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Sequences of action potentials, or spikes, carry information in the
number of spikes and their timing. Spike timing codes are criti-
cal in many sensory systems, but there is now growing evidence
that millisecond-scale changes in timing also carry information
in motor brain regions, descending decision-making circuits, and
individual motor units. Across all of the many signals that control
a behavior, how ubiquitous, consistent, and coordinated are spike
timing codes? Assessing these open questions ideally involves
recording across the whole motor program with spike-level reso-
lution. To do this, we took advantage of the relatively few motor
units controlling the wings of a hawk moth, Manduca sexta. We
simultaneously recorded nearly every action potential from all
major wing muscles and the resulting forces in tethered flight.
We found that timing encodes more information about turning
behavior than spike count in every motor unit, even though there
is sufficient variation in count alone. Flight muscles vary broadly in
function as well as in the number and timing of spikes. Nonethe-
less, each muscle with multiple spikes consistently blends spike
timing and count information in a 3:1 ratio. Coding strategies are
consistent. Finally, we assess the coordination of muscles using
pairwise redundancy measured through interaction information.
Surprisingly, not only are all muscle pairs coordinated, but all coor-
dination is accomplished almost exclusively through spike timing,
not spike count. Spike timing codes are ubiquitous, consistent,
and essential for coordination.

motor control | flight | information theory | spike timing | temporal code

Neurons convey information through not only the number
of spikes but also their timing (1–4). In sensory systems,

both changes in the number of spikes over time and precise,
millisecond-level shifts in sequences of spikes are well estab-
lished as essential encoding mechanisms for proprioception (5),
audition (6), vision (1, 7–9), touch (10), and other modalities
(7, 11, 12). Spike timing codes have been shown to be of par-
ticular importance in sensory systems (1, 8), and patterns of
multiple spikes can convey more information about a stimu-
lus than the sum of the individual timings (13). In vertebrate
motor systems, rate codes, where muscle force is proportional
to the firing rate of the motor neuron, are thought to pre-
dominate, in part due to recruitment principles of many motor
units and the presumed low-pass nature of muscles (14–17).
Although vertebrate muscle force may be modulated by spike
rate under isometric conditions (15), precisely timed patterns of
spikes affect the output force of muscle (18). Similarly, in inver-
tebrates, rate codes can adjust force development in muscles,
but the absolute number of spikes (spike count code) also mat-
ters (19, 20). The onset time of a single spike or burst is also
known to play a functional role for the control of invertebrate
muscle (21–24).

Recent evidence in invertebrates and vertebrates shows that
spike timing codes may be underappreciated for controlling
motor behaviors, at least in specific muscles or motor circuits

(4). Spike timing codes in which information is encoded in the
precise timing patterns of neural or muscular action potentials
have an even higher capacity to code for the output of muscles
than rate or count (4, 13, 18). Such codes are found in a song-
bird cortical area for vocalization (25) and in mouse cerebellum
for task error correction (26). Correlational, causal, and mech-
anistic studies show that millisecond-level changes in timing of
spikes in motor neurons can manifest profound changes in force
production (27) and even behavior selection (28). Causal evi-
dence in support of spike timing codes is present in fast behaviors
like invertebrate flight (27), but also in relatively slow behaviors
like breathing in birds (18). However, evidence for the impor-
tance of spike timing codes in motor systems has been limited to
only a few of the motor signals that typically control movement.
Whether such timing codes are utilized broadly across a com-
plete motor program for behavior is unknown, as is their role
in coordinating multiple motor units. Despite growing appreci-
ation of the potential for motor timing codes, we have not yet
established the ubiquity, consistency, and coordination of spik-
ing timing across the motor signals that compose a behavior. This
poses 3 hypotheses.

First, timing codes may be restricted to only a few motor
signals that control behavior. For example, recordings of mus-
cles in locusts, hawk moths, and fruit flies have shown that
spike timing and count variation are prevalent in specific
motor units (21, 22, 29). Alternatively, timing codes may be
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ubiquitous—widespread across the entire motor program and
present in all muscles controlling a behavior.

Regardless of the prevalence of timing codes, motor neurons
within the population may exhibit specialized encoding strate-
gies, varying the amount of information transmitted through
spike timing or spike count depending on the function of the
muscles they innervate. For example, Drosophila use combina-
tions of functionally distinct phasic and tonic motor units to
control flight (23). Additionally, evidence in some sensory sys-
tems shows that separate classes of neurons use either spike rate
or spike timing to convey information (30). Alternatively, the
entire motor program may be consistent in its use of spike timing
for encoding.

Finally, coordination of multiple motor signals is typically
assessed through covariation in firing rates. For example, motor
coordination patterns across muscles [e.g. muscle synergies (31)]
and population recordings of M1 neurons in motor cortex (32)
all consider how populations of units encode movement through

spike rate. Alternatively, spike timing codes may play a role in
the coordination of muscles in motor systems. Resolving these
hypotheses about the role of spike timing in motor control is
challenging because they consider encoding strategies across an
entire motor program. It is therefore necessary to record from
a spike-resolved, comprehensive set of signals that control a
behavior simultaneously in a consistent behavioral context.

Recording such a comprehensive motor program is difficult
due to the requirements of completeness, sufficient temporal res-
olution, and sampling rich variation in a naturalistic behavior.
Obtaining a nearly complete motor program is more tractable in
the peripheral nervous system than in central regions, because of
smaller neuronal population sizes. While many muscles or motor
units have been simultaneously recorded using electromyog-
raphy (EMG) in frogs (33), cats (31), and humans (34) and
using calcium imaging in the wing steering muscles of fruit
flies (23), these sets of neural signals are not spike-resolved.
Large flying insects are feasible organisms in which to record a
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Fig. 1. EMGs from 10 flight muscles and simultaneous yaw torque. (A) A hawk moth, M. sexta, in flight, with a simplified 3D sketch of the 5 bilateral
pairs of muscles from a ventrolateral view: dorsolongitudinal, DLM (blue); dorsoventral, DVM (green); third axillary, 3AX (orange); basalar, BA (yellow); and
subalar, SA (purple). Muscles on the left and right sides of the animal are distinguished with an L or an R throughout the text (e.g., L3AX). (B) Hawk moths
were presented a robotic flower oscillating with a 1-Hz sinusoidal trajectory while tethered to a custom 6-axis F/T transducer (N = 7 moths; 999 to 2,954
wing strokes per moth; average per moth = 1,950 wing strokes). (C) EMG and yaw torque (black) from 0.5 s of flight. (D) A histogram averaged across all
moths of the raw yaw torque during shortened wing strokes z-scored (mean centered and scaled such that SD = 1) in each individual moth. The PCA was
not done on z-scored data, and z scoring was only used here to make the scale of distributions comparable across moths. (E) Spike sorting was accomplished
using threshold crossing (e.g., black line) in Offline Sorter (Plexon). Spike count is the number of spikes in each wing stroke, and spike timing is the precise
spike time relative to the start of each wing stroke. (F) The first 2 PCs of the yaw torque waveforms captured most of the variance (mean, in black; ±SEM,
in gray; N = 7 moths). (G) Projection of yaw torque onto the first 2 PCs for each wing stroke from a moth (w = 2,739 wing strokes) in PC space (arbitrary
units, au). The joint histogram of the distribution is represented in a 10 × 10 grid between −5 and 5 using isoclines from the contour function in MATLAB
(MathWorks). (H) Joint histogram of the scores of PC1 and the timing of the first RDVM spike in wing strokes in an example moth.
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spike-resolved, comprehensive motor program, because all mus-
cles actuating the wings are in the thorax and there are relatively
few muscles compared to many segmented limbs. Moreover,
flight muscles frequently function as single motor units because
they are generally innervated by one, or very few, fast-type
motor neurons with a 1:1 relationship between muscle and neural
potentials (35, 36). A large number of spike-resolved motor units
has been simultaneously recorded in locusts (37) and a smaller
number simultaneously in flies and moths (38–40), although
explicit analysis of encoding in count and timing has not been
done in these systems. Invertebrate muscles have distinct count
(number of spikes) and rate codes that do not have interchange-
able effects on muscle force (19), but both of these are distinct
from spike timing coding. Faster invertebrate muscles fire fewer
times per cycle but can still show rate coding during and across
wing strokes (29).

We take advantage of these features to capture a spike-
resolved, comprehensive motor program in a hawk moth,
Manduca sexta, and investigate the importance of spike timings
in a nearly complete population code for movement. We exam-
ine how turning torque in every wing stroke is encoded by spike
count (the number of spikes per wing stroke) and spike timing
(the precise timing patterns of all spikes within each wing stroke)
for each of the 10 muscles most important for controlling the
wings (SI Appendix) (21, 41–43). This nearly complete motor pro-
gram enables us to address 3 questions of ubiquity, consistency,
and coordination in timing and count codes across this motor
system.

Results
Temporal Information Is Ubiquitous in the Motor Program. We
recorded a comprehensive motor program with spike-level res-
olution across all of the primary muscles actuating the wings in
a hawk moth (M. sexta, N = 7) (Fig. 1A). The hawk moth mus-
culature has been examined in detail anatomically and through
in vivo and in vitro recordings (summarized in SI Appendix).
Based on this rich literature, we identified 5 bilateral pairs of
muscles that have important roles in controlling the wings dur-
ing flight (SI Appendix, Fig. S1). We recorded EMG signals
from these muscles while moths visually tracked a robotic flower
in tethered, smooth pursuit flight (27, 44). We simultaneously
recorded within-wing stroke yaw torque using a custom cali-
brated force–torque (FT) transducer (ATI Nano17Ti) (Fig. 1 B
and C). The visual stimulus caused moths to generate variation
in yaw torque (Fig. 1D). We segmented the EMG and torque
data into wing strokes. We defined the onset time of each wing
stroke as the zero phase crossing of the Hilbert transform of
the moth’s force in the z direction (45). The Hilbert transform
estimates the instantaneous phase of a periodic signal. Here the
zero phase crossing roughly corresponded to the peak downward
force produced during each wing stroke. We treated each wing
stroke as an independent sample of the muscle spikes and the
yaw torque.

For the EMG data, we specified a time window relative to the
onset of the wing stroke separately for each muscle to encompass
the entire burst of spikes in all wing strokes. We computed the
spike count (number of spikes per wing stroke) or the spike tim-
ing (precise spike times relative to the start of each wing stroke)
for the 10 muscles (Fig. 1E). Because the wing stroke period var-
ied a small amount (mean± SD: 45.3± 3.8 ms across all moths),
we shortened the yaw torque signal to the length of the short-
est wing stroke for each moth. We also repeated our analyses
with a phase code (timing normalized to wingstroke period) and
obtained consistent results. We then found a lower-dimensional
representation of the yaw torque using principal components
analysis (PCA). The first 2 principal components (PCs) explained
most of the variance (78.0 ± 10.6%) in yaw torque (Fig. 1F),
so we represent the within-wing stroke yaw torque using the

projection onto these first 2 PCs (the first 2 PC “scores”). The
oscillating visual stimulus elicited variation in the moths’ motor
output and spiking activity (Fig. 1 G and H). The projection of
yaw torque onto the first 2 PCs varies systematically with left and
right turns and with straight flight (low asymmetry in yaw torque)
in the middle decile (Fig. 2).

Both the spike count and the timing of spikes within the wing
stroke show modulation along with the motor output (Fig. 3A).
To test the contribution of spike timing encoding in individual
muscles, we estimated the mutual information between muscle
activity and yaw torque using the Kraskov k -nearest neighbors
method, which is data-efficient and useful for experiments where
sampling is finite and measured variables are continuous (46, 47).
Unlike a direct method estimator, this method estimates mutual
information between 2 variables (X and Y ) using Euclidean dis-
tances between each sample (wing stroke) and its k th nearest
neighbor in the space spanning the 2 variables of interest (for
us, a representation of spiking activity and torque). The joint
probability distribution of the distances and the number of sam-
ples within a neighborhood defined by these distances is used to
estimate the joint entropy H (X ,Y ) and the mutual information
I (X ,Y ) (SI Appendix, SI Methods).

A

B

Fig. 2. Reconstructions using the first 2 PCs of yaw torque capture the main
features of the raw torque waveforms. (A) Histogram of the scores of PC1
in an individual moth. The lowest decile (0 to 10%), the middle decile (45
to 55%), and highest decile (90 to 100%) are shaded in blue, gray, and
orange, respectively. (B) The average reconstruction of wing strokes (solid
lines) from the lowest (blue), middle (gray), and highest (orange) deciles
using the dataset mean and the projections of scores onto the first 2 PCs,
along with the raw torque waveforms (translucent lines) in each of these
deciles. Deciles vary both in mean torque and the within-wing stroke torque
waveforms consistent with previous results (45).
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A B

C

Fig. 3. Mutual information between spike count or spike timing and yaw torque. (A) Timing of spikes in the L3AX, the scores of the first 2 PCs, and the
wing stroke average yaw torque show variability corresponding with the 1-Hz visual stimulus (200 wing strokes from a moth are shown). The rasters are the
first (yellow), second (purple), third (green), and fourth (light blue) spikes within each wing stroke shown alongside the first (blue) and second (red) yaw
torque PC scores and the raw yaw torque (gray). (B) MI estimates for spike count (black) and spike timing (blue) with yaw torque across individuals (N =
7). Box plots report the median as the center line in the box, which marks the 25th and 75th percentiles. Whiskers are the range of all points that are not
considered outliers (square points). Spike count MI is less than spike timing MI (2-way ANOVA comparing timing vs. count for all muscles: count vs. timing,
P < 10−10; muscle ID, P = 0.26; interaction, P = 0.09). Spike timing MI is significantly greater than spike count MI in most paired comparisons within muscles
(paired t tests: P < 0.02 for all muscles except the LBA, P = 0.09, and RBA, P = 0.05; Wilcoxon signed rank tests: P < 0.02 for all muscles except the LBA, P =
0.11, and RBA, P = 0.08). (C) MI estimates (mean ± SD) for the number of nearest neighbors k = 1 to 10, data fractions N = 1 to 10, and PCs included p = 1
to 10 from the RDLM and R3AX muscles of one moth (46, 47).

This information theoretic approach enables us to consider
the importance of spike timing without assuming which features
of the spike train are relevant or a linear relationship between
spiking and motor output (48). It also enables separation of
spike count mutual information (MI) from spike timing MI by
conditioning spike timing on spike count (18),

I (S ; τ)= I (Sc ; τ)+

Sc,max∑
i=1

p(Sc = i)I (St ; τ |Sc = i), [1]

where S is the combined set of spike count and spike timings
for each wingstroke, and τ is a vector of the projection of the
yaw torque during the wingstroke onto the first 2 PCs. Sc is
the spike count for each wing stroke taking discrete states, i ,
from 1 to Sc,max . Very small amplitude Gaussian noise with a
SD of 10−4 was added to the discrete spike count variable so
that it could be used in this continuous estimation method, as
done previously (18). St is a vector of spike timings conditioned
upon Sc such that, for each spike count, St has the same length,
i . The first term is the mutual information between torque
and count. The second term is the mutual information between

torque and timing once the information in count is accounted
for. All MI estimates reported in the main text use a value
of k = 4.

For all 10 muscles, spike timing MI is higher than spike count
MI (Fig. 3B). In all muscles, both mean spike count MI (range
0.0 to 0.4 bits per wing stroke [ws]) and mean spike timing MI
(0.6 to 1 bits per ws) are nonzero, except for the DLM, which
only spikes once per wing stroke during flight. Estimates of the
spike count MI in the DLM are vanishingly small, but not exactly
equal to 0 as would be expected with a constant spike count.
This small nonzero bias was because of the added Gaussian
noise to allow continuous MI estimation. All other muscles used
a mixed encoding strategy, a combination of spike timing and
spike count, to inform the torque. The error estimates of the
MIs were small compared to the total MI (SI Appendix, Table
S1; mean error < 0.04 bits per ws across all muscles). The MI
estimates are stable across a range of k values (Fig. 3C and SI
Appendix, Figs. S2 and S3). MI estimates can underestimate true
MI given finite data; 90% of estimations from halved datasets
deviated by less than 10% from the full dataset estimate, and
our conclusions throughout the paper were robust to halving
each dataset.
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Temporal encoding is ubiquitous across the entire flight motor
program, is present in every muscle, and is utilized more than
count encoding (Fig. 3B). Each motor unit encodes almost more
information per period about yaw torque in precise spike tim-
ings (0.8 bits per ws, on average, for all muscles) compared
to other systems, like a cortical vocal area (between 0.1 and
0.3 bits per syllable) (25) and breathing muscles (between 0.05
and 0.2 bits per breath cycle) of song birds (18). The moth’s
10 motor units code for flight using on the order of 1 bit per
ws each.

Encoding Strategy Is Consistent across Functionally Diverse Mus-
cles. Muscles in the hawk moth motor program have diverse
biomechanical functions. For example, the main indirect down-
stroke muscle (DLM), acts by contracting the exoskeleton of the
thorax, propagating mechanical strain to the wing hinge and indi-
rectly causing the wings to depress (21). In contrast, the 3AX
directly attaches to the wing hinge at the third axillary sclerite,
which articulates the anal vein and remotes the wing (43, 49).
Muscles also have variable spiking activity. Different muscles
have different probability distributions of spike count per wing
stroke (i.e., spike rate) and spike timing during the wing strokes
(Fig. 4 A and B).

Despite their diverse properties, the 10 muscles in the motor
program of the hawk moth are consistent in the magnitude and
proportion of timing information used to encode yaw torque
(Fig. 4C). No muscle conveys significantly different spike timing
MI. Additionally, all muscles, other than the DLM, carry similar
amounts of spike count MI. As a result, there is a consistent 3:1
ratio of spike timing MI to spike count MI for all muscles that
spike more than once per wing stroke (Fig. 4 C and E: mean ±
95% CI of the mean of the ratio of spike timing MI to total MI
excluding DLM = 0.75 ± 0.02).

Our conclusions were robust if we reduced the representa-
tion of the yaw torque to the scores of just the first PC (SI
Appendix, Fig. S4A) or the average torque during a wing stroke
(SI Appendix, Fig. S4B). Increasing dimension to 3 PCs (SI
Appendix, Fig. S5) destabilizes estimates of information in some
muscles, due to data limits, but our conclusions nonetheless
remain consistent.

Neurons in some sensory systems may use distinct strategies to
encode particular types of information (30). However, this is not
the case in the hawk moth motor program. Even though each
muscle has a different probability distribution of spike count
and spike timing (Fig. 4 A and B), each muscle shares a com-
parable amount of MI with the moth’s torque. The different
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Fig. 4. Consistency of magnitude and proportion of spike timing MI and spike count MI in all 10 muscles. The 5 muscle types we recorded have different
probability distributions of (A) spike count conditions and (B) the first spike timing (data shown for one moth). Some bursts begin before the wing stroke
and continue into the wing stroke; these were reported as negative values (t = 0 corresponds to the start of the wing stroke). (C) Mean spike count and spike
timing MI estimates for all 10 muscles across individuals (N = 7). Pie area indicates the magnitude of total MI, and the slices indicate the proportion that is
spike count MI (black) and spike timing MI (blue), as well as the SEM of these proportions (gray). No significant difference was found in the magnitude of
spike count MI of all muscles excluding the DLM (one-way ANOVA: P = 0.66; Kruskal–Wallis test: P = 0.90) or spike timing MI of all muscles (one-way ANOVA:
P = 0.54; Kruskal–Wallis test: P = 0.39). No significant difference was found in the proportion of spike timing MI to total MI in all muscles excluding the DLM
(one-way ANOVA: P = 0.31; Kruskal–Wallis test: P = 0.54). The (D) magnitude and (E) proportion of spike count MI (black) and spike timing MI (blue) across
8 muscles (DLM excluded) and 7 individuals. Boxplots display data as previously described in Fig. 3B.
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probability distributions may indicate that different muscles have
varying amounts of total entropy (bandwidth) while transmitting
the same amount of information. Alternatively, different muscle
types may have comparable total entropies but encode torque
with varying precision.

Coordination Is Achieved through Timing, Not Count. Because tim-
ing is ubiquitous across all muscles and encoding strategies are
consistent, we next investigated the role of spike timings in the
coordination of multiple muscles. To do this, we first estimated
the pairwise MI between the spiking activity of 2 muscles and the
yaw torque,

I (SA,SB ; τ)= I ([SA,c SB,c ]; τ)

+

SA,cmax∑
iA=1

SB,cmax∑
iB=1

p(iA, iB )I ([SA,t SB,t ]; τ | (iA, iB )).

[2]

I (SA,SB ; τ) is the pairwise MI, or the mutual information
between the torque and the joint spiking activity of 2 muscles,

SA and SB . As before (Eq. 1), the first term is the pairwise spike
count MI, and the second term is the pairwise spike timing MI.
The estimates are weighted by the joint probability p(iA, iB ) of
each possible pairwise spike count condition. As in the individual
MI estimations, we used a value of k = 4 (SI Appendix, Fig. S6).

Then, we estimated the interaction information (II ) between
2 muscles (50, 51),

II = I (SA,SB ; τ)− (I (SA; τ)+ I (SB ; τ)). [3]

A positive II indicates net synergistic information, or that the
muscles together reduce the entropy of the motor output more
than the sum of their individual contributions. A negative II indi-
cates that information is net redundant between the 2 muscles, or
that there is coordination in the information content between the
2 muscles.

All pairwise combinations of muscles in the motor program
have nonzero, negative II values (Eq. 3), which are net redun-
dant interactions (Fig. 5A). We separated the contributions of
count and timing to II (SI Appendix, Eqs. S1 and S2) and
found that nearly all redundant information between muscles is
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Fig. 5. Interaction information in pairwise combinations of muscles and the range of total motor program MI values possible. (A) We calculated total
interaction information (II) (Eq. 3) (50, 51) as a measure that compares the estimates of pairwise MI (Eq. 2) and individual muscle MI (Eq. 1) for all pairwise
combinations of muscles (mean for N = 7 moths). All mean values of II are negative, indicating net redundant interactions or overlapping information
content. Comparisons of muscles to themselves are excluded. (B) Spike count interaction information (IIcount) and (C) spike timing interaction information
(IItiming) across all pairwise combinations of muscles (SI Appendix, Eqs. S1 and S2; mean for N = 7). (D) Proportion of II to the sum of individual muscle MIs
for spike count (mean ± SEM for muscle pairs in all moths excluding DLMs, n = 196) and timing (mean ± SEM for muscle pairs in all moths including DLMs,
n = 315) terms of SI Appendix, Eqs. S1 and S2. (E and F) The proportion of (E) IIcount and (F) IItiming to the sum of the individual spike count or timing MIs
(mean for N = 7 individuals). (G) Estimates of lowest and highest values of total motor program MI (gray box), proportional estimate of motor program MI
(red line), and sum of individual muscle MIs (star) for each moth and the population average. (H) Mean ± SEM of the spike count entropy (SI Appendix, Eq.
S3) and the total MI (N = 7).
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encoded in spike timing (Fig. 5 B and C and SI Appendix, Fig.
S7). Mean spike count II is −0.023 ± 0.006 bits per ws, while
mean spike timing II is −0.56 ± 0.04 bits per ws (±95% CI of
the mean). Spike timing, not count, accomplishes essentially all
of the coordination between muscles in the motor program. All
conclusions were robust to halving the data size (SI Appendix, SI
Methods).

It is possible that spike timing is more important for coor-
dination than count simply because spike timing encodes more
information overall. To test this, we scaled the spike count and
spike timing interaction information according to the total mag-
nitude of spike count and spike timing mutual information.
Overall, 31.8 ± 0.9% of spike timing MI and 3.4 ± 0.9% of spike
count MI in individual muscles is shared in pairwise interactions
(Fig. 5D). Even considering the smaller magnitude of spike count
MI in individual muscles, spike count encodes almost no coor-
dinated information (Fig. 5 E and F). Count encoding of each
muscle is independent of other muscles in the motor program.

The Motor Program Utilizes Less than 10 Bits per Wing Stroke. Coor-
dination between muscles and limited amounts of information in
each muscle suggest that the motor program operates with less
than 10 bits of information per wing stroke. We created maxi-
mum, minimum, and intermediate estimates of the total infor-
mation content of the motor program, using several methods to
account for the redundant information in pairwise combinations
(SI Appendix, Eqs. S4 and S5). Because of sample size depen-
dence in our individual and pairwise spike timing MI estimates,
these values provide lower bounds on how much information
could be encoded by the comprehensive motor program.

The comprehensive flight motor program uses an MI rate
between 1.85 bits per ws and 9.47 bits per ws, with an interme-
diate estimate of 7.89 bits per ws (Fig. 5G). Since the average
wing stroke length used in these calculations was 0.04 s, this cor-
responds to an information rate between 46.2 bits per s and 237
bits per s, or 4.6 to 23 bits per s per muscle. Lacking other com-
prehensive motor program recordings, it is difficult to compare
information rates across motor systems. However, hawk moth
flight is accomplished with a small information rate compared to
those in sensory systems. While individual sensory neurons have
comparable information rates [6 to 13 bits per s in RGCs (52)
and 1 to 10 bits per s in olfactory receptors (53)], these systems
have orders of magnitude more receptors, so the maximum infor-
mation rate may be orders of magnitude higher overall [875,000
bits per s in the guinea pig retina (52)], although there is likely a
great deal of redundancy in population codes.

Even an information rate of 7.89 bits per ws allows the moth
to specify a large number of possible motor outputs. To esti-
mate this range, we determined how many states in the empirical
torque probability distribution could be encoded by the total
motor program using the direct method (SI Appendix, Eq. S6).
Given the intermediate estimate between the upper and lower
values, the motor program MI can specify 483 ± 109 states of
yaw torque (N = 7 individuals) for each wing stroke. We also
estimated the entropy in spike count using the direct method
(SI Appendix, Eq. S3). Excluding the DLM, the count entropy in
each muscle was at least as large as the total MI (Fig. 5H). With
noiseless transmission, the motor program could be encoded
strictly in count.

Discussion
By investigating a comprehensive, spike-resolved motor pro-
gram, we show that spike timing encoding is not a feature of just
specialized motor units, but is a ubiquitous control strategy that
is consistently used for activation and coordination of muscles.
There are few, if any, differences in magnitudes and propor-
tions of spike timing and spike count encoding between the
various muscles controlling the wings (Figs. 3B and 4), despite

their different modes of actuation and functional diversity (21).
All muscles encode information about yaw torque in both pre-
cise spike timing and spike count (Fig. 4 C–E). Spike count
is significant in every muscle with the exception of the DLMs,
which only spike once per wing stroke during flight. However,
when it comes to coordination between pairwise combinations of
muscles, timing is almost everything.

The moth motor program has individual muscles acting as
mixed spike timing and spike count encoders. In situ prepara-
tions of a wing elevator muscle in a locust, Schistocerca nitens,
showed that changing either the spike timing or the number
of spikes altered power output (54). Steering muscles, like the
basalar muscle in the blowfly Calliphora vicina, can act by dissi-
pating energy rather than doing positive work, and the timing of
activation can modulate power (55). In this species, timing in the
basalar muscle and coordination between pairs of activated mus-
cles have been shown to affect wing kinematics and total body
force (39, 40). Most mechanistic studies to date have examined
how activation signals of a subset of muscles affect muscle force
or body movements, but comprehensive stimulation investigat-
ing the effects of coordinated control mechanisms across muscles
will be needed to understand functional implications. From our
results, we now know that any studies of the moth’s complete
motor program must examine spike timing.

Spike timing can still matter in vertebrate muscle because
of nonlinearity in force development and biomechanics (4). By
shifting when in the strain cycle a muscle spikes, timing can mod-
ulate force as much as rate in animals from cockroaches (56) to
turkeys (57). For example, the same spike triplet can result in dif-
ferent force production depending on whether it occurs at onset
of or during tetanus (58). Pressure production in bird respiratory
muscle is sensitive to spike timing down to the millisecond scale.
Across all these cases, the complex transformation of motor unit
spike patterns into force gives potential for precise timing to con-
vey rich information to control movement. Spike timing codes
with corresponding timing sensitivity in muscle power production
may be a prevalent feature both in individual motor programs
and across species.

Convergent Mixed Coding Strategies for Flight. An unexpected fea-
ture of the comprehensive motor program is the consistency in
timing and count encoding across all of the motor units (Fig. 4).
Calcium imaging of the direct muscles controlling the wings in
Drosophila showed evidence for 2 categories of muscle encoding:
phasic muscles that are transiently active, especially during sac-
cades, or tonic muscles that are continuously active (23). Flies
may utilize a dichotomy of these exclusively phasic and tonic
muscles organized into mixed functional groups, where at least
one phasic and one tonic muscle act on each sclerite. In con-
trast, M. sexta utilizes muscles with a mix of spike timing and
spike count encoding. They usually have a larger, functionally
dominant muscle (or muscles sharing innervation) in the group
of muscles attached to sclerite as opposed to the similarly sized
muscles attached to each sclerite in flies (SI Appendix). Addi-
tionally, Drosophila fly at wing beat frequencies an order of
magnitude higher than M. sexta and S. nitens. Larger size and
longer wingbeat periods might allow for a single mixed timing
and count motor unit to have more power to control the scle-
rites. M. sexta also do not use saccades during flight, and muscles
typically contract and relax on each cycle. While phasic and tonic
calcium activation does not have the resolution of precise spik-
ing activity, there is a separation of timescales and potential for
separate mechanisms of muscle coordination.

The information framework we use here is powerful in its
generality, separates timing and count, and reveals the ubiq-
uity, consistency, and coordination of spike timing. However, it
does not indicate content of the signals on its own. Many dif-
ferent parameters in the motor signals could covary with torque,
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and dissecting each component will require other approaches.
We complement this information approach by examining spe-
cific patterns of spike count and spike timing related to torque
in 2 example moths (SI Appendix, Figs. S8 and S9). DLMs var-
ied with turn direction, but in a narrow timing window with
low variance. This is consistent with their known control poten-
tial where changing individual spike times by as little as ±4 ms
can modulate the power output from 0% to 200% of normal
and causally induce yaw torque (27). Overall, left and right
pairs of muscles shifted their timing differences across turns.
Time separation in the DVM and modulating of the timing of
the 3AX were also consistent with earlier work (38, 59). There
were also some individual differences, like in the basalar muscle
where one moth increased the spike count for ipsilateral turns,
while the other moth decreased the spike count. There may be
significant individual variation in the particular control imple-
mentation each individual adopts even if the encoding strategy
is conserved.

Spike Timing Codes Challenge Motor Circuit Precision. Timing codes
are limited by precision, in the degree to which a spike can
be both reliably specified by the nervous system and reliably
translated by the muscle and skeletal machinery into differen-
tial forces (4). The precise spiking of the indirect flight muscles
has causal consequences for turning down to the submillisec-
ond scale (27). We now understand that this likely extends
across the entire motor program (Fig. 3B) and that coordina-
tion is achieved primarily thorough spike timing across muscles
(Fig. 5 A–F).

Given relatively few spikes per wing stroke, spike count per
period could easily be interpreted as a rate code in fast, period-
ically activated muscles like the hawk moth flight musculature,
but there is a distinction between rate and spike count in some
slow muscles with many spikes per cycle. In the slow cycle fre-
quencies of the crustacean stomastogastric pyloric rhythm and
stick insect strides, muscle force does not strictly follow rate
encoding and depends on the specific number of spikes (19,
20). Timing codes are also sometimes argued to be precise rate
codes, but that would require drastic changes to spike rate in
a very short time period for single spike codes, like the one
present in the hawk moth DLM, and for codes that depend on
specific spike patterns. For example, some slow muscles such
as the radula closer in Aplysia show force dependence on spe-
cific patterns of spikes (60). Timing codes can be distinguished
from rate or count codes by a specific pattern of spikes activated
at a precise time in relation to a behavior (4). An alternative
to a timing code is a phase code, although here they give sim-
ilar results, because there is little variation in the wing beat
period. It is possible that information in phase and absolute tim-
ing may differ in systems with more variation in the characteristic
movement period.

It is still unknown how peripheral temporal codes arise from
higher brain areas, the central nervous system, or motor circuits
in the spinal or ventral nerve cord. Precise timing could come
from direct connections between sensory receptors and efferent
units. In moths, there are rapid mechanosensory pathways from
the antenna (61), wings (62), and potentially other organs that
can provide reafference of movement that could be used for pre-
cision. In locusts, mechanical feedback from the tegula, a sensory
organ depressed during each wing stroke, produces phase reset-
ting in the flight motor pattern which coordinates the fore and
hind wings (63). In flies, gap junctions exist between precise hal-
tere mechanoreceptors (64) and steering muscles (65), producing
very fast reflexes. In conjunction with fast feedback from wing
mechanoreceptors, these reflexes precisely pattern the activity
of the first basalar muscle (66). However, these reflexes are
still influenced by visual commands that incorporate feedback
passing through a number of central nervous system synapses

(67). The millisecond-scale resolution of the motor code poses
a challenge even for neural processing that requires only a few
synapses.

Precision may arise from central brain regions. Some pairs of
bilateral muscles in Drosophila are innervated by motor neurons
that receive input from the same circuitry in the nerve cord (68).
This could give a proximal source of the left–right precision seen
in Manduca downstroke muscles (27) but, alone, is unlikely to be
sufficient to account for the prevalence of timing codes across all
muscles. Peripheral precision may also come from transforming a
population code or remapping of dynamics distributed over large
populations of neurons (32). Both the central nervous system
and rapid peripheral sensorimotor pathways provide potential
mechanisms for spike timing precision.

Spike Count Does Not Inherently Limit Encoding. The prevalence of
temporal coding in the moth motor program is not due to a limit
on how much information can be encoded in spike count, since
the spike count entropy was high enough to account for the total
mutual information encoded by each muscle that spiked more
than once per wing stroke (Fig. 5H). For the DVM and SA mus-
cles, spike count would have to have no transmission error due
to its entropy being similar in magnitude to the total MI, but,
for the 3AX and BA muscles, there could be transmission error,
and the spike count would still account for the total MI. Because
much of the entropy in spike count is unused for encoding yaw
torque, much of the variation in spike count must be ignored
in the transformation from spiking activity to movement. This
has precedence in cockroach running where muscle force in a
limb muscle can be invariant to spike count (69). The opposing
trends in BA spike count from our 2 example moths may not
affect the yaw torque, because of this invariance (SI Appendix,
Figs. S8 and S9).

While temporal codes are present in both faster, high-
frequency systems and slower, low-frequency systems (18), count
and rate codes are still used. Improved algorithms based on pop-
ulation rate codes for decoding motor implications of neural
activity on a single-trial basis have led to better neural prosthetic
devices and brain–machine interfaces (32, 70). Incorporating
spike timing or pattern information could improve these devices
by adding more information than what is present in just the
rate code.

Spike Timing Is Essential to Coordination. The moth motor pro-
gram has redundancy in its information transmission. Yet, our
estimate of the motor program information rate, while account-
ing for shared information, still enables the encoding of hundreds
of unique states. Redundancy and synergy in information trans-
mission have been explored in the sensory periphery and in
central brain regions where there may be a trade-off between
code efficiency and robustness to noise (71–73). Dimensionality
reduction techniques are commonly used to study populations
of neurons in motor brain areas or ensembles of muscles (31,
32, 45, 70, 74–76). The activation patterns of many muscles may
be represented by low-dimensional linear combinations of many
muscles, “muscle synergies,” that capture most of the variation
(31, 45, 74, 75). There is potential confusion of the terms syn-
ergy and redundancy, because muscle synergies are likely to
share net redundant (not synergistic) information. In the moth,
all combinations of muscles do share information (negative II
values).

Analysis without considering timing may miss important struc-
ture in how brains coordinate movement. Previous investigations
of muscle synergies could not assess coordination at the spike
level, although modulation of muscle activation over longer
timescales was an important component of synergies identified
in frogs, cats, and humans (33, 74, 76). In the Manduca sys-
tem, nearly all of the coordination between muscles may be
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overlooked by not considering spike timing. All muscles are
more coordinated in their timings than the DLMs that have zero
entropy in spike count. The spike timings of the DLM muscles
have previously been shown to exhibit a low degree of coordi-
nation in their code for yaw torque (45). This is consistent with
our results, since we found that these 2 muscles have the least
pairwise interaction information (Fig. 5 A–F and SI Appendix,
Fig. S6). Not all information encoded by individual muscles was
shared. In the moth motor program, each muscle has a small
amount of independent motor information it can convey with
count, while control encoded in timing is coordinated across
multiple muscles (Fig. 5B).

The hawk moth motor program uses a precise, coordinated
spike timing code along with a less informative but independent
spike count code consistently in every muscle used to control
the wings. Spike timing codes likely necessitate millisecond-scale
precision arising from either sensory feedback loops or central
motor circuits. When combined with the growing number of spe-
cific examples of spike timing motor codes across vertebrates
and invertebrates, the millisecond patterning of spikes cannot
be safely ignored or necessarily relegated to a few specific cases.
Timing encoding in the most peripheral motor output may be
more of a rule, not an exception.

Materials and Methods
Data Archival. The data used in this paper are available on Dryad (https://
doi.org/10.5061/dryad.r4xgxd280).

EMG Recordings from Flight Muscles. Moths (M. sexta) were obtained as
pupae (University of Washington colony) and housed communally after
eclosion with a 12-h light–dark cycle. Naı̈ve males and females (N = 7)

were used in experiments conducted during the dark period of their cycle.
We cold-anesthetized moths before removing scales from the ventral and
dorsal sides of their thoraxes. We made 2 small holes in the cuticle using
insect pins and inserted 2 silver EMG wires to take differential recordings
from the 10 indirect power muscles and direct steering muscles (SI Appendix,
Fig. S1). These 5 pairs of muscles comprise a nearly complete motor pro-
gram for flight (SI Appendix). A common ground wire was placed in the
abdomen. We imaged the external placement of silver EMG wires to ensure
we targeted the correct muscles (SI Appendix, Fig. S1). We also conducted
postmortem dissections on a subset of animals to verify wire placement. All
images were captured with a Zeiss Stereo Discovery v.12 equipped with a
Zeiss Axiocam 105 color camera.

Experimental Setup. We tethered moths with cyanoacrylate glue to a 3-
dimensional (3D)-printed acrylonitrile butadiene styrene (ABS) plastic rod
rigidly attached to the F/T transducer (ATI Nano17Ti, FT20157; calibrated
ranges: Fx , Fy = ±1.00 N; Fz = ±1.80 N; τx , τy , τz = ±6,250 mN·mm). After
tethering, we allowed 30 min for the moths to adapt to dark light condi-
tions and recover from the surgery at room temperature before starting
experimental recordings. We amplified the EMG signals using a 16-channel
alternating current (AC) amplifier (AM Systems Inc., Model 3500) before
acquisition with an NI USB-6259 data acquisition (DAQ) board, which also
sampled the F/T transducer (all sampling at 10,000 Hz). We captured outputs
from these DAQ boards using MATLAB (MathWorks).

SI Appendix Methods. SI Appendix reports visual stimulus, spike train
analysis, wing stroke alignment, and information theoretic estimates.
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46. A. Kraskov, H. Stögbauer, P. Grassberger, Estimating mutual information. Phys. Rev. E
69, 066138 (2004).

47. C. M. Holmes, I. Nemenman, Estimation of mutual information for real-valued data
with error bars and controlled bias. Phys. Rev. E 100, 022404 (2019).

48. S. P. Strong, R. R. d. R. van Steveninck, W. Bialek, R. Koberle, On the application of
information theory to neural spike trains. Pac. Symp. Biocomput. 3, 621–632 (1998).

49. J. L. Eaton, Lepidopteran Anatomy (John Wiley, Hoboken, NJ, 1988).
50. N. Timme, W. Alford, B. Flecker, J. M. Beggs, Synergy, redundancy, and multivariate

information measures: An experimentalist’s perspective. J. Comput. Neurosci. 36, 119–
140 (2014).

51. R. A. A. Ince. Measuring multivariate redundant information with pointwise common
change in surprisal. Entropy 19, 318 (2017).

52. K. Koch et al., How much the eye tells the brain. Curr. Biol. 16, 1428–1434 (2006).
53. X. Z. N. Aldworth, X. M. A. Stopfer, Trade-off between information format and

capacity in the olfactory system. J. Neurosci. 35, 1521–1529 (2015).
54. A. P. Mizisin, R. K. Josephson, Mechanical power output of locust flight muscle. J.

Comp. Physiol. A 160, 413–419 (1987).
55. M. S. Tu, M. H. Dickinson, Modulation of negative work output from a steering

muscle of the blowfly Calliphora vicina. J. Exp. Biol. 192, 207–224 (1994).
56. S. Sponberg, A. J. Spence, C. H. Mullens, R. J. Full, A single muscle’s multifunctional

control potential of body dynamics for postural control and running. Philos. Trans. R.
Soc. Lond. Ser. B Biol. Sci. 366, 1592–1605 (2011).

57. T. J. Roberts, R. L. Marsh, P. G. Weyland, C. R. Taylor, Muscular force in running
turkeys: The economy of minimizing work. Science 275, 1113–1115 (1997).

58. F. Abbate, J. D. Bruton, A. De Haan, H. Westerblad, Prolonged force increase follow-
ing a high-frequency burst is not due to a sustained elevation of Prolonged force
increase following a high-frequency burst is not due to a sustained elevation of
[Ca 2+]i. Am. J. Physiol. Cell Physiol. 283, C42–C47 (2002).

59. D. Springthorpe, M. J. Fernández, T. L. Hedrick, Neuromuscular control of free-flight
yaw turns in the hawkmoth Manduca sexta. J. Exp. Biol. 215, 1766–1774 (2012).

60. Y. Zhurov, V. Brezina, Variability of motor neuron spike timing maintains and shapes
contractions of the accessory radula closer muscle of Aplysia. J. Neurosci. 26, 7056–
7070 (2006).
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