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Abstract

Glioma is one of the most common brain tumors in adults. Its diagnosis and management have been deter-
mined by histological classifications. It is difficult to establish new paradigms because the pathology has 
matured and a great deal of knowledge has accumulated. On the other hand, we understand that there 
are limitations to this gold-standard because of the heterogeneity of glioma. Thus, it is necessary to find 
new criteria independent of conventional morphological diagnosis. Molecular imaging such as positron 
emission tomography (PET) is one of the most promising approaches to this challenge. PET provides live 
information of metabolism through the behavior of single molecules. The advantage of PET is that its 
noninvasive analysis does not require tissue sample, therefore examination can be performed repeatedly. 
This is very useful for capturing changes in the biological nature of tumor without biopsy. In the present 
clinical practice for glioma, 18F-fluorodeoxyglucose (FDG) PET is the most common tracer for predicting 
prognosis and differentiating other malignant brain tumors. Amino acid tracers such as 11C-methionine 
(MET) are the most useful for detecting distribution of glioma, including low-grade. Tracers to image hy-
poxia are under investigation for potential clinical use, and recently, 18F-fluoromisonidazole (FMISO) has 
been suggested as an effective tracer to distinguish glioblastoma multiforme from others.
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Introduction

In glioma management, particularly in surgery, 
precise diagnosis before the initial operation is quite 
important because the treatment strategy and prog-
nosis differ widely with histological grade. Gliomas 
diffusely infiltrate neighboring brain structures and 
are characterized by regional variations of histological 
malignancy.38) Therefore, detection of the highly 
malignant region and delineation of the extent of 
the tumor are critical for preoperative evaluation.

Gliomas often present with different degrees of 
malignancy in different parts of the tumor. There-
fore, surgical biopsies may miss the most malignant 
tumor sample and underestimate the grade. Preop-
erative diagnostic information is thus extremely 
important in planning of precise treatment. In this 

regard, the role of positron emission tomography 
(PET) has been increasing in practical situations. 
PET has been used for evaluation of glioma metabo-
lism, and the most popular radiolabeled tracers are 
18F-fluorodeoxyglucose (FDG), 18F-fluorothymidine 
(FLT), and 11C-methionine (MET). Previous research 
using these traces has addressed whether altera-
tions presented by PET reveal prognostic value, and 
whether it detects malignant transformation from 
low-grade to high-grade. Moreover, tracers for imaging 
hypoxia, including 18F-fluoromisonidazole (FMISO), 
are under investigation to address these clinical 
issues. Hypoxia is a very important phenomenon 
when considering tumor malignancy. It has been 
suggested that hypoxia makes the tumor resistant to 
radiation therapy and allows the tumor to be more 
aggressive, and indeed, malignant glioma tissues 
often develop hypoxia.
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Although Valk et al. reported the first use of FMISO 
for glioma imaging,51) it was not frequently used 
during the 1990s. An explosive increase in the preva-
lence of PET scanners in the last decade, especially 
PET-CT integrated scanners, encouraged researchers 
and clinicians to apply FMISO for different types of 
tumors, including gliomas. Our group demonstrated 
that FMISO could distinguish glioblastoma from 
less malignant gliomas.17) FDG PET visualizes the 
glucose metabolism of the tumor, and it has been 
demonstrated since the 1980s that FDG uptake of 
gliomas is highly correlated with histological malig-
nancy and with patient survival.1,4,15,19,35,37)

However, FDG PET is often unsuitable for detec-
tion of gliomas because the glucose consumption 
of a normal brain cortex is relatively high,3,7) and 
when a hypermetabolic lesion is near the cortical 
or subcortical gray matter, it is difficult to differen-
tiate FDG uptake in tumor and in normal brain.11) 
Although several experiments addressing this weak 
point have been reported,45) new analytic concepts 
are necessary to utilize FDG PET for management 
of gliomas. MET, an amino acid tracer, is one of 
the most widely used tracers because there is less 
uptake in healthy brain, resulting in better contrast 
between tumor and normal brain than with FDG 
PET.43) MET PET has been suggested to delineate 
both benign and malignant gliomas more accu-
rately than conventional imaging methods such as 
computed tomography (CT) or magnetic resonance 
imaging (MRI).39,50) Although previous studies have 
shown positive correlations between MET uptake and 
histological grade,19,21,27), MET uptake of gliomas with 
oligodendroglial components is significantly higher 
than that of astrocytic gliomas, even in histologically 
low-grade tumors.5,10,16,20,24,33,42) In oligodendrocytic 
tumors, MET uptake ratio does not always corre-
late with histological tumor grade and proliferative 
activity.20) Moreover, MET uptake ratio in grade II 
oligodendrogliomas is not significantly different 
from that in grade IV glioblastomas.33)

Tracers to image hypoxia are under investigation 
for potential clinical use, and recently, FMISO has 
been suggested as a useful tracer for diagnosis of 
GBM. In this article, we describe FMISO PET with 
a new aspect in management of glioma.

18F-fluoromisonidazole (FMISO)

Why and how to image hypoxia?
Hypoxia is a phenomenon that has interested 

oncologists for a long time. Malignant tumor tissues 
often develop hypoxia. By means of hyperexpression 
of hypoxia inducible factor (HIF)-1 alpha, which 
enhances a number of genes related to prolifera-

tion, hypoxia makes the tumor resistant to radiation 
therapy and allows the tumor to be more aggres-
sive. Previously, the sole method for measuring 
intratumoral oxygen partial pressure was the use of 
needle electrodes.30) However, this procedure is too 
invasive to use as a preoperative evaluation, and it 
could also alter the microenvironment in the tumor, 
possibly giving an inaccurate oxygen concentration.

PET is expected to be an ideal noninvasive tool 
for visualizing hypoxic condition in vivo. Develop-
ment of hypoxia PET tracers has been researched for 
years. The first radiotracer developed for hypoxia 
imaging was 14C misonidazole in 1981.6) It was 
followed by the introduction of FMISO as a PET 
tracer.18) Although Valk et al. reported the first use 
of FMISO for glioma imaging,51) it was not frequently 
used during 1990s. An explosive increase in the 
prevalence of PET scanners in the last decade, 
especially PET-CT integrated scanners, has encour-
aged researchers and clinicians to apply FMISO to 
different kinds of tumors, including brain tumors.

Mechanisms of FMISO uptake
The mechanisms of FMISO accumulation in 

hypoxic tissues have been described previously.28) 
Briefly, intravenously injected FMISO is first distrib-
uted to the cells via blood flow. Then, the FMISO 
molecules capture electrons in the mitochondrial 
electron transfer system. In normoxic cells, namely 
cells without hypoxia, the FMISO electron is taken 
by O2. In hypoxic cells, on the other hand, FMISO 
keeps the extra electron in the molecule because 
of O2 shortage. FMISO with an extra electron is 
allowed to stay in the cell whereas FMISO with 
no extra electron is excreted from the cell. There-
fore, FMISO is cleared from the normoxic cells but 
not from the hypoxic cells. Note that FMISO in 
necrotic cells is also excreted because there is no 
functioning mitochondrion from which FMISO can 
take electrons. The threshold of O2 partial pressure 
that determines whether or not FMISO is excreted 
is believed to be ~10 mmHg.22,41) This suggests that 
FMISO accumulates only in severely hypoxic tissues, 
which we should pay attention.

Hypoxia imaging for differential diagnosis
Theoretically, FMISO PET can differentiate tumors 

with severe hypoxia from those without. Studies 
using direct needle electrodes suggested that the 
hypoxic condition of gliomas depends on its degree 
of malignancy.9,14,26) We examined 23 preoperative 
glioma patients of different World Health Organization 
(WHO) grades using FMISO PET and FDG PET.17) 
The PET findings were compared with histological 
findings. We found that FMISO uptake was seen 
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only in glioblastoma multiforme (GBM), but not in 
less malignant gliomas (grade II or grade III). In the 
WHO definition, GBM has necrosis in the tumor, 
although grade III or lower grade gliomas do not 
develop necrosis.29) Therefore, it is reasonable that 
only GBM has severe hypoxia beyond the FMISO 
threshold and thus shows FMISO uptake. We 
concluded that FMISO PET may be able to clearly 
distinguish GBM from lower grade gliomas.

On the other hand, several articles reported appar-
ently different results from ours. Cher et al. reported 
FMISO PET findings of glioma patients of various 
grades.8) In that paper, all grade IV tumors showed 
high FMISO uptake, which is consistent with ours. 
However, they observed that one of the three grade 
III gliomas showed positive FMISO uptake. Yamamoto 
et al. also observed FMISO uptake in some grade III 
gliomas, although the uptake in grade IV was signifi-
cantly higher than in grade III or lower.52) FMISO 
uptake in grade III glioma was observed by these two 
research groups probably because the images were 
acquired earlier at 2 hours after intravenous FMISO 
injection, whereas we acquired the PET images 4 
hours after injection. In fact, protocols with 2 hours 
as uptake time are often used for FMISO studies.

However, Thorwarth et al. discussed a problem 
with two-hour imaging of FMISO.49) Showing the 
results of kinetic analysis for the dynamic dataset 
of FMISO PET, this article reported that some of 
the hot spots on two-hour FMISO images disap-
peared on four-hour FMISO images. This suggested 
that the high uptake on two-hour images may have 
reflected high initial influx of the tracer due to 
increased blood flow rather than hypoxia. In other 
words, four-hour images should represent hypoxia 
alone, whereas two-hour images should represent 
increased blood flow with or without hypoxia. We 
understand that two-hour imaging has advantages: 
(1) less time is required for the entire examination, 
reducing patients’ stress and (2) approximately 
twice the number of photons is detected by the 
PET scanner compared to four-hour imaging, due 
to 110 minutes half-life of 18F, by which the image 
quality of two-hour protocol should be better than 
that of four-hour protocol. To further optimize the 
procedure, we need direct comparison between these 
protocols for the same patient group.

Reproducibility
One may argue that hypoxia condition is not 

stable, but rather fluctuating to some extent. In fact, 
hypoxia in tumor can be divided into acute hypoxia 
and chronic hypoxia.2) This raises concerns about 
a lack of reproducibility of the hypoxia imaging 
leading to insufficient reliability for clinical usage.32) 

However, using four-hour imaging, our colleagues 
attempted to compare FMISO images of the same 
patients with head and neck cancer, which were 
acquired at 48-hour intervals.36) They demonstrated 
that the image parameters reproduced; the difference 
of tumoral SUVmax of FMISO between first and 
second scanning was 7.0% ± 4.6% (range, 1.2–11.7%), 
and that of tumor-to-muscle ratio was 7.1% ± 5.3% 
(range, 0.4–15.3%). This high reproducibility of 
FMISO imaging justifies a clinical application.

Prediction of prognosis
Is FMISO PET predictive of prognosis for GBM 

patients? According to Cher et al., positive FMISO 
uptake was suggested to be associated with patient’s 
survival.8) Spence et al. analyzed FMISO PET performed 
before radiotherapy and compared the findings with 
time to progression.46) They found that those patients 
who had greater hypoxia volume or greater tumor-
to-blood uptake ratio showed earlier progression. In 
another article, they also evaluated the predictive 
performance of several parameters derived from 
FMISO PET and MR imaging.47) They found that the 
most significant predictors of survival were hypoxia 
volume,30) hypoxia surface area,6) and tumor-to-blood 
uptake ratio measured on FMISO PET images.18)

Other clinical options
One of the expected roles of FMISO imaging is 

therapy monitoring. It may be possible to see how 
fractionated radiotherapy damages tumor cells more 
effectively, because FMISO images can visualize 
the reoxygenation process. In a report of two cases, 
we observed a considerable decrease of FMISO 
accumulation in GBM after chemoradiotherapy, as 
compared to that before therapy.31)

Other hypoxia tracers being examined
As we mentioned above, one of the shortcom-

ings of FMISO as a PET tracer is slow clearance 
of nonspecific activity of FMISO from plasma and 
non-hypoxic tissues, by which it requires 4 hours to 
acquire adequate “hypoxia” images but not perfusion 
images. Although this is not a crucial disadvantage, 
if the uptake time could be shortened, hypoxia 
imaging would be more widely used than ever. 
Researchers have been looking for other hypoxia 
tracers; nothing has more evidence than FMISO so 
far, but some are reported to be promising.

Recently, Kurihara et al. wrote a comprehensive 
review article on preclinical and clinical data for 
hypoxia PET tracers including FMISO, 18F-fluoro-
erythronitroimidazole (FETNIM), 18F-fluoroazomycin-
arabinofuranoside (FAZA), and 62Cu or 64Cu-diacetyl-
bis(N4-methylthiosemicarbazone) (Cu-ATSM).25) 
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grading. Because it is important that we predict 
each positive and negative point of the tracers in 
order to achieve appropriate diagnosis before biopsy.
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