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ABSTRACT

Gene expression stochasticity plays a major role in
biology, creating non-genetic cellular individuality
and influencing multiple processes, including differ-
entiation and stress responses. We have addressed
the lack of knowledge about posttranscriptional con-
tributions to noise by determining cell-to-cell varia-
tions in the abundance of mRNA and reporter protein
in yeast. Two types of structural element, a stem–
loop and a poly(G) motif, not only inhibit translation
initiation when inserted into an mRNA 5′ untranslated
region, but also generate noise. The noise-enhancing
effect of the stem–loop structure also remains oper-
ational when combined with an upstream open read-
ing frame. This has broad significance, since these
elements are known to modulate the expression of a
diversity of eukaryotic genes. Our findings suggest a
mechanism for posttranscriptional noise generation
that will contribute to understanding of the generally
poor correlation between protein-level stochasticity
and transcriptional bursting. We propose that post-
transcriptional stochasticity can be linked to cycles
of folding/unfolding of a stem–loop structure, or to
interconversion between higher-order structural con-
formations of a G-rich motif, and have created a cor-
respondingly configured computational model that
generates fits to the experimental data. Stochastic
events occurring during the ribosomal scanning pro-
cess can therefore feature alongside transcriptional
bursting as a source of noise.

INTRODUCTION

Living systems manifest many apparently deterministic be-
haviours at the macroscopic level, yet the molecular reac-
tions upon which they are based are generally stochastic in
nature. There has been increasing research on noise in the

gene expression pathway, including regulatory steps, which
can involve very small numbers of regulatory molecules
in each cell. It is likely that the heterogeneity generated
across cell populations by gene expression noise is utilized
as a component of certain survival strategies (1). Indeed,
stochasticity across the transcriptomes and proteomes of
living organisms is likely to play important roles in cellular
auto-regulatory circuits, phenotypic variation, cellular dif-
ferentiation, stress responses, synchrony in circadian clocks,
and probabilistic fate decisions such as viral latency (2–8).
Noise also plays a role in evolution (9–12). On the other
hand, noise is a potentially damaging source of imprecision,
for example impacting on signaling and regulation (13–16),
and evidence is emerging that living systems use multiple
mechanisms to keep the level of randomness under con-
trol. Overall, it has become apparent that an appreciation
of stochasticity in gene expression is essential to a full un-
derstanding of biology. However, there is still much work to
do before we understand the full impact of noise as well as
the overall picture of noise management in living systems.

It is now common to identify two overall classes of noise:
intrinsic noise that is attributed to inherent stochasticity of
expression from a specified gene system, and extrinsic noise
that results from fluctuations in the intracellular environ-
ment, for example linked to the cell cycle and/or changes in
the capacity of the expression machinery (17–19). Stochas-
tic variations in the expression of reporter genes encoding
fluorescent proteins are reflected in heterogeneity in the lev-
els of these proteins in individual cells. A model of intrin-
sic noise predicted that prokaryotic cells would manifest
higher levels of noise if transcription of a reporter gene was
limited to low rates (20). Work in Bacillus found a positive
correlation between translation efficiency and noise gener-
ation, so that a combination of weak transcription and ef-
ficient translation generates a relatively high level of noise
(21). A comparable study in the yeast Saccharomyces cere-
visiae found that noise strength for GFP gene expression in-
creased linearly with translation efficiency (varied by chang-
ing codon usage) (22). Two studies in yeast have indicated
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that intrinsic noise scales inversely with protein abundance
(23,24). In contrast, the level of observed intrinsic noise for
mammalian cells does not always show this relation at lower
protein abundance values (25). Other work has suggested
that a high tRNA adaptation index (a measure of the rela-
tionship between gene codon usage and intracellular tRNA
abundance in the context of different degrees of selection on
translation efficiency) is correlated with noise (26).

Overall, most of the work on gene expression noise in
eukaryotes (predominantly in the form of high-throughput
genome-wide studies) has emphasized the influence of vari-
ations in mRNA copy number per cell that are driven
by fluctuations in transcription, whereby correlations have
been identified between noise level and gene characteris-
tics such as promoter structure, gene function and chro-
matin density (16,24). The potential for posttranscriptional
steps of gene expression, including translation, mRNA de-
cay and protein degradation, to act as generators of noise,
has received much less attention, and no investigation of
possible mechanisms has been reported. However, gaining
insight into the contributions of these steps is essential if
we are to understand fully the landscape of noise genera-
tion across the genomes of living organisms. In the light
of earlier work on the impact of inhibitory structures on
translation initiation, we decided to examine whether noise-
generating mechanisms can exist in this step of gene expres-
sion. This led us to consider how a combination of multiple
sources of noise along a eukaryotic expression pathway im-
pacts upon overall system behaviour. We have dissected out
the contributions of transcription and translation by mak-
ing measurements of both protein and mRNA abundance
in single cells of S.cerevisiae, finding that translation-related
stochasticity is an important contributor to overall noise.
We discuss the mechanistic and wider biological implica-
tions of our data and also consider their significance for the
field of synthetic biology.

MATERIALS AND METHODS

Strain construction

Strains used in this study were all derived from the back-
ground strain PTC830: MATα ura3-1 leu2-3, 112 his3-11,
15 can1-100 (a derivative of W303). Genomic integration at
the yeast HIS3 locus was achieved via a plasmid containing
the KanMX gene (encoding resistance to G418) and the re-
porter gene flanked by regions homologous to the 5′ and 3′
regions of the yeast HIS3 open reading frame. Each of the
modified plasmids was linearized (double-cut outside of the
inserted sequence using PvuII or BglI, depending on the re-
porter), and then used for yeast transformation (leading to
homologous recombination). A strains table is provided in
the Supplementary Data section.

Single molecule fluorescence In situ hybridization

smFISH was performed using custom Stellaris®

Quasar570-tagged probes directed against the yEGFP
coding sequence and Quasar670-tagged probes directed
against MS2 stem–loop repeats inserted into the 3′UTR
following a protocol adapted from previous work (27,28).
The MS2 stem–loop repeats were originally intended for

use in live-cell imaging, but we found this approach to lack
consistency and accuracy in yeast (see full explanation
in the Supplementary Data section) and decided to focus
on smFISH instead. Two days prior to an experiment,
single colonies from each of the strains were picked and
grown overnight in YNB (plus amino acids, 2% glucose) to
saturation with shaking at 30◦C. The following morning,
cells were diluted to give an optical density at 600 nm
(OD600) of ∼0.1 and incubated further to an OD600 of
0.8–1.0. The cultures were then diluted again (via a serial
dilution procedure) to the theoretical equivalent of OD600
= ∼0.0001 (i.e. ∼3 × 103 cells ml−1) and allowed to grow
overnight to an OD600 of 0.1–0.2 in 45 ml volume of
minimal medium. Cells were then fixed by addition of 5
ml of 37% formaldehyde followed by incubation for 45
min. From this point onwards, all reagents and materials
used were RNAse-free. Cells were washed twice with 1
ml ice-cold buffer B (1.2 M sorbitol, 0.1 M potassium
phosphate, pH 7.5), centrifuged for 1 min to pellet the
cells in between each wash. Cells were then converted to
spheroplasts by resuspension in 1 ml of spheroplasting
buffer (buffer B, 2 mM Vanadyl Ribonucleoside Complex,
250 U lyticase, 1:500-diluted 2-mercaptoethanol) and
incubation for 25 min at 37◦C. Cells were then washed
twice with 1 ml ice-cold Buffer B, pelleted at low speed
(for this and all the subsequent steps centrifugation was
performed at 1300g/4◦C for 5 min), resuspended in 1 ml
70% ethanol, and stored at –20◦C until they were used for
hybridization.

For each hybridization experiment, ∼200 �l of cells (ad-
justed according to the final OD600 value before fixation)
were transferred into RNAse-free microcentrifuge tubes,
centrifuged, and the ethanol was removed. Cells were incu-
bated in 1 ml of wash buffer (10% formamide in 2× saline-
sodium citrate (SSC) buffer) at room temperature in the
dark for 2–5 min. Cells were pelleted again and resuspended
in 100 �l of hybridization solution (100 mg/ml dextran sul-
fate, 10% formamide in 2× SSC buffer) containing a mix-
ture of the two probe sets. The final probe concentrations
were 100 nM for PTEF1 constructs, 50 nM for PPAB1 con-
structs and 25 nM for PDCD1 constructs. Cells were incu-
bated overnight in the dark at 30◦C. On the following day,
a chambered coverglass (Grace Biolabs, four wells) was in-
cubated with 100 �l 0.01% poly-L-lysine/well at room tem-
perature for 5 min. The solution was aspirated off, the cov-
erglass was left to dry, each well to be used was washed
3× with nuclease-free water (100 �l) and allowed to dry
again. Cells were washed with 1 ml of wash buffer (10% for-
mamide in 2× SSC buffer), resuspended in another 1 ml of
wash buffer and incubated at 30◦C for 30 min in the dark.
To stain the cell nuclei, cells were resuspended in 100 �l of
0.01 �g/ml 4′,6-diamidino-2-phenylindole (DAPI, as a so-
lution in 2× SSC), loaded on poly-L-lysine-treated cham-
bered coverglasses and incubated for 30 min in the dark at
30◦C. Cells were briefly washed in 100 �l 2× SSC/well, in-
cubated in 100 �l GLOX buffer (0.4% glucose in 10 mM
Tris, 2× SSC) for 1–2 min at room temperature in the dark.
GLOX buffer was removed and 80 �l of GLOX buffer con-
taining glucose oxidase and catalase was added to each sam-
ple. A clean slide was placed over the wells to spread the
GLOX buffer over the entire sample and prevent evapora-
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tion. The imaging acquisition and analysis procedures are
described in the Supplementary Data section.

Flow cytometry

Cells were prepared for flow cytometry as described in
the Supplementary Data section. Yeast cells expressing the
yEGFP or ymNeonGreen reporter genes were excited us-
ing a 488 nm laser, and fluorescence was collected through
505 nm long-pass and 530/30 nm band-pass filters on a
BD Fortessa X20 flow cytometer. For dual-colour reporter
strains, yEGFP was excited and fluorescence was collected
using the same laser and filters as described above while
mRuby3 was excited using a 561 nm laser and its fluores-
cence collected through a 600 long-pass plus 610/20 nm
band-pass filters. The data were recorded using the ‘Area’
option. Flow cytometry data were exported from the ac-
quisition program (FACSDiva) in the FCS3.0 format with
a data resolution of 218. A custom R programme was writ-
ten (using flowCore, flowViz and flowDensity Bioconduc-
tor packages; see Supplementary Data section) to calculate
statistics for each file. For calculating the coefficients of vari-
ation, cytometry files were processed as follows:

1. The first second, and final 0.2 seconds, of data were re-
moved to minimize errors due to unstable sample flow
through the cytometer.

2. Thresholds of 40 000–100 000 and 10 000–90 000 for the
FSC and SSC gates, respectively, were typically used to
limit the influence of cellular debris and aggregated cells.

3. For the remaining data, the FSC and SSC values of the
highest density centre of the FSC–SSC scatterplot were
calculated, and the distance of the ith sample to the cen-
tre was determined:

Distance i
= √

((FSC i − FSC centre)2 + (SSC i − SSC centre)2)

4. The fluorescence reporter data within the radius were
used to calculate the coefficient of variation, i.e.

CV = s/m.

yEGFP (ymNeonGreen) data were obtained from 10
(six) independent experiments, whereby the centre point for
the scatter plot analysis was either set automatically, or
manually at FSC = 59 000/SSC = 27 000. The average num-
ber of cells analyzed given a radius limit of 4000 was ∼780
(900). This gate radius was chosen as a compromise point
at which, over multiple experiments, the variation between
experiments was minimal and the number of cells analysed
provided statistically meaningful results. This procedure is
similar to one reported previously (24) except that, by focus-
ing on the cell density centre, we have been able to maximize
the number of cells that are sampled.

In the two-reporter measurements (6 independent mea-
surements), the centre was set at FSC = 57 000/SSC = 24
500, and the average number of cells contained in the fi-
nal gate was 961. In order to calculate the intrinsic, extrin-
sic, and total noise from dual-color flow cytometry data we
sought to identify an appropriate normalization procedure.
Comparative assessment of two approaches to this chal-
lenge (Supplementary Figure S4) led us to follow the sta-
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Figure 1. Chromosome-integrated reporter constructs. (A) The integrated
reporter (in this example, yEGFP) constructs were transcribed by yeast
promoters of differing strengths: PTEF1, PPAB1 or PDCD1. A range of
5′UTRs was used to dictate different translation initiation rates. 24 bac-
teriophage MS2 binding motifs were added to the 3′UTR as additional
targets for smFISH probes. The PGK1 terminator (T) was introduced at
the end of the string of MS2 motifs. (B) Concept of combining different-
strength promoters with a range of 5′UTRs to create a spectrum of ratios of
transcription vs translation. For example, the overall expression rate driven
by PTEF1 combined with a non-structured 5′UTR (L0) can be reduced to
the rates of overall expression supported by PPAB1-L0 or PDCD1-L0 by in-
serting structured 5′UTRs.

tistical analysis procedure described elsewhere (24) in the
evaluation of our data. The R script used to enable auto-
matic processing of the data is given in the Supplementary
Data section. In the Supplementary Data section, we also
discuss the influence of reporter gene structure on absolute
noise value estimates.

Computational modeling. Details of the model and its out-
puts are given in Figure 7, the SI Appendix, and in Supple-
mentary Figure S6. Simulations were carried out using the
Gillespie stochastic simulation algorithm (29) implemented
in the software COPASI (30).

RESULTS

Genomic expression constructs designed to modulate transla-
tion and transcription

In order to analyze the respective contributions of tran-
scription and translation to gene expression noise in
S.cerevisiae, we built genomic constructs whose expression
rate is subject to restriction at two different points in the
expression pathway (Figure 1A). We chose to use a small
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number of reporter genes (rather than a large number of
reporter fusions with endogenous genes) in order to avoid
having to measure (and correct for) variations in the stabili-
ties of the respective gene fusion mRNAs and proteins. For
consistency, all three of the promoters we used lack TATA
boxes, since these elements have been reported to contribute
to increased noise levels by affecting transcriptional burst
size (31,32). Starting at the upper range of transcription, a
strong constitutive promoter (PTEF1) generates a compara-
tively large number of mRNA molecules per cell. Guided
by previous work (33–35), we then attenuated the overall
expression rate for each of these mRNA molecules by in-
serting into the 5′UTR structural elements that limit trans-
lation initiation to different degrees. Three types of struc-
tural element were introduced: stem–loops of different sta-
bilities, two different lengths of poly(G), and an upstream
open reading frame (uORF). We also built constructs in
which transcription was driven by a mid-range promoter
(PPAB1) or a weak promoter (PDCD1) (Figure 1B). In this
way, we planned to achieve a low rate of expression both via
a high-transcription/low-translation combination and via
a low-transcription/high-translation combination. We as-
sessed the inhibitory impact of the 5′UTR structures (Sup-
plementary Data section and Supplementary Figure S1) in
order to identify the range of inhibitory structures that pro-
vide the required spectrum of transcription/translation ra-
tios (Figure 1B; Supplementary Table S1).

Transcriptional noise for three promoters of different
strengths

We compared the basic properties of the three promoters.
Single molecule fluorescence in situ hybridization (smFISH)
was used to monitor the level of reporter mRNA generated
in each cell of the strains created in this study. In order to
enhance the intensity of the FISH signals, and thus the sen-
sitivity (as well as accuracy and precision) of detection of
intracellular RNA molecules, we incorporated 24 copies of
the bacteriophage MS2 coat protein binding motif into the
3′UTR of the genomic reporter construct since this allowed
us to achieve a higher signal intensity with the smFISH
probes (Figures 1 and 2 and Supplementary Data section).
Examination of the smFISH data for the three promoters
combined with the (unstructured) control 5′UTR revealed
mean mRNA copies per cell of 38 (PTEF1), 10 (PPAB1) and
2.0 (PDCD1), respectively (Table 1 and Figures 2 and 3). The
mRNA copy numbers per cell across each cell population
fit either unequivocally to a negative binomial distribution
(PTEF1 and PPAB1) or fit to a distribution that appears to lie
somewhere between negative binomial and Poisson (PDCD1).
However, in the latter case the exact nature of the distri-
bution is less easily judged because the mean is so close to
zero (Figure 3). These results are consistent with stochastic
fluctuation between promoter on and off states (36), but do
not exclude the operation of other models in which the pro-
moter may manifest multiple levels of activity (37,38). As
expected, the coefficient of variation (CV) for mRNA copy
number per cell decreases with increasing promoter strength
(compare, for example, the L0 constructs in Table 1).

Modulation of mRNA cell-to-cell heterogeneity by structure
in the 5′UTR

The three types of structural element mentioned above
were introduced into the 5′UTR in order to impose dif-
ferent combinations of transcription rate and translation
rate (Figure 1 and Supplementary Figure S1). Minor se-
quence adjustments were introduced to maintain a compa-
rable inhibitory capacity for each stem–loop structure as we
switched from one reporter gene to another (Supplemen-
tary Figure S1). Each upstream AUG was engineered to cre-
ate an uORF that overlaps with, and terminates within, the
reporter gene ORF in the +1 reading frame. Overlapping
uORFs are known to occur in a number of natural eukary-
otic transcripts (39 and references therein). In addition, in
two constructs a stem–loop (either M1 or M3) was com-
bined with the same uORF (creating M1U and M3U), thus
reflecting combinations of multiple translation-inhibiting
elements that are known to occur in natural mRNAs.

We assessed whether the cell-to-cell variation in intracel-
lular mRNA abundance was affected by our set of 5′UTR
structural elements. There was a striking consistency in
both the mean abundance and the variation in abundance
across the respective PTEF1 and PPAB1 constructs (Table 1).
Figure 3A strikingly illustrates the absence of any signifi-
cant effect of stem–loop structures on mean mRNA abun-
dance or copy-number heterogeneity. On the other hand, it
has been demonstrated previously that a poly(G) sequence
(G18) blocks the 5′-3′ exonuclease activity of Xrn1, thus
leading to the accumulation of deadenylated and decapped
mRNAs (40,41; Supplementary Figure S2). Recent work
has shown that a continuous sequence of guanines in DNA
manifests proton NMR spectra indicative of higher order
structure once the number of Gs reaches 12 or more (form-
ing G-quadruplexes, four-stranded helical structures held
together by a guanine core; 42). In this study, we have used
one poly(G) sequence that is shorter (G10) than this thresh-
old length, and one that is longer (G14). The smFISH data
indicate that the G10 motif has little effect on mRNA abun-
dance, whereas G14 has a major impact. It is notable that
the CV value for transcript abundance is not significantly
affected in response to incorporation of G14 (Table 1), de-
spite the fact that the copy number is increased (overall by
approximately 1.8-fold) by virtue of a reduced rate of 5′-3′
exonucleolytic mRNA degradation.

5′UTR structure promotes increased noise

Previous results have suggested that under conditions of
active translation, mRNAs with structured 5′UTRs might
interconvert dynamically between sub-populations with
folded and unfolded stem–loops, respectively (43, 44). We
accordingly tested the hypothesis that the structural ele-
ments inserted into the 5′UTR of our genomic constructs
(Figure 1 and Supplementary Figure S1) could act as noise
generators at the level of translation. Our assessment of
the degrees of inhibition imposed by different structural el-
ements (Supplementary Figure S1) allowed us to identify
which of the structures tested would constrain the overall
expression rate from the PTEF1 promoter to match the rates
of the PPAB1 and PDCD1 promoters. We selected from the
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Figure 2. smFISH measurements of mRNA copies per cell. (A–C) Randomly selected images of cells revealing foci labeled with Quasar 670––tagged
probes targeted to the multiple bacteriophage MS2 motifs in the 3′UTRs. (D–F) mRNA foci in individual cells identified and counted as described in the
Supplementary Data section.

Figure 3. Distributions of mRNA (yEGFP) counts per cell. (A) Overlaying the distributions for PTEF1(L0) and PTEF1(M3) reveals no significant effect
of inserting the M3 stem–loop structure into the 5′UTR. Panels B and C show the corresponding data for PPAB1(L0) and PDCD1(L0), respectively. (D)
Overview of the data shown in A–C. The key statistical data are summarized in Table 1. The data obtained with the PTEF1 and PPAB1 promoters fit to
negative binomial distributions (A, B). In the case of PDCD1(C), it is difficult to distinguish between negative binomial and Poissonian fits.
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Table 1. mRNA and protein noise values

Construct mRNA copies per cell Reporter fluorescence per cell* Reporter fluorescence per cell*

yEGFP ymNeonGreen#

No. cells
(smFISH) � CV (%) � CV (%) � CV (%)

PTEF1
L0 211 38 ± 11 29.5 1560 11.8 ± 0.5 3050 12.2 ± 0.3
U – nd nd 526 12.4 ± 0.6 nd nd
M1Ug 526 35 ± 10 28.3 408 13.1 ± 0.6 nd nd
M3g 285 38 ± 12 30.8 226 16.0 ± 0.4 nd nd
M3Ug 394 37 ± 9.5 25.8 ea ea nd nd
G10 417 37 ± 10 27.1 448 12.9 ± 0.5 nd nd
G14 313 63 ± 16 25.9 ea ea 317 15.4 ± 1.5
M3Wn – nd nd nd nd 1143 13.1 ± 0.8
M3n – nd nd nd nd 579 13.3 ± 0.5
M3Un – nd nd nd nd 377 13.9 ± 0.6
PPAB1
L0 647 10 ± 3.8 37.8 288 13.8 ± 0.2 495 13.7 ± 0.4
M1Ug 324 10 ± 4.2 41.6 ea ea nd nd
G10 316 10 ± 4.1 41.2 ea ea nd nd
PDCD1
L0 554 2 ± 1.5 73.4 ea ea 150 21.3 ± 0.8†

*These are gated values for protein fluorescence (including a defined number of cells; see Supplementary Data section).
#The stem–loop structures (M3Wn, M3n and M3Un) are similar, but not identical, to those inserted
upstream of yEGFP (suffixed with g in Supplementary Figure S1).
†Partial overlap with endogenous autofluorescence.
ea: not calculated because of overlap with autofluorescence.
nd: not determined.

promoter/5′UTR combinations tested as described in Sup-
plementary Figure S1 a subset that were then placed up-
stream of the yEGFP reporter gene (Table 1 and Supple-
mentary Table S1). However, as a result of wanting to ex-
amine the widest possible range of reporter expression rates,
we found that the yEGFP fluorescence intensity profiles of
some of our weakest expressing constructs were not fully re-
solved from the endogenous autofluorescence emission pro-
files of the host cell (Supplementary Figure S3). We there-
fore performed parallel experiments using a yeast-optimised
version of the recently described intensely fluorescing re-
porter mNeonGreen (45; Table 1) in order to eliminate un-
certainty about the expression characteristics of the weaker
constructs (Figure 4; Supplementary Figure S3). We also
performed other technical controls to verify the reliability
of the flow cytometry measurements (Supplementary Fig-
ure S3).

Cell-to-cell heterogeneity in a non-synchronized popula-
tion of cells will capture a range of distinct cell states. Part
of this overall picture is that variations in the activities of
components of the machineries that are responsible for gene
expression will contribute to variations in the rate at which
cells progress through the cell cycle (46). In order to under-
stand how these extrinsic factors contribute to the cell-to-
cell heterogeneity observed in our experiments, we utilized
a modified version of the approach described previously in
which noise in flow cytometry data is assessed as a function
of the gating radius centred around the medians of the for-
ward (FSC) and side (SSC) scatter parameters (24; Supple-
mentary Data section). This procedure takes advantage of
the fact that scattering parameters reflect the physical het-
erogeneity of cell populations, allowing selection of cell sub-
populations that are less varied in terms of cell shape, size

and cell-cycle stage, thus reducing the contribution of ex-
trinsic factors to overall noise. The outcome of such analy-
sis in this context is that it highlights principally the intrinsic
component of the total noise.

Seen in the context of the minimal differences in tran-
script abundance heterogeneity across the respective con-
structs, examination of these flow cytometry data re-
veals that the introduction of stable secondary structures
into the 5′UTR causes posttranscriptional gene expres-
sion noise (Figure 4, Table 1). For example, compari-
son of PTEF1M3 with the other genomic constructs re-
veals that the M3 stem–loop structure, whether alone or
combined with an uORF (as in M3U), causes increased
noise relative to the control mRNA lacking added sec-
ondary structure (PTEF1L0) and also relative to constructs
in which the 5′UTR contains a less stable secondary struc-
ture (PTEF1M1, PTEF1G10). It is also notable that the G14
element (PTEF1G14), which strongly inhibits both the Xrn1
exonuclease and the scanning ribosome, causes a major in-
crease in noise (as measured with ymNeonGreen). More-
over, insertion of either M3 or G14 into the 5′UTR down-
stream of the PTEF1promoter can generate gated noise val-
ues that are equal to or greater than those measured for
PPAB1L0 (Table 1).

Very low transcription of the mNeonGreen gene from the
PDCD1L0 construct results in a reporter fluorescence profile
that overlaps with host autofluorescence (Supplementary
Figure S3). Accordingly, the result obtained with PDCD1L0
allows us to make a less precise gated estimate of cell-to-cell
heterogeneity for the encoded mNeonGreen reporter pro-
tein of ≤0.21 (21%). Moreover, the trend in CV values ob-
served as we increase the inhibitory impact of structures in-
serted into the 5′UTR indicates that, if we could measure ac-
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Figure 4. Gated flow cytometry data for reporter constructs. (A) Analysis
of flow cytometry data to determine the relationship between the gate ra-
dius and CV(%) for constructs containing yEGFP. Ten experiments were
performed for each of the genomic constructs; this panel illustrates the
variation in CV values for three of these constructs. Using a gate radius of
4000 (dashed vertical line in panel A), we obtained plots of CV(%; solid
bars) versus mean fluorescence intensity values (hatched bars) for yEGFP
(B) and for ymNeonGreen (C) constructs. The greater fluorescence inten-
sity of ymNeonGreen enabled us to distinguish fully the fluorescence in-
tensity distributions of PTEF1(M3Un) and PTEF1(G14) from host cell aut-
ofluorescence, and to distinguish partially the distribution for PDCD1(L0)
(Supplementary Figure S3).

curately the noise associated with inhibitory structures even
more stable than M3 and G14, these would extend into the
range 0.15-0.20 (15-20%). Overall, while noting that the ab-
solute total (protein) noise values for yEGFP and ymNeon-
Green will be influenced by the degradation rates for these
respective reporter proteins (see Discussion of the influence

of reporter structure in the Supplementary Data section),
we can see a consistent enhancement of noise by transla-
tional inhibition (Table 1). Indeed, these data reveal that,
in the presence of inhibitory structures in the 5′UTR, addi-
tional noise is generated that is of similar magnitude to the
noise enhancement observed when switching from a strong
promoter (PTEF1L0) to a much weaker promoter (PPAB1L0,
PDCD1L0).

Differentiation of intrinsic and extrinsic noise components

We wanted to obtain more accurate information about the
intrinsic and extrinsic components of gene expression noise
observed with the respective reporter mRNAs. Following
earlier work (13), this involved the characterization of the
expression ratio between two constructs that have identical
promoters and 5′UTRs but different reporter genes (yEGFP
and mRuby3). Since extrinsic noise factors affect the two
constructs simultaneously and in principle equally, the ra-
tio between their expression levels reflects the intrinsic noise
components. We chose to build back-to-back genomic ex-
pression constructs in order to perform this analysis on a
range of our 5′UTRs (Figure 5A). In each construct, two
independently acting copies of a promoter (either PTEF1 or
PPAB1) were arranged in a divergent orientation in order to
avoid any transcriptional interference (which can only oc-
cur when two promoters are configured to be convergent,
tandem or overlapping; 47). There is a striking consistency
in mean fluorescence intensity and CV values for yEGFP in
single- and dual-reporter configurations (Figures 4 and 5;
Table 1 and Supplementary Table S2; Supplementary Data
section). However, the most remarkable feature of the dual
reporter data is that they highlight the impact of 5′UTR
structure on the intrinsic component of gene expression
noise. In particular, a stable stem–loop structure (e.g. M3)
is seen to boost the intrinsic noise component. The gated
data follow the same trend in terms of noise (Figure 4; Sup-
plementary Table S2), and there is a marked inverse propor-
tionality between the gated measurements of mean fluores-
cence and CV2 (as well as CV) for the respective genomic
constructs (Figure 6 and Supplementary Figure S5). This is
consistent with the results of an earlier proteome-wide anal-
ysis in S.cerevisiae (24), although in the case of our data
the different noise levels are specifically linked to transla-
tion events. Our analytical procedure (Supplementary Data;
Figure S4) incorporates independent normalization of the
data sets for the respective reporter genes.

Modelling ribosomal scanning noise

We investigated the ability of a suitably formulated model
incorporating mRNA folding/unfolding intended to repre-
sent inhibition of ribosomal scanning events. Starting from
a previously reported model (15), we have incorporated
a folding step that allows reversible formation of an in-
hibitory secondary structure in the mRNA 5′UTR (Supple-
mentary Data section, Figure 7 and compare Supplemen-
tary Figure S6). Inclusion of this step allows us to simulate
the contribution of stochastic translation inhibitory events
to overall gene expression noise. We have explored how
selection of the parameters for folding/unfolding of sec-
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Figure 5. Dual reporter analysis of gene expression noise. Methodological details are described in the Supplementary Data section. (A) Overall design of
the genomic dual reporter constructs. Each yEGFP construct (see Figure 1) was combined with a second, oppositely oriented construct that was identical
except that the yEGFP gene was replaced by the mRuby3 gene. Plots of intrinsic, extrinsic and total noise versus gate radius show exemplar data from single
experiments with the dual (PTEFI-transcribed) reporter constructs bearing the 5′UTRs L0 (B) and M3g/r (C). Panel D shows the relationship between
gate radius and intrinsic noise from six repeat experiments performed with each of the dual reporter constructs (colour-coded). The vertical broken line
corresponds to a gate radius of 4000, which defines the subset of cells whose fluorescence data are used for comparative noise analysis. (E) Summary of
the results obtained from all of the experiments (data shown in Supplementary Table S2), showing average values and standard deviations for total noise
(blue bars), extrinsic noise (red bars) and intrinsic noise (green bars). In each construct, the same (indicated) 5′UTR is inserted upstream of both of the
reporter genes.

ondary structure affects the predicted behaviour of the sys-
tem. Both the predicted thermodynamic stability of a stem–
loop, and the folding/unfolding kinetics, are predicted to
influence noise generation. Computational modelling thus
illustrates how expression stochasticity driven by mRNA
folding/unfolding can be as significant as promoter-driven
noise (Figure 7; Supplementary Figure S6). Overall, the
model provides a useful tool for predicting the impact of
inhibitory elements on gene expression noise.

Analysis of genome-wide expression and noise data

Our observations with reporter gene constructs lead to the
testable hypothesis that a range of endogenous mRNAs
with structured 5′UTRs are likely to manifest translation-
generated noise. We decided to analyse previously published
data sets in order to extract information relevant to this
question. This cannot be achieved simply by assessing ex-
pression data generated by published genome-wide mea-
surements using reporter fusions, since this type of earlier
work did not determine translation rates. We have therefore
taken advantage of an alternative approach, based on the
observation that the DEAD-box RNA helicase Ded1 is re-
quired for optimal translation of mRNAs bearing longer,
more complex, 5′UTRs (48). Translation efficiency mea-
surements from a recent high-throughput study that high-
lights the impact of a DED1 mutation on yeast mRNAs (49)

identifies a group of mRNAs whose translation is restricted
by their structured 5′UTRs. We have compared these trans-
lation data with intrinsic noise estimates for equivalent
genes obtained via a single fluorescent reporter colour ap-
proach that compares expression from one type of reporter
(YFP) fusion present in either one or two copies in other-
wise isogenic diploid yeast cells (50). It should be pointed
out that there is a degree of uncertainty about the precise
comparability of expression data in studies that have not
determined the stabilities of the respective reporter-fusion
mRNAs and proteins. Despite this uncertainty, we regard
the outcome of this initial comparison as a useful indicator
of whether there exists a trend in terms of a detectable rela-
tionship between 5′UTR structure and noise. We find that a
subset of mRNAs whose translation efficiency is strongly
dependent on Ded1 manifests significantly higher mean
noise values than those of the total group (see Supplemen-
tary Data section). Overall, increased dependence of trans-
lation efficiency on Ded1 activity correlates with increased
intrinsic noise values. The data suggest that the magnitude
of this effect is at least comparable with the impact on (tran-
scriptional) noise of the TATA box (Supplementary Data
section and refs 31,32).
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Figure 6. Gene expression noise in relation to 5′UTR structure. Log10
mean fluorescence vs log10 gated noise strength (CV2) for yEGFP (A) and
ymNeonGreen (B) genomic constructs. Standard deviation values are rep-
resented by the error bars on the plots. The data points in blue correspond
to PTEF1 constructs, and are labeled according to the structural elements
inserted into the 5′UTR. The purple data point in each panel corresponds
to PPAB1(L0). Schematic drawings illustrate potential stochastic confor-
mational interconversions of a stem–loop structure (C) and of a poly(G)
structure (D).

Figure 7. Computational modeling illustrates how translational bursting
could generate noise. (A) A scheme showing reversible stochastic events
in the gene expression pathway, featuring promoter on (D1) and off (D0)
states) and mRNA (5′UTR) folded (Rf) and unfolded (Ru) states. P is pro-
tein, and �R and �P are degradation rates for mRNA and protein, respec-
tively. (B) Predicted dependence of noise in protein level as a function of
the kinetic parameters of mRNA folding/unfolding.

DISCUSSION

One route via which the translation process can contribute
to gene expression noise is by amplifying the fluctuations in
mRNA template abundance generated by varying promoter
function: the translation machinery is thought to gener-
ate peaks of protein molecule abundance from the bursts
of mRNA produced from each promoter. The amplifica-
tion effect can be significant: for example, in exponentially
growing yeast, a molecule of one of the more stable mRNA
species (t1/2 ≥ 30 min) can act as the template for the pro-
duction of >2000 protein molecules. The variations in pro-
tein abundance are expected to reflect the fluctuations in
mRNA abundance in a relationship influenced by the rates
of synthesis and degradation of protein as well as by the
rate of cell growth (51). Indeed, it has been concluded else-
where that observed correlations between codon usage and
expression noise are related to the ability of translation ef-
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ficiency to amplify transcriptional noise (26,52). Perhaps
somewhat confusingly in this context, translation efficiency
(the average number of protein molecules produced from
each mRNA molecule) is commonly referred to as ‘transla-
tional bursting’ (20), which can be formalized as the prod-
uct of a rate parameter and a duration parameter (related
to decay and dilution rates; 52). In this scenario, it has been
assumed that expression pulse duration is determined pre-
dominantly by transcription while translation is the domi-
nant process in setting the amplitude.

Studies of the noise profiles of proteome-wide GFP fu-
sions have previously revealed an inverse relationship be-
tween protein abundance and noise (23–25). However, these
studies have generally not resolved the sources of the noise
for the respective genes. Here, we have recreated this type
of inverse relationship for individual genes by varying the
degree of translational inhibition imposed by structural el-
ements in the 5′UTR (Figure 6 and Supplementary Figure
S5). This suggests that the overall noise profiles of many
eukaryotic genes represent the sum-total of contributions
from both transcriptional and posttranscriptional mecha-
nisms. Indeed, we find that the introduction of an inhibitory
structure into the 5′UTR can have a comparable effect on
gene expression noise to that observed upon changing from
a strong promoter to a weak-to-medium promoter. In other
words, it is predicted that noise induced by translational
inhibition can represent a significant component for those
genes whose 5′UTRs bear sufficiently stable structural ele-
ments. The results of our analysis of previously published
data on structured mRNAs are consistent with this expec-
tation, but the underpinning hypothesis requires dedicated
experimental testing (see below). The existence of this type
of mechanism for generating translational noise could help
explain discrepancies that have been observed between pre-
dictions of noise behaviour from transcriptional bursting
models and actual noise measurements (52).

Inhibitory structures are present in the 5′UTRs of a size-
able subset of eukaryotic mRNAs that includes many reg-
ulatory mRNA species (53,54). Intriguingly, many of the
hundreds of yeast mRNAs with highly structured 5′UTRs
have as yet uncharacterized functions (and could have regu-
latory roles; 55). Moreover, studies of the effects of synthetic
stem–loop structures on the expression of reporter mRNAs
have revealed a predictable relationship between the free en-
ergy of stem–loop folding/unfolding and the degree of in-
hibition imposed on translation initiation (54). Thus post-
transcriptional noise generation of this type is likely to have
broad significance in the context of the evolution of global
gene expression profiles (56). Furthermore, uORFs can also
affect the posttranscriptional control of gene expression in
different ways, depending on their structure, length and po-
sition relative to the main ORF (54, 57). Recognition of the
start codon of the type of uORF used in this study (Supple-
mentary Figure S1) causes more than half of the scanning
ribosomes to bypass the main ORF start in the +1 reading
frame, thus reducing translation of the reporter gene by the
equivalent amount. The fact that, in the absence of a stem–
loop structure, such an uORF does not enhance noise sug-
gests that stochasticity does not simply respond to changes
in gene expression rate per se.

It seems likely that the mechanism underpinning transla-
tional noise generation involves repeated folding-unfolding
cycles of each structural element inserted into the 5′UTR
(Figures 6 and 7). Interconversion between more or less
stable higher-order structures will allow randomly timed
bursts of scanning through this type of structural element.
RNA helicases that are known to promote ribosomal scan-
ning are likely to be involved in the structural rearrange-
ments of both types of element. However, it is important to
emphasise that we do not know the kinetics of interconver-
sion of folded and unfolded states in vivo. We can imagine,
for example, that the 5′UTRs of a large proportion of a pop-
ulation of a certain species of mRNA might be blocked by
a folded structural element for most of the lifetimes of these
molecules. As a consequence, a 5′UTR structural element
may constrain the number of translationally active mem-
bers of even a comparatively large mRNA population to a
small number.

Poly(G) stretches occur quite widely in diverse genomes
in a range of locations (for example in promoters, telom-
eres and 5′UTRs; 42,58). The G14 motif selected for use
in this study is likely to have an intermediate propensity to
form a stable G-quadruplex structure (42), consistent with
its ability to inhibit translation initiation in yeast by approx-
imately 90% (Table 1; Supplementary Figure S1). This con-
trasts with the almost 100% inhibition observed with a G18
motif (34,41). The inhibitory influence of the G10 motif is
detectable (Figure 4; Table 1), but its comparatively weak
impact on translation (and lack of influence on mRNA sta-
bility) is consistent with its inability to form a stable G-
quadruplex. Since the G14 element will not change the rates
of deadenylation and decapping, the steady-state numbers
of reporter mRNA molecules that are capped/adenylated
and capped/deadenylated are unlikely to be changed by the
presence of this motif (Supplementary Figure S2). These
5′-capped molecular forms are prioritized as templates for
translation, suggesting that the increased noise associated
with the presence of G14 is created by stochastic processes
during scanning that control the access of the ribosomal
pre-initiation complex to the reporter start codon.

In conclusion, a combination of experimental and ana-
lytical approaches has revealed that inhibitory structures in
the 5′UTR of mRNA can act to promote noise. By mea-
suring both mRNA copy numbers and protein fluorescence
intensity in single cells, we have been able to show that the
inhibitory elements we have used do not increase noise by
modulating transcription or by accelerating mRNA degra-
dation. Since there is a large body of published evidence in-
dicating that 5′UTR structural elements influence either, or
both of, the steps of ribosomal recruitment and scanning
(54,59,60), our data suggest that the observed noise gen-
eration is associated with changes in translation initiation,
most likely affecting the ribosomal scanning process. Our
observations contrast with a model in which translation
simply acts as an amplifier of transcriptional noise, paint-
ing a more complex picture in which structural elements in
the 5′UTR contribute to the generation of (irregular) pulses
of gene expression. In the presence of a stable structural
element in the 5′UTR, translational noise adds a layer of
additional stochasticity on top of the noise intrinsic to the
transcription process and is therefore likely to contribute to
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the large differences in CV values observed for proteins ex-
pressed at similar levels in yeast (24). We have also recently
found that restricting the translation efficiency of essential
protein synthesis machinery genes in yeast increases their
expression noise to atypically high levels (61).

In a wider context, we note that previous work has
demonstrated the existence of marked (nongenetic) cell-
to-cell variation in the content of mRNA and protein per
cell in both lower and higher eukaryotes (1,62). In this
study, we have demonstrated the existence of a transla-
tional (5′UTR-mediated) mechanism for generating such
noise. This leads to the hypothesis that, for at least a subset
of naturally occurring mRNAs, a component of the pro-
tein noise in eukaryotic cells is attributable to stochasticity
linked to 5′UTR structure. Our initial bioinformatic anal-
ysis reveals correlations between 5′UTR structure, transla-
tion efficiency and noise, thus indicating that it would be
informative to conduct a wider study of the relationship
between noise and translational inhibition on endogenous
mRNAs in lower and higher eukaryotes. In addition, our
results will inform synthetic genetic circuitry design for a
range of organisms. For example, given that noise suppres-
sion can be advantageous in terms of achieving predictable
and reliable circuit behavior (63), knowledge of the princi-
ples governing translational noise generation will help guide
the tuning strategies used to engineer an optimal balance
between transcription and translation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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