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Performing a genome-wide association study (GWAS) with a binary phenotype

using family data is a challenging task. Using linear mixed effects models is typically

unsuitable for binary traits, and numerical approximations of the likelihood function

may not work well with rare genetic variants with small counts. Additionally,

imbalance in the case-control ratios poses challenges as traditional statistical

methods such as the Score test or Wald test perform poorly in this setting. In

the last couple of years, several methods have been proposed to better

approximate the likelihood function of a mixed effects logistic regression model

that uses Saddle Point Approximation (SPA). SPA adjustment has recently been

implemented in multiple software, including GENESIS, SAIGE, REGENIE and

fastGWA-GLMM: four increasingly popular tools to perform GWAS of binary

traits. We compare Score and SPA tests using real family data to evaluate

computational efficiency and the agreement of the results. Additionally, we

compare various ways to adjust for family relatedness, such as sparse and full

genetic relationship matrices (GRM) and polygenic effect estimates. We use the

New England Centenarian Study imputed genotype data and the Long Life Family

Study whole-genome sequencing data and the binary phenotype of human

extreme longevity to compare the agreement of the results and tools’

computational performance. The evaluation suggests that REGENIE might not

be a good choicewhen analyzing correlated data of a small size. fastGWA-GLMM is

the most computationally efficient compared to the other three tools, but it

appears to be overly conservative when applied to family-based data. GENESIS,

SAIGE and fastGWA-GLMM produced similar, although not identical, results, with

SPA adjustment performing better than Score tests. Our evaluation also
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demonstrates the importance of adjusting by full GRM in highly correlated datasets

when using GENESIS or SAIGE.
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GLMM

Introduction

Mixed effects regressionmodels are popular statistical models to

analyze correlated data with multiple sources of variance, and their

use in analyzing genome-wide association studies (GWAS) has

increased, despite the computational challenges that they pose.

To reduce the computational burden of mixed effects models,

Chen et al. (Chen et al., 2016) proposed using a score test for

testing the association between single nucleotide polymorphisms

(SNP) and a binary trait in a GWAS. The score test uses the slope of

the log-likelihood function evaluated under the null hypothesis for

testing. The calculation of the score test requires fitting a single

mixed effects model under the null hypothesis of no association.

Thismodel is the same for each variant across the genome and needs

to be calculated only once. Testing the specific effect of a SNP

requires weighting the residuals of this “null model” by the

genotypes of each individual SNP. Fitting the “null model”

requires to approximate the likelihood function using an iterative

procedure, and Chen et al. proposed an approach based on the

penalized quasi-likelihood method that is described in details in (H.

Chen et al., 2016). This approach is implemented as the default

choice for analysis of binary traits in the GENetic EStimation and

Inference in Structured samples (GENESIS) R package (Gogarten

et al., 2019). An advantage of the score test in comparison to the

Wald and Likelihood ratio tests is that it does not require computing

the maximum likelihood estimate for the genetic effect which could

be computationally expensive for large datasets.

Recently, Zhou et al. proposed to apply the saddle point

approximation (SPA) (Dey et al., 2017) to the score test in the

GWAS setting (Zhou et al., 2018). In their paper, the authors noted

that the normal approximation of the score test statistic becomes less

accurate with increasing imbalance of cases and controls and with

decreasing minor allele counts. While the normal approximation

performs well near the mean of the distribution of the score test

statistic, it performs very poorly at the tails and may lead to

inaccurate p-values. The SPA method approximates the score test

statistic by using the entire cumulant-generating function, rather

than the first two moments (mean and variance) used with the

normal approximation. The SPA adjustment has become very

popular, and there are several programs that implement it,

including the GENESIS R package, Scalable and Accurate

Implementation of GEneralized mixed model (SAIGE) (Zhou

et al., 2018), REGENIE (Mbatchou et al., 2021), and fastGWA-

GLMM (Jiang et al., 2021). Another important challenge is how to

adjust for the relatedness in family-based studies when using mixed-

effects model. A popular approach that has replaced the use of the

kinshipmatrix based on pedigree information is to use the estimated

genetic relationship matrix (GRM), either sparse or full. The

advantage of using the GRM is to leverage the genome-wide

genotype data to estimate the kinship coefficients, rather than

relying on reported familial relations (Wang & Thompson,

2019). GENESIS and SAIGE both have options to use either

sparse or full GRMs. fastGWA-GLMM only has an option to

adjust by a sparse GRM, and REGENIE uses the polygenic effect

estimates to control for population and family structure.

A few studies compared statistical properties of these and

other tools. For example, the work by Chen et al. (Chen et al.,

2021) used simulated correlated data to assess Type I error

rates and power of various implementations, while the works

by Jiang et al. (Jiang et al., 2021) and Mbatchou et al.

(Mbatchou et al., 2021) used biobank-scale datasets of

unrelated individuals and simulated data with a small

degree of relatedness. In this paper, we focus attention on

assessing the agreement of the results as well as the efficiency

of the implementations of a selection of tools using real

correlated data. We compare implementations of the SPA

to the score tests and the use of full versus sparse GRMs versus

the polygenic effect estimates in GWASs of extreme longevity

(EL) using imputed genotype data and whole-genome

sequencing (WGS) data.

Materials and methods

Genetic data

New England Centenarian Study (NECS): This is a study of

centenarians, with some family members and controls without

parental longevity (Sebastiani & Perls, 2012). DNA collected in a

subset of the participants was genotyped using Illumina SNP arrays

and augmented with a selection of genome-wide genotype data from

controls enrolled in various studies that were matched by genetic

ethnicity (Sebastiani et al., 2012). Genome-wide genotype data of

these subjects were imputed to theHaplotype Reference Consortium

panel (version r1.1 2016) of 64,940 haplotypes with 39,635,008 sites

using the Michigan Imputation Server as described in (Gurinovich

et al., 2021). For the evaluation conducted in this work, we used the

same case-control study of EL that we analyzed in Gurinovich et al.

(Gurinovich et al., 2021) in which 1317 EL cases were individuals

who survived beyond an age reached by less than 1% of individuals

in their sex and birth-year cohort (males: 96 years for 1900, 97 years

for 1910, 98 years for 1920; females: 100 years) based on the
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United States social security administration cohort tables (Bell &

Miller, 2005), and 3,508 controls were genetically matched

individuals without parental longevity.

Long Life Family Study (LLFS): This is a family-based study

of longevity that enrolled 4,981 family members from

552 families selected for familial longevity between 2006 and

2009 (Wojczynski et al., 2022). DNA collected in a 3,681 subset of

the participants were sequenced by the McDonnell Genome

Institute (MGI) at Washington University in St. Louis via

150bp reads by Illumina Sequencers. Reads were aligned to

build GRCh38 with BWA-MEM, marking duplicates with

Picard, base quality score recalibration with Genome Analysis

Toolkit (GATK), and lossless conversion to CRAM format with

SAMtools. Variant calling was performed at the LLFS Data

Coordinating Center, Division of Statistical Genomics at

Washington University in St. Louis, using GATK4.1.0.0. GATK

HaplotypeCaller was used to call variants from the CRAM files and

create subject-level GVCF files. Next, these files were combined

using GATK CombineGVCFs, and jointly-called using GATK

GenotypeGVCFs. Finally, diallelic SNPs were extracted using

GATK SelectVariants. QC steps included elimination of samples

with insufficient haploid coverage and Mendelian inconsistencies,

missing or monomorphic variants, excess heterozygosity (HETZ >
.55 or p HETZ p< 1E-6) and call rate <0.9. For the evaluation

conducted in this work, we identified 377 EL cases and

787 controls. EL cases were defined as in the NECS based on

survival beyond an age reached by less than 1% of individuals in

their sex and birth-year cohort.

GWAS tools

Overall GWAS of EL set-up. The GWAS analyses were set up to

account for relatedness in the datausingmixed effects logistic regression.

All the models were adjusted by sex and the first four genome-wide

principal components (PCs). SNPs with minor allele count (MAC) <
3 in either cases or controls were removed from all the analyses.

This threshold was adapted from the recent recommendation of

including only SNPs with MAC > 5 (M. H. Chen et al., 2021).

GENESIS. To run the GWAS of EL with GENESIS, we used

the nf-gwas-pipeline (https://github.com/montilab/nf-gwas-

pipeline) (Song et al., 2021). GENESIS uses the genetic

relationship matrix (GRM) to account for known and unknown

relatedness in the data, and provides options to use the full and

sparse GRMs. The pipeline consists of the following steps:

1. Files in theVCF format are converted to theGDS format which is

defined by SeqArray (Zheng et al., 2017).

2. The snpgdsIBDKING() function from the SNPRelate R

package (Manichaikul et al., 2010) is used to calculate the

kinship matrix which is used in the next step.

3. The GENESIS functions pcair() (Conomos et al., 2015) and

pcrelate() (Conomos et al., 2016) are used to calculate the

genome-wide principal components and the GRM with the

kinship threshold set to .2−11/2.This is the default value in the

pcair() function, and it is used for declaring each pair of

individuals as related or unrelated. A pre-defined subset of

about 80,000 SNPs not in linkage disequilibrium (LD) was

used for this step. This list of SNPs was derived by first

excluding the SNPs in the two regions of high LD (MHC

region on chromosome 6 and region of inversion

polymorphism on chromosome 8) followed by iterative

pruning of the genotype data to only keep independent SNPs.

The SNP lists used in both, NECS and LLFS data can be found

here: https://github.com/montilab/nf-gwas-pipeline/tree/master/

data (NECS_plink_list.csv and LLFS_plink_list.csv files).

4. The null model is fit using only the fixed-effect covariates (sex

and PCs) and the random effects are estimated. This step is

conducted using the fitNullModel() function from the R package

GENESIS.

5. Single-variant association tests are performed on the SNP data

using either the Score or SPA-Score tests. This step uses the

output from step 4 and assocTestSingle() function from the R

package GENESIS. Note that the SPA adjustment is only applied

to the SNPs whose p-values are less than 0.05 from the Score test.

6. Results are summarized via graphical displays (Manhattan

and QQ plots) and SNPs are annotated using ANNOVAR

(Wang et al., 2010).

The following versions of the software were used in these runs of

the pipeline: R 4.1.1, GENESIS R package version 2.22.2, vcftools

0.1.16, bcftools 1.10.2, plink 2.00a1LM, annovar 2018apr, pandoc 2.5.

SAIGE. We used SAIGE version 1.0.5 (which at the time of

the download was last updated on 1 April2,022) with R version

4.1.2 (2021-11-01). SAIGE assumes that the genome-wide

principal components are provided as input. We used the

same PCs that were calculated and used by the nf-gwas-

pipeline. The SAIGE analysis consists of two steps:

1. Fit the null logistic mixed model to estimate the model

parameters under the null hypothesis of no association

including the GRM using step1_fitNULLGLMM.R script

(https://saigegit.github.io//SAIGE-doc/docs/single_step1.

html). For this step, we used the same lists of SNPs that

were used in GENESIS functions pcair() and pcrelate().

2. Perform single SNP association tests using the

step2_SPAtests.R script (https://saigegit.github.io//

SAIGE-doc/docs/single_step2.html).

There is an additional step when using a sparse GRM in the

SAIGE analysis. If a sparse GRM is specified, it needs to be

calculated before step 1 above, which can be done using the

createSparseGRM.R script (https://saigegit.github.io//SAIGE-

doc/docs/createSparseGRM.html). In this case, unlike for the
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full GRM, the GRM does not need to be estimated in step 1 above.

All scripts are provided by the developers of the package and can

be installed using the instructions provided at the URL: https://

saigegit.github.io//SAIGE-doc/docs/Installation.html. The scripts

require specifying a series of input parameters. Supplementary

Table S1 includes the complete list of input arguments to step1_

fitNULLGLMM.R script. Supplementary Table S2 includes the

complete list of input arguments to step2_SPAtests.R script.

Supplementary Table S3 includes the complete list of input

arguments to createSparseGRM.R script. The input arguments

are essentially the same for the analysis of imputed dosages and

WGS data, except for the vcfField argument. Some of the

arguments in the Supplementary Tables 1 and 2 are required

for using gene-based tests and are not used in the single-variant

analysis, but are included in the supplement tables for the sake of

reproducibility. One thing to note about SAIGE is that dropping

samples with missing genotypes/dosages is not supported in the

current version, so SAIGE imputes them as the best guessed.

REGENIE. REGENIE is a C++ program to perform a fast

GWAS (Mbatchou et al., 2021). We used REGENIE version

3.1.1 in this analysis, and the same PCs were used as with

GENESIS and SAIGE. The REGENIE analysis consists of two steps:

1. Fit the whole-genome regression model to the

phenotype using a subset of SNPs to estimate a

fraction of the phenotype variance. For this step, we

used the same lists of SNPs that were used in GENESIS

and SAIGE.

2. Perform single SNP association tests using a Firth logistic

regression model conditional on the prediction from the

model generated in step 1. For this step, we used Firth

likelihood ratio test and SPA as fallback for

p-values < 0.05

REGENIE can be downloaded from its GitHub page: https://

github.com/rgcgithub/regenie and the documentation on how to

use can be found here: https://rgcgithub.github.io/regenie/. One

aspect to note about REGENIE is that it works with genotypes

only, so the imputed dosages are converted to hard-call

genotypes before association testing.

fastGWA-GLMM. fastGWA-GLMM is a tool that was

recently implemented to run a fast and efficient GWAS (Jiang

et al., 2021). It is a part of the GCTA software suit (Yang

et al., 2011). We used GCTA version 1.94.0 beta. We used the

TABLE 1 Metrics to compare GWAS methods.

Metric Description

Genomic inflation factor The median of the observed chi-squared test statistics divided by the expected median of the corresponding chi-squared
distribution

Agreement of the ranks of SNPs based on p-values Test whether the rankings of the results are significantly different using twomeasures of rank correlation (Spearman’s Rho,
Kendall’s Tau). The rank correlation coefficients were computed by setting different significance thresholds. (GENESIS
and SAIGE only)

Agreement of the score statistics Visual comparison, descriptive statistics (GENESIS, SAIGE and fastGWA-GLMM only)

Agreement of the effect estimates Visual comparison, descriptive statistics

Computational resources CPU time taken to calculate GRM matrices, run the null model and the per-chromosome association tests in the same
computational environment

TABLE 2 Correlations of the ranks of the p-values for NECS imputed genotype data.

p-value
threshold

Number
of SNPs

GENESIS SPA
full GRM vs.
GENESIS
score
full GRM

GENESIS SPA
full GRM vs.
GENESIS SPA
sparse GRM

SAIGE full
GRM vs.
SAIGE
sparse GRM

GENESIS SPA
full GRM vs.
SAIGE
full GRM

GENESIS SPA
sparse GRM
vs. SAIGE
sparse GRM

Rho Tau Rho Tau Rho Tau Rho Tau Rho Tau

5.00E-03 86,107 0.997 0.972 0.928 0.774 0.923 0.765 0.98 0.883 0.981 0.891

5.00E-04 13,054 0.983 0.935 0.92 0.763 0.912 0.747 0.975 0.871 0.98 0.892

5.00E-05 2,409 0.967 0.916 0.898 0.747 0.881 0.722 0.979 0.884 0.974 0.881

5.00E-06 609 0.976 0.936 0.946 0.822 0.949 0.828 0.984 0.909 0.983 0.917

5.00E-07 269 0.983 0.949 0.941 0.831 0.952 0.844 0.987 0.922 0.984 0.933

5.00E-08 100 0.984 0.952 0.917 0.817 0.937 0.831 0.991 0.952 0.985 0.941

Rho, Spearman’s Rho; Tau, Kendall’s Tau.
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FIGURE 1
Manhattan and QQ plots of -log10(p-values) for the associations using imputed genotype data in the New England Centenarian Study (NECS)
data. Panel (A): associations based on the score test and adjusted for the full genetic relation matrix (GRM) using GENESIS. Panel (B): associations
based on the SPA and adjusted for the full GRM using GENESIS. Panel (C): associations based on the SPA and adjusted for the sparse GRM using
GENESIS. Panel (D): associations based on the SPA and adjusted for the full GRM using SAIGE. Panel (E): associations based on the SPA and
adjusted for the sparse GRM using SAIGE. Panel (F): associations based on the SPA and polygenic effect estimates to control for relatedness using
REGENIE. Panel (G): associations based on the SPA and adjusted for the sparse GRM using fastGWA-GLMM. Lambda is a genomic inflation factor.
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FIGURE 2
Manhattan and QQ plots of -log10(p-values) for the associations using WGS data in the Long Life Family Study (LLFS) data. Panel (A):
associations based on the score test and adjusted for the full genetic relation matrix (GRM) using GENESIS. Panel (B): associations based on the SPA
and adjusted for the full GRM using GENESIS. Panel (C): associations based on the SPA and adjusted for the sparse GRM using GENESIS. Panel (D):
associations based on the SPA and adjusted for the full GRM using SAIGE. Panel (E): associations based on the SPA and adjusted for the sparse
GRM using SAIGE. Panel (F): associations based on the SPA and polygenic effect estimates to control for relatedness using REGENIE. Panel (G):
associations based on the SPA and adjusted for the sparse GRM using fastGWA-GLMM. Lambda is a genomic inflation factor.
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FIGURE 3
Pairwise comparison plots of–log10(p values) for the associations using imputed genotype data in theNECSdata. Panel (A): comparison of the associations
based on the SPA and adjusted for the full genetic relationmatrix (GRM) using GENESIS on the X axis versus associations based on the score test and adjusted for
the full GRMusing GENESIS on the Y axis. Panel (B): comparison of the associations based on the SPA and adjusted for the full GRM using GENESIS on the X axis
versus associations based on the SPA and adjusted for the sparseGRMusing GENESIS on the Y axis. Panel (C): comparison of the associations based on the
SPAandadjusted for the full GRMusingSAIGEon theX axis versus associationsbasedon theSPAandadjusted for the sparseGRMusing SAIGEon theY axis. Panel
(D): comparisonof theassociationsbasedon theSPAandadjusted for the fullGRMusingGENESISon theXaxis versus associationsbasedon theSPAandadjusted
for the full GRMusing SAIGE on the Y axis. Panel (E): comparison of the associations based on the SPA and adjusted for the sparseGRMusing SAIGEon the X axis
versus associationsbasedon theSPAandadjusted for the sparseGRMusingGENESISon theYaxis. Panel (F): comparisonof theassociationsbasedon theSPAand
adjusted for the sparse GRM using GENESIS on the X axis versus associations based on the score test and adjusted for the full GRM using GENESIS on the Y axis.
Panel (G): comparison of the associations based on the SPA and adjusted for the full GRMusing GENESIS on the X axis versus associations based on the SPA and
polygenic effect estimates to control for relatedness usingREGENIEon theY axis. Panel (H): comparisonof the associations basedon theSPAand adjusted for the
full GRM using SAIGE on the X axis versus associations based on the SPA and polygenic effect estimates to control for relatedness using REGENIE on the Y axis.
Panel (I): comparisonof the associationsbasedon the SPA and adjusted for the full GRMusing fastGWA-GLMMon the X axis versus associations basedon the SPA
and adjusted for the full GRM using GENESIS on the Y axis. Panel (J): comparison of the associations based on the SPA and adjusted for the full GRM using
fastGWA-GLMM on the X axis versus associations based on the SPA and adjusted for the sparse GRM using GENESIS on the Y axis. Panel (K): comparison of the
associations based on the SPA and adjusted for the full GRM using fastGWA-GLMM on the X axis versus associations based on the SPA and adjusted for the full
GRMusingSAIGEon theYaxis. Panel (L): comparisonof theassociationsbasedon theSPAandadjusted for the fullGRMusing fastGWA-GLMMontheXaxis versus
associationsbasedon theSPAandadjusted for thesparseGRMusingSAIGEon theYaxis. Panel (M): comparisonof theassociationsbasedon theSPAandadjusted
for the fullGRMusing fastGWA-GLMMon theXaxis versus associationsbasedon theSPAandpolygenic effect estimates tocontrol for relatednessusingREGENIE
on the Y axis.
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FIGURE 4
Pairwise comparison plots of –log10(pvalues) for the associations using WGS data in the LLFS data. Panel (A): comparison of the associations
based on the SPA and adjusted for the full genetic relation matrix (GRM) using GENESIS on the X axis versus associations based on the score test and
adjusted for the full GRM using GENESIS on the Y axis. Panel (B): comparison of the associations based on the SPA and adjusted for the full GRM using
GENESIS on the X axis versus associations based on the SPA and adjusted for the sparse GRMusingGENESIS on the Y axis. Panel (C): comparison
of the associations based on the SPA and adjusted for the full GRM using SAIGE on the X axis versus associations based on the SPA and adjusted for
the sparse GRM using SAIGE on the Y axis. Panel (D): comparison of the associations based on the SPA and adjusted for the full GRM using GENESIS
on the X axis versus associations based on the SPA and adjusted for the full GRM using SAIGE on the Y axis. Panel (E): comparison of the associations
based on the SPA and adjusted for the sparse GRM using SAIGE on the X axis versus associations based on the SPA and adjusted for the sparse GRM
using GENESIS on the Y axis. Panel (F): comparison of the associations based on the SPA and adjusted for the sparse GRMusing GENESIS on the X axis
versus associations based on the score test and adjusted for the full GRM using GENESIS on the Y axis. Panel (G): comparison of the associations
based on the SPA and adjusted for the full GRM using GENESIS on the X axis versus associations based on the SPA and polygenic effect estimates to
control for relatedness using REGENIE on the Y axis. Panel (H): comparison of the associations based on the SPA and adjusted for the full GRM using
SAIGE on the X axis versus associations based on the SPA and polygenic effect estimates to control for relatedness using REGENIE on the Y axis. Panel
(I): comparison of the associations based on the SPA and adjusted for the full GRM using fastGWA-GLMM on the X axis versus associations based on
the SPA and adjusted for the full GRMusingGENESIS on the Y axis. Panel (J): comparison of the associations based on the SPA and adjusted for the full
GRM using fastGWA-GLMM on the X axis versus associations based on the SPA and adjusted for the sparse GRM using GENESIS on the Y axis. Panel
(K): comparison of the associations based on the SPA and adjusted for the full GRM using fastGWA-GLMMon the X axis versus associations based on
the SPA and adjusted for the full GRM using SAIGE on the Y axis. Panel (L): comparison of the associations based on the SPA and adjusted for the full
GRM using fastGWA-GLMM on the X axis versus associations based on the SPA and adjusted for the sparse GRM using SAIGE on the Y axis. Panel (M):
comparison of the associations based on the SPA and adjusted for the full GRM using fastGWA-GLMM on the X axis versus associations based on the
SPA and polygenic effect estimates to control for relatedness using REGENIE on the Y axis.
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same set of PCs as were used by all the other evaluated tools.

fastGWA-GLMM consists of three steps:

1. Estimate full GRM (the full GRM cannot be used with the

fastGWA-GLMM in the step 2 below) and generate sparse

GRM from the full GRM at a cut-off value of 0.05. For this

step, we used the same lists of SNPs that were used in all

the other evaluated tools.

2. Estimate the variance component using fastGWA-B-REML

algorithm (Jiang et al., 2021).

3. Perform single SNP association tests using the fastGWA-

GLMM algorithm and the output from step 2.

The documentation for fastGWA-GLMM is available at

https://yanglab.westlake.edu.cn/software/gcta/index.

html#fastGWA-GLMM.

Computational environment

All the analyses were performed using the Boston University

Shared Computing Cluster. The platform is x86_64-pc-linux-

gnu (64-bit) and the core operating system is CentOS Linux 7.

The following resources were requested while submitting every

script: a whole node was requested with 16 cores and at least

128 GB of RAM (-pe omp 16); a node that has at least 16GB of

memory per core (-mem_per_core=16G) was used.

Evaluation metrics

We report and compare results returned by SAIGE,

GENESIS, fastGWA-GLMM and REGENIE using several

metrics summarized in Table 1.

Results

The results below are based on the 7,730,151 SNPs in the NECS

imputed genotype data and 9,416,403 SNPs in the LLFS WGS data

with MAC > 3 in either cases or controls in both datasets. We chose

to use the MAC filter for both cases and controls instead of overall

MAC filter as suggested in some studies (Zhou et al., 2018) (M. H.

Chen et al., 2021), because we noticed that for some of the SNPs with

MAC = 0 in either cases and controls, the SPA adjustment inflates

the p-values and creates artifact significant results. This is only true

for the SPA adjustment, and not for the Score test without the

adjustment (Supplementary Figure S1).

Individual GWAS results, specifically Manhattan and QQ

plots, for all the tools are presented in Figures 1, 2 for NECS

imputed genotype and LLFS WGS data respectively. Genomic

inflation factors for each of the results can also be found in

Figures 1, 2. SNPs that achieved genome-wide level of

significance (p-value < 5 × 10–8) are presented in

Supplementary Tables S4, S5. They replicate previous findings

from the analyses that used the same or similar datasets

(Sebastiani et al., 2017) (Gurinovich et al., 2021).

Figure 3 and Figure 4, panel A confirm that using the SPA

adjustment to the p-values from the score test makes the level of

statistical significance more conservative, as shown by smaller

−log10(p-values) , although the magnitude of the correction varies

with the degree of relatedness in the data. Using a sparse rather than

a full GRM generally appears to inflate the statistical significance of

the results based on the genomic inflation factors when applied to

the data with a small degree of relatedness (NECS imputed genotype

data) (Figure 1, panels C, E and G). When applied to family-based

data (LLFSWGS data), GENESIS produced very similar results with

either full or sparse GRMs (Figure 2, panels B and C), while SAIGE

appears to produce more inflated p-values with sparse GRM as

compared to the full GRM (Figure 2, panels E and D). REGENIE

and fastGWA-GLMM produce rather conservative results with the

LLFS WGS data (Figure 2, panels F and G). Overall, the results

TABLE 3 Correlations of the ranks of the p-values for LLFS WGS data.

p-value
threshold

Number
of SNPs

GENESIS SPA
full GRM vs.
GENESIS
score
full GRM

GENESIS SPA
full GRM vs.
GENESIS SPA
sparse GRM

SAIGE full
GRM vs.
SAIGE
sparse GRM

GENESIS SPA
full GRM vs.
SAIGE
full GRM

GENESIS SPA
sparse GRM
vs. SAIGE
sparse GRM

Rho Tau Rho Tau Rho Tau Rho Tau Rho Tau

5.00E-02 581,460 1 0.991 0.996 0.949 0.966 0.856 0.969 0.863 0.94 0.797

5.00E-03 68,524 0.996 0.958 0.995 0.94 0.912 0.771 0.954 0.83 0.877 0.707

5.00E-04 7,757 0.987 0.926 0.994 0.933 0.873 0.726 0.944 0.808 0.834 0.654

5.00E-05 840 0.986 0.917 0.994 0.938 0.791 0.637 0.949 0.816 0.767 0.589

5.00E-06 103 0.976 0.906 0.994 0.944 0.897 0.787 0.949 0.821 0.854 0.696

Rho, Spearman’s Rho; Tau, Kendall’s Tau.
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TABLE 4 Computation time used by GENESIS, SAIGE and REGENIE.

Imputed dosages WGS

GENESIS
score

GENESIS
SPA full /
sparse

SAIGE full /
sparse

REGENIE fastGWA-
GLMM

GENESIS
score

GENESIS SPA
full / sparse

SAIGE full /
sparse

SAIGE full
plink

REGENIE fastGWA-
GLMM

GRM calculations 1 h36 m32 s 1 h36 m32 s /
1 h35 m53 s

- / 0 h01 m38 s - 0 h01 m50 s 2 h48 m36 s 2 h48 m36 s /
2 h48 m08 s

- / 0 h01 m04 s - - 0 h00 m12 s

Null model (and GRM
calculations for SAIGE full
GRM only)

0 h02 m57 s 0 h02 m56 s /
0 h00 m01 s

0 h20 m49 s /
0 h00 m10 s

0 h10 m06 s 0h 00m 04 s 0 h00 m13 s 0 h00 m06 s /
0 h00 m01 s

0 h04 m46 s /
0 h00 m04 s

0 h04 m46 s 0 h03 m18 s 0 h00 m02 s

Association tests chr1 1 h09 m40 s 1 h26 m58 s /
0 h41 m43 s

1 h00 m27 s /
1 h22 m59 s

0 h33 m02 s 0 h00 m59 s 0 h21 m05 s 0 h23 m46 s /
0 h20 m21 s

1 h12 m35 s /
1 h23 m42 s

0 h11 m19 s 0 h47 m56 s 0 h02 m00 s

Association tests chr21 0 h12 m59 s 0h16m09s /
0h06m22s

0 h13 m38 s /
0 h18 m23 s

0 h04 m34 s 0 h00 m10 s 0 h03 m00 s 0 h03 m22 s /
0 h03 m03 s

0 h16 m54 s /
0 h18 m34 s

0 h01 m06 s 0 h08 m00 s 0 h00 m21 s

Total time 3 h02 m08 s 3 h22 m35 s /
2 h23 m59 s

1 h34 m54 s /
1 h43 m10 s

0 h47 m42 s 0 h03 m03 s 3 h12 m54 s 3 h15 m50 s /
3 h11 m33 s

1 h34 m15 s /
1 h43 m24 s

0 h17 m11 s 0 h59 m14 s 0 h02 m35 s

GENESIS: Full and sparse GRM calculations are always done as a separate step. GDS file format is used as input for all the GWASs with GENESIS.

SAIGE: For the GWASs with full GRM, GRM calculation and null model fitting are combined in one step. For the GWASs with sparse GRM, the GRM is calculated in a separate step before fitting a null model. PLINK bed/bim/fam file format is used as input

to GRM calculations and Null model steps for all the GWASs with SAIGE. SAIGE full / sparse GWASs use VCF file format as input for Association tests steps. SAIGE full plink GWAS uses PLINK bed/bim/fam file format as input for Association tests steps.

REGENIE: Null model step as referred to in here is fitting the whole-genome regression model to the phenotype in REGENIE GWASs. PLINK bed/bim/fam file format is used as input for both GWASs with REGENIE.

fastGWA-GLMM: Null model step as referred to in here is the estimation of variance component in fastGWA-GLMM. PLINK bed/bim/fam file format is used as input for both GWASs with fastGWA-GLMM.
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produced with GENESIS and SAIGE seem to be very similar when

they both use the full GRM. The high similarity of the results is also

confirmed by the descriptive statistics of the score function and effect

estimates in Supplementary Table S6.

Pairwise comparison of the p-values for individual SNPs

association with EL are presented in Figures 3, 4 for the NECS

imputed genotype data and the LLFS WGS data respectively.

These plots show that the SPA adjustment to the score test

reduces the most extreme p-values (Figures 3, 4, panel A), and

using the full GRM produces a more conservative correction of

the p-values compared to using a sparse GRM in GENESIS and

SAIGE in NECS imputed genotype data (Figure 3, panels B, C, F

and K). The results of the SPA adjustment to the score tests with full

GRM inGENESIS and SAIGE are very similar (Figures 3 and 4, panel

D) but, when using a sparse GRM, SAIGE results appear to be less

conservative than those produced by GENESIS (Figure 3 and Figure

4, panel E). Compared to GENESIS and SAIGE with full GRM,

REGENIE appears to produce slightly more conservative p-values in

NECS imputed genotype data (Figure 3, panels G and H) and

substantially more conservative p-values in LLFS WGS data

(Figure 4, panels G and H). Combined with the QQ-plot in

Figure 2, panel F, the comparison suggests that REGENIE may

over-correct p-values in family-based data. Finally, using a full

GRM in SAIGE and GENESIS induces a more conservative

correction of p-values compared to fastGWA-GLMM (Figure 3,

panels I an K), but using a sparse GRM in SAIGE and GENESIS

induces a less conservative correction of p-values compared to

fastGWA-GLMM (Figure 3, panels J and L). Interestingly, with

LLFS family-based data, fastGWA-GLMM produces substantially

more conservative p-values than SAIGE and GENESIS with either

sparse or full GRMs (Figure 4, panels I, J, K and L, panels). Combined

with the QQ-plot in Figure 2, panel G, the comparison suggests that

also fastGWA-GLMM may over-correct p-values in family-based

data with possible loss of power.

To evaluate the similarity of the ranks of SNPs based on the

extreme p-values in more details, we selected nested sets of SNPs with

different levels of significance. In the GWAS with the NECS imputed

genotype data, we used the following p-value thresholds: 5 × 10−3, 5 ×

10−4, 5 × 10−5, 5 × 10−6, 5 × 10−7, and 5 × 10−8 (Table 2). In the GWAS

with LLFSWGS data, we used the following p-value thresholds: 0.05,

5 × 10−3, 5 × 10−4, 5 × 10−5, and 5 × 10−6 (Table 3). The plots

comparing the p-values of different methods and corresponding

correlation coefficients can be found in Supplementary Figures S2,

S3. Overall, the rank correlation coefficients were very high in both

comparisons in both data sets. In the analysis of WGS data, inflation

of test statistics was more evident in SAIGE with sparse GRM.

Compared to the GENESIS SPA with sparse GRM, this inflation

was also observed. No inflation was observed when comparing

GENESIS SPA with full vs. sparse GRM. In the analysis of

imputed genotype data, inflation of test statistics was observed for

bothmethods using the sparseGRM.However, themethods using the

same type of GRM (either full in both or sparse in both) produced

very consistent results.

There was no difference in the Score function values, and effect

estimates between GENESIS Score and SPA tests as expected, as

the SPA adjustments should be applied on the p-values only. There

was a slight variation between GENESIS SPA and SAIGE’s Score

function values, and a larger variation at the extremes of the Score

function values calculated using the full and sparse GRMs in both

GENESIS and SAIGE, but overall the results were very similar

(Supplementary Figures S4, S5). There is a rather large and

unexpected variation between GENESIS, SAIGE, fastGWA-

GLMM and REGENIE in the effect estimates, but overall they

were comparable (Supplementary Figures S6, S7).

Computational resources, such as CPU time, required by the

whole nf-gwas-pipeline and SAIGE’s and REGENIE’s two steps are

not directly comparable. Compared to SAIGE, REGENIE and

fastGWA-GLMM, the nf-gwas-pipeline includes the additional

step of calculating the genome-wide principal components.

SAIGE, REGENIE and fastGWA-GLMM do not compute the

principal components, but the user needs to provide them as input.

We used principal components calculated using GENESIS as input

to SAIGE, REGENIE and fastGWA-GLMM. Moreover, the four

tools can take as input genetic data in different formats: GENESIS

requires the GDS file format, SAIGE can use PLINK bed/bim/fam,

VCF, BGEN, or SAV file formats, and REGENIE and fastGWA-

GLMM can use the BGEN or PLINK (bed/bim/fam or pgen/pvar/

psam) file formats. Conversion between various genetic data

formats can be time consuming, and reading different data

formats can take significantly different time which is not part

of the actual GWAS analysis. We had our genetic data sets

available in three file formats: GDS, PLINK bed/bim/fam, and

VCF. It is possible that using other supported file formats (BGEN

or SAVE for SAIGE and BGEN or PLINK pgen/pva/psam for

REGENIE and fastGWA-GLMM) would take less or more time

due to difference in times that it takes to read in different data files.

We calculated the CPU time taken by GENESIS for the GRM

calculation, the null model fitting and the association tests for

chromosomes 1 and 21 using the GDS files as input. We also

calculated the CPU time taken by SAIGE for the GRM calculation

and the fitting of null model using PLINK bed/bim/fam files as

input, and the association tests for chromosome 1 and 21 using the

VCF files as input. We used VCF files as input to SAIGE because

imputed genotype data includes dosages, and using PLINK bed/

bim/fam file formats rounds the dosages to hard-call genotypes,

and thus, loses on precision. We conducted an additional run of

SAIGE using PLINK bed/bim/fam file format as input to all the

steps using the WGS data to be able to compare it better with

REGENIE and fastGWA-GLMM to remove the time difference of

reading PLINK bed/bim/fam versus VCF file formats. We used

PLINK bed/bim/fam file format as input to REGENIE and

fastGWA-GLMM. Table 4 summarizes the times it took to run

different steps and the overall time for all four tools. The CPU time

of GENESIS SPA with full GRMwas on average 1.06 fold the CPU

time of GENESIS Score test with full GRM, and 1.19 fold the CPU

time of GENESIS SPA with sparse GRM. The CPU time of SAIGE
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with sparse GRMwas on average 1.09 fold the CPU time of SAIGE

with full GRM. The CPU time of GENESIS SPA with full GRM

was on average 2.11 fold SAIGE with full GRM, and the CPU time

of GENESIS SPA with sparse GRM was on average 1.62 fold

SAIGE with sparse GRM. The CPU time of SAIGE with full GRM

using the PLINK bed/bim/fam file format was 0.18 fold the CPU

time of SAIGE with full GRM using the VCF file format, and

0.29 fold the CPU time of REGENIE. FastGWA-GLMMwasmuch

faster than all the other tools: its CPU time ranged from 0.06 fold

the CPU time of REGENIE to 0.16 fold the CPU time of SAIGE

with full GRM using PLINK bed/bim/fam file format.

Discussion

We conducted a comparison of the implementation of the

SPA of the score tests in GENESIS and SAIGE, and different

ways to adjust for family relatedness using full or sparse GRMs

as implemented in GENESIS, SAIGE and fast-GWA-GLMM, or

polygenic effect estimates as implemented in REGENIE, using

two real data sets with imputed dosages and WGS data. The

comparisons suggest that GENESIS Score and SPA tests, SAIGE

and fastGWA-GLMM produce comparable results, although

there are some numerical differences. The SPA correction

appears to reduce the statistical significance of SNP

associations with the most extreme p-values. It has been

shown from simulation studies that the Score test leads to

inflated type 1 error rates for unbalanced case-control ratios at

the genome-wide significance level, while type 1 error rates

were well-controlled for the SPA method (Dey et al., 2017).

Since thresholds for genome-wide significance are

unambiguously adopted in GWAS, the use of SAIGE,

GENESIS, and fastGWA-GLMM could produce inconsistent

results for those associations with p-values close to genome-

wide levels of significance. In addition, the difference between

estimates that are derived from score function values have

larger variability than the score function values themselves

and should be interpreted with caution. Additionally, the

comparison of using full versus sparse GRMs in both

GENESIS SPA test and SAIGE also demonstrated the

reduction of the inflation of significant results, but using a

sparse GRM may not be effective with family-based data.

FastGWA-GLMM appears to be more conservative than

GENESIS and SAIGE with both sparse and full GRMs when

used with the family-based data. This is an interesting

observation, and requires more investigation, since, to the

best of our knowledge, fastGWA-GLMM has not been

evaluated with the family-based data before, and only with a

simulated data with a small degree of relatedness (Jiang et al.,

2021). The developers of REGENIE notice that the tool might

produce too conservative results and might not be the best

option to use on small data with highly correlated observations

(Mbatchou et al., 2021). Our evaluation supports this

observation and shows that the GWAS results can be too

conservative especially in data sets with large families.

All four tools are extremely efficient; however, when

comparing the same set of steps without accounting for the

calculation of the genome-wide principal components and the

generation and conversion of different file sets, fastGWA-

GLMM is a clear winner and the fastest of all. The concern

with fastGWA-GLMM is that, when applied to datasets with

large number of related individuals, it appears to be very

conservative.

In this work we focused on the efficiency and agreement of

Score and SPA tests and various adjustments for relatedness as

implemented by four popular tools: GENESIS, SAIGE, REGENIE

and fastGWA-GLMM. A comprehensive assessment of the SPA

to the score test was conducted in (Chen et al., 2021) using

simulated data. The recommendation of the authors was that the

SPA to the score test works well with a MAC > 5, although the

developers of SAIGE recommend MAC > 20. We observed that,

while it is important to use filters on very rare SNPs, in the

analysis of binary phenotypes it is very important to use MAC

filter in both cases and controls rather than an overall MAC filter,

because having SNPs that are monomorphic in either cases or

controls can introduce errors, and the inflation of p-values for

these SNPs when using the SPA adjustment. Overall, our

evaluation suggests that REGENIE and fastGWA-GLMM are

overly conservative when used on small highly correlated

datasets. SAIGE and GENESIS produce similar, but not

equivalent, results, with SPA adjustment of the Score test and

full GRM. Both tools perform well in small real correlated data,

although SAIGE is more computationally efficient than

GENESIS. fastGWA-GLMM is very fast and appears to work

well in the datasets with a small number of related individuals.

This observation is consistent with the conclusion in (Jiang et al.,

2021). Advantage of the nf-gwas-pipeline, that uses GENESIS, is

that, unlike SAIGE, REGENIE and fastGWA-GLMM, it also has

an option to infer PCs and incorporate additional models, such as

GMMAT, add SNP annotations and produce comprehensive

reports (Song et al., 2021). However, it is not a specific advantage

of GENESIS, but rather of other R packages that are part of the

nf-gwas-pipeline.
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