈ X

�
 , where TP(x) , IP(x) , 

FP(x)∈ [0, 1]; x ∈ U.
Also, the following inequality is satisfied by the sum of 

TP(x) , IP(x) , and FP(x),

For the sake of simplicity, let us consider, P =

⟨TP(x), IP(x),FP(x)⟩ as the SVNS in U.

Definition 3   (Arithmetic operations between SVNSs) [10, 
16]

For any two SVNSs P = ⟨TP(x), IP(x),FP(x)⟩ and Q =⟨
TQ(x), IQ(x),FQ(x)

⟩
 considered in a finite universe U , the 

arithmetic operations between them were proposed in previ-
ous studies [10, 16] as follows:

1.	 Complement: The complement of SVNS P is denoted by 
PC and defined as PC = ⟨FP(x), 1 − IP(x), TP(x)⟩ , where 
the first component is the falsity membership degree for 
P , the second component is 1 minus the indeterminacy 
degree for P , and the third is the truth membership grade 
for P.

(1)−0 ≤ sup TP(x) + sup IP(x) + supFP(x) ≤ 3+

(2)0 ≤ TP(x) + IP(x) + FP(x) ≤ 3

2.	 Inclusion: A SVNS P is said to be a subset of another 
SVNS Q , that is P ⊆ Q if and only if TP(x) ≤ TQ(x),

IP(x) ≥ IQ(x), FP(x) ≥ FQ(x); ∀x ∈ U.
3.	 Equality: For equality between two SVNSs P and Q 

to hold, we must have that both sets must be a subset 
of each other, that is, P ⊆ Q and P ⊇ Q . Or in other 
words, we can also say that, P = Q if and only if 
TP(x) = TQ(x), IP(x) = IQ(x), FP(x) = FQ(x); ∀x ∈ U.

4.	 Addition: The addition operation between two 
SVNSs P and Q is defined byP⊕ Q =

�
⟨x, TP(x)

+TQ(x) − TP(x)TQ(x), IP(x)IQ(x), FP(x)FQ(x)
⟩
|x ∈ U

}
 , 

which is not the traditional additive rule. Here, the first 
component is the algebraic sum of truth degrees minus 
their product, the second component is the product of 
the indeterminacy degree for the two sets, and the third 
component is the product of their falsity degrees.

5.	 Multiplication:  The multiplication operation 
between two SVNSs P and Q is defined by P⊗ Q

=
{⟨

x, TP(x)TQ(x), IP(x) + IQ(x) − IP(x)IQ(x), FP(x)+

FQ(x) − FP(x)FQ(x)
⟩
|x ∈ U

}
 , where the components 

swap their arithmetic as in the addition case. That is, 
the first component is the product of their truth degrees, 
the second component being the algebraic sum minus 
the product of their indeterminacy degrees, and it is the 
algebraic sum minus their product of falsity degrees in 
the third component.

6.	 Union: The union of two SVNSs P and Q is defined by 
P ∪ Q =

{⟨
x, TP(x) ∨ TQ(x), IP(x) ∧ IQ(x), FP(x) ∧ FQ

(x)⟩�∀x ∈ U} . The resulting SVNS has the first compo-
nent as the maximum of their truth degrees, the sec-
ond component as the minimum of their indeterminacy 
degrees, and the third component is the minimum of 
their respective falsity degrees as well.

7.	 Intersection: The intersection of two SVNSs P and Q is 
defined by P ∩ Q =

{⟨
x, TP(x) ∧ TQ(x), IP(x) ∨ IQ(x),

FP(x) ∨ FQ(x)
⟩
|∀x ∈ U

}
 . Broadly speaking, the inter-

section is the reverse case for union operation since 
the maximum function in the case of union operation 
becomes the minimum function here, and vice-versa.

Existing Non‑weighted Vector Similarity Measures

SMs greatly enhance the valuable output efficiency in decision- 
making processes. Many experts from time to time have formu-
lated several fruitful definitions of SMs based on distances and 
vectors. Hence, in the following sequel, we recall the definitions 
of Jaccard [57], Dice [58], and cosine [59] similarity measures. 
These SMs are structurally simple, easy to compute, and mod- 
est, which enables the decision-makers to determine the differ- 
ent similarity value options at ease.

Let M =
(
m1,m2, ...,ms

)
 and N =

(
n1, n2, ..., ns

)
 be two s

-dimensional vectors having non-negative co-ordinates. Then,

1022 Cognitive Computation (2021) 13:1019–1033
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Definition 4   Between any two vectors M =
(
m1,m2, ...,ms

)
 

and N =
(
n1, n2, ..., ns

)
 , the Jaccard similarity measure [57] 

is defined as

where ‖M‖ =

�
s∑

i=1

m2
i
 and ‖N‖ =

�
s∑

i=1

n2
i
 are called the 

Euclidean norms of M and N , and the inner product of vec-
tors M and N is given by M.N =

s∑
i=1

mini.

The above-mentioned similarity measure satisfies the fol-
lowing properties:

J1. 0 ≤ JSM(M,N) ≤ 1

J2. JSM(M,N) = JSM(N,M)

J3. JSM(M,N) = 1 for M = N , i.e., mi = ni (i = 1, 2, ..., s) 
for every mi ∈ M and ni ∈ N

Definition 5   Between two vectors M =
(
m1,m2, ...,ms

)
 

and N =
(
n1, n2, ..., ns

)
 , the Dice similarity measure [58] is 

defined as

It satisfies the following properties:

D1. 0 ≤ DSM(M,N) ≤ 1

D2. DSM(M,N) = DSM(N,M)

D3. DSM(M,N) = 1 for M = N , i.e., mi = ni (i = 1, 2, ..., s) 
for every mi ∈ M and ni ∈ N

Definition 6   Between two vectors M =
(
m1,m2, ...,ms

)
 

and N =
(
n1, n2, ..., ns

)
 , the cosine similarity measure [59] 

is defined as

It satisfies the following properties:

C1. 0 ≤ CSM(M,N) ≤ 1

C2. CSM(M,N) = CSM(N,M)

(3)

JSM(M,N) =
M.N

‖M‖2 + ‖N‖2 −M.N
=

s∑
i=1

mini

s∑
i=1

m2
i
+

s∑
i=1

n2
i
−

s∑
i=1

mini

(4)DSM(M,N) =
2M.N

‖M‖2 + ‖N‖2
=

2
s∑

i=1

mini

s∑
i=1

m2
i
+

s∑
i=1

n2
i

(5)CSM(M,N) =
M.N

‖M‖.‖N‖ =

s∑
i=1

mini

�
s∑

i=1

m2
i
.

�
s∑

i=1

n2
i

C3. CSM(M,N) = 1 for M = N , i.e., mi = ni (i = 1, 2, ..., s) 
for every mi ∈ M and ni ∈ N

Remark 1  The common property that each of these simi-
larity measures hold is that they assume values within the 
unit interval [0, 1] . Jaccard and Dice SMs are undefined for 
both mi = 0 and ni = 0 , whereas cosine similarity measure is 
undefined for either mi = 0 or ni = 0 , for i = 1, 2, ..., s.

Definition 7   Between two vectors M =
(
m1,m2, ...,ms

)
 and 

N =
(
n1, n2, ..., ns

)
 , the variation coefficient similarity meas-

ure [56] is defined as

It satisfies the following properties:

V1. 0 ≤ VCF(M,N) ≤ 1

V2. VCF(M,N) = VCF(N,M)

V3. VCF(M,N) = 1 for M = N , i.e., mi = ni (i = 1, 2, ..., s) 
for every mi ∈ M and ni ∈ N

Some Weighted Vector Similarity Measures of SVNSs

In multiple-criteria decision making methods, criteria 
weights have a much larger influence on the outcomes 
yielded by a decision process and also on the ranking of 
alternatives. The reason being that it takes into account the 
relative importance of each criterion concerning the set of 
alternatives chosen. Consequently, any such process which 
does not consider the respective criteria weightage and sets 
identical weights of importance for them thus loses its logi-
cal importance. Thus, decision-makers from their best of 
knowledge try to allocate weights to each criterion involved 
in a decision process. Hereby, we list down three existing 
definitions of weighted vector SMs.

Suppose we consider two SVNSs P and Q in a three-
dimensional space defined by

P =
{⟨

TP
(
xi
)
, IP

(
xi
)
,FP

(
xi
)⟩

|xi ∈ U
}

 and Q =
{⟨

TQ(
xi
)
, IQ

(
xi
)
,FQ

(
xi
)⟩

|xi ∈ U
}
.

Then, we can define weighted vector similarity as follows:

Definition 8   Let U be a universe of discourse defined by 
U =

{
x1, x2, ..., xr

}
 , where P =

{⟨
TP

(
xi
)
, IP

(
xi
)
,FP

(
xi
)⟩

VCF(M,N) = �
2M.N

‖M‖2 + ‖N‖2
+ (1 − �)

M.N

‖M‖‖N‖

(6)

⇒ VCF(M,N) = �

2
s∑

i=1

mini

s∑
i=1

m2
i
+

s∑
i=1

n2
i
−

s∑
i=1

mini

+ (1 − �)

s∑
i=1

mini

�
s∑

i=1

m2
i

�
s∑

i=1

n2
i
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|xi ∈ U
}

 and Q =
{⟨

TQ
(
xi
)
, IQ

(
xi
)
,FQ

(
xi
)⟩

|xi ∈ U
}

 be 
two SVNSs.

Let wi ∈ [0, 1] be the weight of every element xi(i = 1,

2, ..., r) , so that 
r∑

i=1

wi = 1.

Then, the weighted Jaccard similarity measure [30] 
between P and Q is defined as

Definition 9   Let U be a universe of discourse defined by 
U =

{
x1, x2, ..., xr

}
 , where P =

{⟨
TP

(
xi
)
, IP

(
xi
)
,FP

(
xi
)⟩

|xi ∈ U
}

 and Q =
{⟨

TQ
(
xi
)
, IQ

(
xi
)
,FQ

(
xi
)⟩

|xi ∈ U
}

 be 
two SVNSs.

Let wi ∈ [0, 1] be the weight of every element xi(i = 1,

2, ..., r) , so that 
r∑

i=1

wi = 1.

Then, the weighted Dice similarity measure [30] between 
P and Q is defined as

Definition 10   Let U be a universe of discourse defined by 
U =

{
x1, x2, ..., xr

}
 , where P =

{⟨
TP

(
xi
)
, IP

(
xi
)
,FP

(
xi
)⟩

|xi ∈ U
}

 and Q =
{⟨

TQ
(
xi
)
, IQ

(
xi
)
,FQ

(
xi
)⟩

|xi ∈ U
}

 be 
two SVNSs.

Let wi ∈ [0, 1] be the weight of every element xi(i = 1,

2, ..., r) , so that 
r∑

i=1

wi = 1.

Then, the weighted cosine similarity measure [30] 
between P and Q is defined as

Remark 2   It is noteworthy that Eqs. (7), (8), and (9) satisfy

P1. 0 ≤ JWSM(P,Q) ≤ 1; 0 ≤ DWSM(P,Q) ≤ 1; 0 ≤ CWSM

(P,Q) ≤ 1

(7)
JWSM(P,Q) =

r�

i=1

wi

TP
�
xi
�
TQ

�
xi
�
+ IP

�
xi
�
IQ
�
xi
�
+ FP

�
xi
�
FQ

�
xi
�

⎡
⎢
⎢⎣

�
T2
P

�
xi
�
+ I2

P

�
xi
�
+ F2

P

�
xi
��

+

�
T2
Q

�
xi
�
+ I2

Q

�
xi
�
+ F2

Q

�
xi
��

−
�
TP

�
xi
�
TQ

�
xi
�
+ IP

�
xi
�
IQ
�
xi
�
+ FP

�
xi
�
FQ

�
xi
��
⎤
⎥
⎥⎦

(8)DWSM(P,Q) =

r∑

i=1

wi

2
(
TP

(
xi
)
TQ

(
xi
)
+ IP

(
xi
)
IQ
(
xi
)
+ FP

(
xi
)
FQ

(
xi
))

[(
T2
P

(
xi
)
+ I2

P

(
xi
)
+ F2

P

(
xi
))

+

(
T2
Q

(
xi
)
+ I2

Q

(
xi
)
+ F2

Q

(
xi
))]

(9)
CWSM(P,Q) =

r∑

i=1

wi

TP
(
xi
)
TQ

(
xi
)
+ IP

(
xi
)
IQ
(
xi
)
+ FP

(
xi
)
FQ

(
xi
)

[√(
T2
P

(
xi
)
+ I2

P

(
xi
)
+ F2

P

(
xi
))
.

√(
T2
Q

(
xi
)
+ I2

Q

(
xi
)
+ F2

Q

(
xi
))

]

P2. JWSM(P,Q) = JWSM(Q,P); DWSM(P,Q) = DWSM(Q,P);

CWSM(P,Q) = CWSM(Q,P)

P3. JWSM(P,Q) = 1; DWSM(P,Q) = 1; CWSM(P,Q) = 1 if 
and only if P = Q , which implies 

TP
(
xi
)
= TQ

(
xi
)
, IP

(
xi
)
= IQ

(
xi
)
, FP

(
xi
)
= FQ

(
xi
)
 , for 

every xi ∈ X (i = 1, 2, ..., r).

Remark 3  Now, JWSM(P,Q), DWSM(P,Q) for SVNSs 
P =

{⟨
TP

(
xi
)
, IP

(
xi
)
,FP

(
xi
)⟩

|xi ∈ U
}
 and Q =

{⟨
TQ

(
xi
)
,

IQ
(
xi
)
,FQ

(
xi
)⟩

|xi ∈ U
}
 , are undefined when P = ⟨0, 0, 0⟩ 

and Q = ⟨0, 0, 0⟩ ,  i .e . ,  for  TP = IP = FP = 0  and 
TQ = IQ = FQ = 0 given i = 1, 2, ..., r . On the other hand, 
CWSM(P,Q) is undefined for P = ⟨0, 0, 0⟩ or Q = ⟨0, 0, 0⟩ , 
i.e., when TP = IP = FP = 0 or TQ = IQ = FQ = 0 for 
i = 1, 2, ..., r.

Proposed Method

Based on the enormous potential of SVNSs which help raise 
the utility of cognitive decision-making process, we pro-
pose two weighted convex vector SMs (WCVSMs) which 
are dependent on the coefficient parameter. The SMs have 
arranged in such a way that their structure represents a con-
vex combination. The idea for such formulation came up as 
the vector SMs are empirically established to produce feasi-
ble and rational outcomes on their own, so there is nothing 

wrong with constructing a function out of those SMs. The 
sole intention is to serve the decision-making domain with 
efficient similarity measures which are capable of produc-
ing convincing outcomes by providing a global evaluation 
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framework for each alternative with respect to each criterion. 
Hence, the two proposed measures are listed below.

Definition 11  Let us consider U  be a universe of  
discourse defined by U =

{
x1, x2, ..., xr

}
 , where P = {⟨

TP
(
xi
)
, IP

(
xi
)
,FP

(
xi
)⟩

|xi ∈ U
}

 and Q =
{⟨

TQ
(
xi
)
, IQ(

xi
)
,FQ

(
xi
)⟩

|xi ∈ U
}
 are two SVNSs.

Also, let wi ∈ [0, 1] be the weight of every element 
xi(i = 1, 2, ..., r) , such that 

r∑
i=1

wi = 1.

Then the two weighted convex vector similarity measures 
between SVNSs are proposed as follows:

and

Our proposed measure(s) satisfy the following 
proposition,

Proposition 1   The two proposed weighted convex vector 
similarity measure (WCVSM) of SVNSs between P and Q 
satisfy the properties given below:

P1: 0 ≤ SJD
W
(P,Q) ≤ 1; 0 ≤ SJC

W
(P,Q) ≤ 1

(10)SJD
W
(P,Q) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

�
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�
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�
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�
xi
�
IQ
�
xi
�
+ FP

�
xi
�
FQ

�
xi
�

⎡
⎢
⎢⎣

�
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�
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�
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P
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xi
��
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�
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�
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Q

�
xi
�
+ F2

Q
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��

−
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�
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�
xi
�
+ IP

�
xi
�
IQ
�
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�
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�
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�
FQ

�
xi
��
⎤
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+ (1 − �)
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2
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�
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�
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�
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�
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�
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�
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�
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�
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�
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��

��
T2
P

�
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�
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P

�
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�
+ F2

P

�
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��

+

�
T2
Q

�
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�
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Q

�
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�
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Q

�
xi
���

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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(11)SJC
W
(P,Q) =

⎡
⎢
⎢
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⎢
⎢
⎢
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�
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�
xi
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P

�
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P
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Q

�
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�
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Q

�
xi
�
+ F2

Q

�
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��

−
�
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�
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�
TQ

�
xi
�
+ IP

�
xi
�
IQ
�
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�
+ FP

�
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�
FQ

�
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��
⎤
⎥
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+ (1 − �)
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�
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�
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�
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�
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�
IQ
�
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�
+ FP

�
xi
�
FQ

�
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�

���
T2
P

�
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�
+ I2

P

�
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�
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��
.

��
T2
Q

�
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�
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�
xi
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�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

P2. SJD
W
(P,Q) = SJD

W
(Q,P); SJC

W
(P,Q) = SJC

W
(Q,P)

P3. SJD
W
(P,Q) = 1; SJC

W
(P,Q) = 1 when P = Q , i.e.,

TP
(
xi
)
= TQ

(
xi
)
, IP

(
xi
)
= IQ

(
xi
)
, FP

(
xi
)
= FQ

(
xi
)
 , for 

every xi ∈ X (i = 1, 2, ..., r)

Proof:
(P1). From eqns. (7) and (8), we find that for Jaccard and 

Dice similarity measures of SVNSs, 0 ≤ JWSM(P,Q) ≤ 1 and 
0 ≤ DWSM(P,Q) ≤ 1 for all i = 1, 2, ..., r . Now, Eq. (10) can 
be written as follows,

Since, JWSM(P,Q) ≥ 0 and DWSM(P,Q) ≥ 0 , so does the 
WCVSM, SJD

W
(P,Q) ≥ 0 for all � ∈ [0, 1].

Thus, the first property is satisfied. Similarly, we can 
prove 0 ≤ SJC

W
(P,Q) ≤ 1.

(P2). From Eq. (10),

(12)
SJD
W
(P,Q) =�JW (P,Q) + (1 − �)DW (P,Q)

≤ � + (1 − �) = 1

1025Cognitive Computation (2021) 13:1019–1033



1 3

Similar results are also obtained from Eq.  (11), 
SJC
W
(P,Q) = SJC

W
(Q,P) , which proves the second property.

(P3). If TP
(
xi
)
= TQ

(
xi
)
, IP

(
xi
)
= IQ

(
xi
)
 and FP

(
xi
)

= FQ

(
xi
)
 , for i = 1, 2, ..., r , then the value of JWSM(P,Q) =

1, DWSM(P,Q) = 1 and CWSM(P,Q) = 1 . Therefore, from 
Eq. (10), the value of SJD

W
(P,Q) = 1 and SJC

W
(P,Q) = 1 . This 

concludes the proof.

Remark 4  Now for P =
{⟨

TP
(
xi
)
, IP

(
xi
)
,FP

(
xi
)⟩

|xi ∈ U
}
 

and Q =
{⟨

TQ
(
xi
)
, IQ

(
xi
)
,FQ

(
xi
)⟩

|xi ∈ U
}
 , the convex sim-

ilarity measure value is assumed to be zero for P = ⟨0, 0, 0⟩ 
and Q = ⟨0, 0, 0⟩.

MADM Based on Proposed Similarity 
Measure for SVNSs

We consider a multi-attribute decision-making problem with 
x set of alternatives and y set of attributes, where the values 
of the attributes are represented by SVNSs. Let 
A =

{
A1,A2, ...,Ax

}
 be a finite collection of alternatives and 

C =
{
C1,C2, ...,Cy

}
 be the finite collection of attributes. 

Also,  let  the  weight  vector  be  denoted by 
w =

(
w1,w2, ...,wy

)T corresponding to the set of attributes 
Cj(j = 1, 2, ..., y) such that 

y∑
j=1

wj = 1 and wj ≥ 0 . We denote 

the decision matrix by D =
(
sij
)
x×y

 , where the preference 
values of the alternatives Ai(i = 1, 2, ..., x) over the attribute 

SJD
W
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��
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= SJD
W
(Q,P)

set Cj(j = 1, 2, ..., y) are depicted by single valued neutro-
sophic element of the form sij =

⟨
Tij, Iij,Fij

⟩
 . Here, Tij indi-

cates the membership degree, Iij denotes the indeterminacy 
degree and Fij indicates the non-membership degree for the 
alternative Ai with respect to the attribute Cj . Thus, for 
i = 1, 2, ..., x; j = 1, 2, ..., y we have, 0 ≤ Tij + Iij + Fij ≤ 3 
and Tij ∈ [0, 1], Iij ∈ [0, 1], Fij ∈ [0, 1].

Let us consider that the alternative Ai(i = 1, 2, ..., x) takes 
single-valued neutrosophic values and has the following rep-
resentation, Ai =

(
si1, si2, ..., six

)
, for i = 1, 2, ..., x;

There are certain steps to follow while selecting the best 
alternative amongst a set of alternatives which are as follows,

Step 1   Determination of the ideal solution

It is a very common procedure in MADM to utilize the 
concept of an ideal alternative/solution. And, realizing a 
perfectly ideal solution in the real world is an abstract 
idea as there does not exist any such. However, in order to 
construct a useful theoretical framework and to carry out 
the mathematical calculations, we incorporate the concept 
of an ideal solution. It facilitates the set of alternatives 
under study to be ranked based on the degree of similarity 
(closeness) or non-similarity (farness) from the ideal solu-
tion. Thus, we need to determine the SVNS-based ideal 
solution.

(13)=
�
⟨Ti1, Ii1,Fi1⟩, ⟨Ti2, Ii2,Fi2⟩, ...,

�
Tiy, Iiy,Fiy

��
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Let Y  denote the entire collection of two types of attrib-
ute, which are namely profit/benefit type attribute ( B ) and 
the cost-type attribute ( L ). Then the ideal solution (IS), 

From Eqs.  (10) and (11), the WCVSMs between 
the ideal alternative A∗ and the alternative Ai for 
i = 1, 2, ..., x; � ∈ [0, 1] are given by

where the ideal solution A∗ takes respective forms accord-
ing to the nature of the attribute as depicted in Eqs. (14) 
and (15).

Step 3  We rank the alternatives.

The ranking of the alternatives could be easily deter-
mined according to the values obtained from Eqs.  (14) 
and (15). The decreasing order of the WCVSMs gives the 
required ranking or preference ordering of the alternatives.

Optimum Profit Determination by an Investment 
Company

We consider a multi-attribute decision making problem (adapted 
from Ye [7]), in which an investment company is interested in 
finding out the best suitable alternative amongst a set of four 
alternatives: (1) A1 is a computer company, (2) A2 is an arms 
company, (3)A3 is a car company, and (4) A4 is a food company. 
Three criteria(s) are taken into consideration by the investment 
company based on which alternatives are evaluated, which are 
(1) C1 is the environmental impact analysis, (2) C2 is the growth 
analysis, and (3) C3 is the risk factor analysis. The decision 
maker assesses the four possible alternatives with respect to the 

(16)SJD
W
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⎡
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Table 1   Decision matrix with single-valued neutrosophic entries

Criteria →/
Alternatives ↓

C
1

C
2

C
3

A
1

⟨0.5, 0.3, 0.2⟩ ⟨0.5, 0.2, 0.3⟩ ⟨0.3, 0.2, 0.3⟩
A
2

⟨0.4, 0.3, 0.2⟩ ⟨0.6, 0.1, 0.2⟩ ⟨0.7, 0.0, 0.1⟩
A
3

⟨0.2, 0.2, 0.5⟩ ⟨0.4, 0.2, 0.3⟩ ⟨0.4, 0.2, 0.3⟩
A
4

⟨0.5, 0.2, 0.2⟩ ⟨0.6, 0.1, 0.2⟩ ⟨0.6, 0.1, 0.2⟩

A∗ =
(
s∗
1
, s∗

2
, ..., s∗

x

)
 , is that solution of the decision matrix 

D =
(
sij
)
x×y

 which is defined as

and 

Step 2   We evaluate the WCVSM between the ideal alterna-
tive and each alternative.

(14)

(a) sj
∗ =

⟨
T∗
j
, I∗

j
, F∗

j

⟩
=

⟨
max

i

{
Tij
}
, min

i

{
Iij
}
, min

i

{
Fij

}⟩

for benefit − type attribute (B)

(15)

(b) s∗
j
=

⟨
T∗
j
, I∗

j
, F∗

j

⟩
=

⟨
max

i

{
Tij
}
, min

i

{
Iij
}
, min

i

{
Fij

}⟩

for cost − type attribute (L)
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attributes based on the SVNS values provided. The SVNS-based 
decision matrix D =

(
dij
)
4×3

 are presented in Table 1.
The weight vector is given by W =

{
w
1

,w
2

,w
3

}T
=

{0.40, 0.25, 0.35}
T such that

Step 1  Identification of the attribute-type.

Here, the attributes C2 and C3 are benefit-type attribute, 
while C1 is identified as cost-type attribute.

Step 2   Determination of the ideal solution (IS).

With the help of Eqs. (14) and (15), the ideal solution for 
the given decision matrix D =

(
dij
)
4×3

 can be determined as

Step 3  Evaluation of the weighted convex vector similarity 
measures.

We evaluate the weighted convex vector similarity measures 
with the help of the Eqs. (12–14), and the outcomes obtained 
for various values of � are presented in Tables 2 and 3.

Step 4  Ranking of the alternatives.

(18)
3∑

j=1

wj = 1

(19)A∗ =
�
⟨0.2, 0.3, 0.5⟩, ⟨0.6, 0.1, 0.2⟩, ⟨0.7, 0.0, 0.1⟩

�

Based on the outcomes obtained for different values of � 
as shown in Tables 2 and 3, the alternative A2 turns out to 
be the best suitable alternative.

Comparative Analysis

Here, we provide a comparison of the outputs obtained 
via our proposed convex vector similarity measures with 
some of the existing similarity measures on the illus-
trated MADM scenario. The comparison results along 
with their evaluated similarity values are depicted in 
Table 4. It is very obvious from Table 4 that our results 
for evaluation of the best alternative are in agreement 
with Ye’s vector similarity measure method [31], Ye’s 
improved cosine similarity measure [32], and hybrid 
vector similarity measure by Pramanik et al. [34], for 
SVNSs. Even the ranking order of the alternatives 
obtained with our proposed measures coincides exactly 
with that of Ye’s SMs ([31, 32]), whereas the alterna-
tives A3 and A4 , interchange their places under Pramanik 
et al.’s method.

Furthermore, the ranking order evaluated by subset-hood 
measure method [19], improved correlation coefficient [30] 
is demonstrated in Table 5. According to [19] and [30], 
the alternative A2 is the second-best choice amongst the 
set of alternatives, whereas it is the best choice according 
to previous studies [31, 32, 34], and our presented meas-
ures. Hence, the validity and feasibility of our measures is 
established.

Table 2   Different WCVSM 
values for different values of � 
for our first defined measure

Proposed measures Pairs of alternatives Best alter-
native

Ranking order

WCVSM value ( SWJD) (A∗
,A

1

) (A∗
,A

2

) (A∗
,A

3

) (A∗
,A

4

)

� = 0.15 0.7666 0.9172 0.8905 0.8875 A
2

A
2

> A
3

> A
4

> A
1

� = 0.30 0.7478 0.9093 0.8796 0.8771 A
2

� = 0.55 0.7163 0.8962 0.8615 0.8598 A
2

� = 0.80 0.6849 0.8831 0.8433 0.8425 A
2

� = 0.95 0.6661 0.8752 0.8324 0.8322 A
2

Table 3   Different WCVSMs 
values for different values of � 
for our second defined measure

Proposed measures Pairs of alternatives Best alter-
native

Ranking order

WCVSM value ( SWJC) (A∗
,A

1

) (A∗
,A

2

) (A∗
,A

3

) (A∗
,A

4

)

� = 0.15 0.7846 0.9198 0.9036 0.8780 A
2

A
2

> A
3

> A
4

> A
1

� = 0.30 0.7628 0.9115 0.8905 0.8692 A
2

� = 0.55 0.7263 0.8976 0.8687 0.8545 A
2

� = 0.80 0.6899 0.8838 0.8469 0.8399 A
2

� = 0.95 0.6681 0.8755 0.8339 0.8311 A
2
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Appropriate Mask Selection to Prevent COVID‑19 
Outbreak

The demand for face masks has seen an unprecedented 
spike as a result of the havoc and outrage caused by the 
COVID-19 pandemic. Several types of masks which are 
normally available in the market are, namely, disposable 
medical masks ( M1 ), normal non-medical masks ( M2 ), sur-
gical masks ( M3 ), gas masks ( M4 ), thick-layered medical 
protective masks ( M5 ), and N95 masks or particulate res-
pirators ( M6 ). People interested in buying an appropriate 
mask keep the following four attributes in mind, namely, 
high filtration capability ( A1 ), ability to re-utilize or re-use 
( A2 ), material texture or quality ( A3 ), and rate of leak-
age ( A4 ). The attribute values are determined based on the 
evaluation index provided by people for each type of mask 
and are presented via SVNSs as shown in Table 6.

Further, it is necessary to assign attribute weights to each 
attribute since different people have different respiratory 
conditions. For instance, a person having high respiratory 
complications will for obvious reasons put more weightage 
on the filtration capability attribute of the mask, to minimize 
the chances for transmission of COVID-19 disease.

Thus, instead of considering equal weights for the 
attributes A1,A2,A3 and A4 , we consider the weigh vector 
to be W = {0.6, 0.1, 0.1, 0.2} . We proceed in a step-wise 
manner which is illustrated below.

Step 1   Identification of the attribute-type.

Here, attributes A1, A2 , and A3 are of benefit-type, while 
A4 is a cost-type attribute.

Step 2   Determination of the ideal solution (IS).

The ideal solution M∗ =
(
M∗

1
,M∗

2
,M∗

3
,M∗

4

)
 is constructed 

using the formulae given below,
M∗

j
=

⟨
T∗
j
, I∗

j
,F∗

j

⟩
=

⟨
max

i

{
Tij
}
, min

i

{
Iij
}
, min

i

{
Fij

}⟩
 

for benefit-type attribute, and  M∗
j
=

⟨
T∗
j
, I∗

j
,F∗

j

⟩
=

⟨
min
i{

Tij
}
, max

i

{
Iij
}
, max

i

{
Fij

}⟩
 for cost-type attribute, and where  

i = 1, 2, ..., 6 ; j = 1, 2, 3, 4. Therefore, with the help of above 
two equations, the ideal solution for the given decision matrix 
R =

(
rij
)
6×4

 is evaluated as,

Table 4   Comparison of 
WCVSM for SVNSs with 
different SMs

Similarity measure method Measure value Ranking order

CW

(
A∗

,Ai

)
 [31] CW

(
A∗

,A
1

)
= 0.7689

A
2

> A
4

> A
3

> A
1

CW

(
A∗

,A
2

)
= 0.9281

CW

(
A∗

,A
3

)
= 0.8975

CW

(
A∗

,A
4

)
= 0.8979

Hybw
(
A∗

,Ai

)
 [34]

(� = 0.1)
Hybw

(
A∗

,A
1

)
= 0.7912

A
2

> A
3

> A
4

> A
1

Hybw
(
A∗

,A
2

)
= 0.9433

Hybw
(
A∗

,A
3

)
= 0.9036

Hybw
(
A∗

,A
4

)
= 0.9019

WSC
2

(
A∗

,Ai

)
 [32] WSC

2

(
A∗

,A
1

)
= 0.9401

A
2

> A
4

> A
3

> A
1

WSC
2

(
A∗

,A
2

)
= 0.9804

WSC
2

(
A∗

,A
3

)
= 0.9691

WSC
2

(
A∗

,A
4

)
= 0.9761

SW
JD
(
A∗

,Ai

)
 (Proposed) ( � = 0.1 5) SW

JD
(
A
∗
,A

1

)
= 0.7666

A
2

> A
3

> A
4

> A
1

SW
JD
(
A
∗
,A

2

)
= 0.9172

SW
JD
(
A
∗
,A

3

)
= 0.8905

SW
JD
(
A
∗
,A

4

)
= 0.8875

SW
JC
(
A∗

,Ai

)
 (Proposed) ( � = 0.1 5) SW

JC
(
A
∗
,A

1

)
= 0.7846

A
2

> A
3

> A
4

> A
1

SW
JC
(
A
∗
,A

2

)
= 0.9198

SW
JC
(
A
∗
,A

3

)
= 0.9036

SW
JC
(
A
∗
,A

4

)
= 0.8780

Table 5   Comparison of the ranking order by proposed method with 
other existing methods

Existing methods for MADM with SVNS Ranking order

Subset-hood measure method [19] A
4

> A
2

> A
1

> A
3

Improved correlation coefficient [30] A
4

> A
2

> A
1

> A
3

Pramanik et al. hybrid dice similarity measure 
[34]

A
2

> A
4

> A
1

> A
3

Proposed method A
2

> A
3

> A
4

> A
1
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Therefore, with the help of above two equations, the ideal solu-
tion for the given decision matrix R =

(
rij
)
6×4

 is evaluated as,

Step 3  Determining the weighted convex vector similarity 
measures.

By multiplication of the respective weight to each attribute, we 
obtain the weighted vector similarity measure values as,

By our first proposed measure SJD
W

(
M∗,Mi

)
,

For � = 0.1,

For � = 0.4,

(20)

M∗ =

�
⟨0.5542, 0.1823, 0.1800⟩, ⟨0.5320, 0.0234, 0.0493⟩,
⟨0.5893, 0.0816, 0.0727⟩, ⟨0.0202, 0.5163, 0.6491⟩

�

SJD
W

(
M∗,M1

)
= 0.4580, SJD

W

(
M∗,M2

)
= 0.5987,

SJD
W

(
M∗,M3

)
= 0.5759, SJD

W

(
M∗,M4

)
= 0.6775,

SJD
W

(
M∗,M5

)
= 0.6860, SJD

W

(
M∗,M6

)
= 0.8623

SJD
W

(
M∗,M1

)
= 0.4188, SJD

W

(
M∗,M2

)
= 0.5578,

SJD
W

(
M∗,M3

)
= 0.5319, SJD

W

(
M∗,M4

)
= 0.6449,

SJD
W

(
M∗,M5

)
= 0.6534, SJD

W

(
M∗,M6

)
= 0.8439

For � = 0.8,

By our first proposed measure SJC
W

(
M∗,Mi

)
,

For � = 0.1,

For � = 0.4,

For � = 0.8,

SJD
W

(
M∗,M1

)
= 0.3664, SJD

W

(
M∗,M2

)
= 0.5032,

SJD
W

(
M∗,M3

)
= 0.4731, SJD

W

(
M∗,M4

)
= 0.6015,

SJD
W

(
M∗,M5

)
= 0.6100, SJD

W

(
M∗,M6

)
= 0.8193

SJC
W

(
M∗,M1

)
= 0.4652, SJC

W

(
M∗,M2

)
= 0.6295,

SJC
W

(
M∗,M3

)
= 0.5912, SJC

W

(
M∗,M4

)
= 0.8520,

SJC
W

(
M∗,M5

)
= 0.7149, SJC

W

(
M∗,M6

)
= 0.8756

SJC
W

(
M∗,M1

)
= 0.4235, SJC

W

(
M∗,M2

)
= 0.5783,

SJC
W

(
M∗,M3

)
= 0.5421, SJC

W

(
M∗,M4

)
= 0.7613,

SJC
W

(
M∗,M5

)
= 0.6727, SJC

W

(
M∗,M6

)
= 0.8528

SJD
W

(
M∗,M1

)
= 0.3680, SJD

W

(
M∗,M2

)
= 0.5100,

SJD
W

(
M∗,M3

)
= 0.4765, SJD

W

(
M∗,M4

)
= 0.6403,

SJD
W

(
M∗,M5

)
= 0.6164, SJD

W

(
M∗,M6

)
= 0.8223

Table 6   Decision matrix R =
(
rij
)
6×4

 , for different mask types and their attribute values in terms of SVNSs

Attributes → mask 
types ↓

A
1

A
2

A
3

A
4

M
1

⟨0.0698, 0.5731, 0.4246⟩ ⟨0.5320, 0.0234, 0.0493⟩ ⟨0.0813, 0.2139, 0.3334⟩ ⟨0.6213, 0.0910, 0.0740⟩
M

2

⟨0.0634, 0.4217, 0.4429⟩ ⟨0.1246, 0.1930, 0.2222⟩ ⟨0.2216, 0.0816, 0.0727⟩ ⟨0.1891, 0.5163, 0.6491⟩
M

3

⟨0.0810, 0.4070, 0.3996⟩ ⟨0.3116, 0.4218, 0.4119⟩ ⟨0.0836, 0.4890, 0.4514⟩ ⟨0.0912, 0.3914, 0.3823⟩
M

4

⟨0.3716, 0.3716, 0.3017⟩ ⟨0.1136, 0.0886, 0.0914⟩ ⟨0.1969, 0.1471, 0.1524⟩ ⟨0.0202, 0.0742, 0.0781⟩
M

5

⟨0.3821, 0.4061, 0.4063⟩ ⟨0.3052, 0.5353, 0.5249⟩ ⟨0.5893, 0.2041, 0.1981⟩ ⟨0.3013, 0.0926, 0.0717⟩
M

6

⟨0.5542, 0.1823, 0.1800⟩ ⟨0.1919, 0.3228, 0.3617⟩ ⟨0.3816, 0.3014, 0.2961⟩ ⟨0.2918, 0.3814, 0.2223⟩

Table 7   Similarity values 
obtained for different mask 
types under different methods

SM methods Similarity values between pairs of masks Best mask Worst mask
(
M∗

,M
1

) (
M∗

,M
2

) (
M∗

,M
3

) (
M∗

,M
4

) (
M∗

,M
5

) (
M∗

,M
6

)

JVSM [30] 0.3402 0.4759 0.4438 0.5798 0.5883 0.8071 M
6

M
1

DVSM [30] 0.4711 0.6124 0.5906 0.6883 0.6969 0.8684 M
6

M
1

CVSM [30] 0.4791 0.6466 0.6076 0.8823 0.7290 0.8833 M
6

M
1

HybW [34]
(� = 0.25)

0.4771 0.6380 0.6034 0.8338 0.7210 0.8795 M
6

M
1

SJD
W
(� = 0.1) 0.4580 0.5987 0.5759 0.6775 0.6860 0.8623 M

6

M
1

SJD
W
(� = 0.4) 0.4188 0.5578 0.5319 0.6449 0.6534 0.8439 M

6

M
1

SJD
W
(� = 0.8) 0.3664 0.5032 0.4731 0.6015 0.6100 0.8193 M

6

M
1

SJD
W
(� = 0.1) 0.4652 0.6295 0.5912 0.8520 0.7149 0.8756 M

6

M
1

SJD
W
(� = 0.4) 0.4235 0.5783 0.5421 0.7613 0.6727 0.8528 M

6

M
1

SJD
W
(� = 0.8) 0.3680 0.5100 0.4765 0.6403 0.6164 0.8223 M

6

M
1
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Moreover, the similarity measure results obtained under 
various existing measures are also presented in Table 7.

Step 4 Ranking of the masks.
Based on the highest similarity measure value obtained 

between the set of masks and the ideal solution (mask), 
we find that M6 (N95-mask) is the appropriate mask or the  
best buying option to help minimize the transmission rate  
of the COVID-19 pandemic.

It is evident from Table 7 that our evaluation for the 
best suitable mask coincides with the outcomes obtained 
with other similarity measures as well. This demonstrates 
the credibility and validity of our newly proposed similar-
ity measures.

Computational‑time Analysis

Based on conclusive evidence obtained from experimental 
data and owing to their “simple” and “easy-to compute” 
structure, the vector SMs are found to be very much effective. 
This implies that the calculations involved consume a sub-
stantially less amount of time which provided the decision-
makers with the surplus advantage of time.

It is noteworthy that since our newly constructed measures 
are devised with the help of the Jaccard, Dice, and cosine 
vector SMs, so the computation time is much smaller in our 
case too. However, the only difference is that the time taken 
for our calculations is twice that when vector SMs are con-
sidered alone. But even then, a very miniature amount of time 
is spent, and adopting powerful software like MATLAB for 
calculation purposes, just eases our load and provides instant 
results in the blink of an eye. For obvious reasons, that addi-
tional amount of time taken via our constructed measures is 
compensated by the accurate and efficient results evaluated.

The main advantage of our proposed measures over the 
existing methods in the literature is the fact that they can 
not only accommodate the SVN environment, but they can 
also capture the indeterminate information supplied by the 
decision-makers, automatically.

Importance of the Study

NSs are developed from a philosophical point of view and as a 
generalization to many sets like classical set, fuzzy set, intuition-
istic fuzzy set, interval-valued fuzzy set, interval-valued intui-
tionistic fuzzy set, tautological set, paradoxist set, dialetheist set, 
and paraconsistent set. But, due to their scarce real-scientific 
and engineering applications, a particular subclass of NSs was 
developed known as SVNSs. SVNSs have the unique ability 
to imitate the ambiguous nature of subjective judgments pro-
vided by the decision-makers and are suitable for dealing with 
uncertain, imprecise, and indeterminate information which are 
prevalent in multiple-criteria decision analysis. Thus, SVNSs 
provide a significant and powerful mathematical framework and 

have recently become one of the research hotspots for research-
ers from all over the globe. In our study, we investigate and 
propose certain similarity measures for SVNSs since the concept 
of similarity has a big influence on MADM problems. It is to 
be noted that elements that are regarded as similar are viewed 
from different perspectives of parameters like closeness, prox-
imity, resemblances, distances, and dissimilarities. Moreover, in 
decision-making problems, human beings as decision-makers 
scrutinize several criteria before making a final decision. So, 
considering the relative importance of weights becomes a neces-
sity. Most often, the weights are considered in such a way that 
their sum is equal to one. While comparing two objects, we nor-
mally are interested in knowing whether the objects are identical 
or partially (approximately) identical or at least identical to what 
degree. This instinct compels us to investigate and address some 
desirable properties about the form of similarity measures for 
SVNSs under consideration.

Conclusion

Decision making in humans can be described as a cognitive pro-
cess that mainly focuses on the data which is given as input and 
on the cognitive capabilities of people. By cognitive capabili-
ties, we mean the ability by which we know how the available 
information is further processed. Unlike machines which pro-
cess the given information in a binary form, whereas humans do 
not think similarly. Rather people’s opinions can be expressed/
measured on a specific evaluation scale. Mostly the fluctuations 
or deviations observed in decision making problems are due 
to behavioral biases among people, which are deviations from 
rational standards while processing arguments. Further, few 
other factors like time factor, overestimation of negative com-
ments, perception differences among people regarding positive, 
and negative information also contribute towards irrational deci-
sions being made. Often people make such non-rational deci-
sions in the process of trying to avoid losses. Therefore, proper 
knowledge of psychology is required to understand how people 
choose between different courses of action. Hence, we can say 
that a significant target of cognitive psychology is to elaborate 
the mental state-of-art processes that define human behavior.

In the same vein, the similarity measure concept is one of 
the prime concepts in human cognition. The role of similar-
ity measures is so crucial in decision-making domain that 
it has diverse applications in the field of machine learn-
ing, taxonomy, case-based reasoning, recognition, ecology, 
physical anthropology, automatic classification, psychology, 
citation analysis, information retrieval, and many more. In 
this regard, one of the efficient and significant tools for the 
measurement of similarity between two objects is the vec-
tor SMs. Jaccard, Dice, and cosine SMs are the ones that 
are mostly sought for. But each element of the universe has 
some inherent weight associated with them, so to provide 
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an order of importance among the elements, we opt for 
weighted vector SMs over the non-weighted vector SMs. 
Hence, in this article, we have proposed two weighted con-
vex vector SMs for SVNSs. SVNSs being a subclass of 
NSs are considered here, due to their efficiency in tackling 
imprecise, incomplete, and inconsistent information. They 
provide the decision-makers with an additional probability 
to capture the indeterminate information which normally 
exists in almost all real-world phenomena. Thereafter, a 
MADM method is discussed in detail using the proposed 
weighted vector SMs. Furthermore, numerical illustrations 
are provided for validation and feasibility of the presented 
approach. Moreover, in light of the recent pandemic situa-
tion which the whole world is facing due to the COVID-19 
outbreak, our proposed measures have addressed the task of 
proper selection of antivirus masks for people by represent-
ing the problem in the context of a MADM scenario. Thus, 
our newly constructed measures are capable of producing 
intuitive results and their veracity is established when com-
pared with the existing measures. Consequently, the out-
comes are found to be in logical agreement.

In the future research direction, we shall try our best to 
seek potential multifarious applications of our proposed 
measures in various other related decision-making problems 
of pattern recognition, medical diagnosis, clustering analy-
sis, data mining, and supply management. Consequently, 
some other kinds of fuzzy sets like hesitant fuzzy sets and 
picture fuzzy sets could be explored to see the probable 
applications of our presented measures in their respective 
setting. Although, it is observed that MCDM methods often 
had some similarities with respect to their configuration and 
usage, in today’s vibrant world the process of decision mak-
ing is much more dynamic and demanding when carried out 
in groups. Therefore, our newly constructed measures will 
be extended to problems of group decision making. Includ-
ing cognitive aspects have great advantages in group deci-
sion making problems by coming up with decisions having 
improved satisfaction degree and higher quality of decisions. 
Some of those advantages include sharing the physical and 
mental workload, training inexperienced members of the 
group, and improving the quality of decisions. Moreover, 
we also plan to tackle consensus issues in group decision 
making problems as the MCDM framework allows us to do 
so. It enables the decision makers to reach a consensus by 
sharing information via the construction of a solid frame-
work of social cognition problems.
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