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A B S T R A C T   

Due to its advantages of having a high power-to-weight ratio and being energy-efficient, the 
electro-hydraulic servo pump control system (abbreviated as EHSPCS) is frequently employed in 
the industrial field, such as the electro-hydraulic servo pump control (EHSPC) servomotor for 
steam turbine valve regulation control. However, the EHSPCS has strong nonlinearity and time- 
varying features, and the factors that cause system performance degradation are complex. Once a 
system failure occurs, it may lead to serious accidents, causing serious casualties and economic 
losses. To address the above issues, a system health assessment method based on LSTM-GRNN- 
ANN (LGA) deep neural network is proposed in this paper. Firstly, with oil volume gas con-
tent, servo motor air-gap flux density, and system leakage coefficient as the health assessment 
performance indicators, a health assessment performance index system for the EHSPCS is built, 
Furthermore, the system performance index threshold is set. Secondly, an LGA deep neural 
network is constructed by combining LSTM, GRNN and ANN, and a deep neural network based on 
the LGA is used to create an EHSPCS health assessment model. Subsequently, system feature 
parameter extraction, algorithm design, and parameter debugging are carried out. Finally, an 
EHSPCS experimental platform is established, typical system failure simulation experiments are 
designed, and comparative experimental analysis is conducted. The experimental findings 
demonstrate that the average accuracy of the system health assessment model based on the LGA 
deep neural network suggested in this paper is 96.37%, compared to 89.84%, 87.99% for LSTM 
and GRNN, which validates the accuracy of the system health assessment model based on the LGA 
deep neural network.   

1. Introduction 

The power industry’s most used primary mover device is the steam turbine. Being a crucial component of the steam turbine unit, 
the hydraulic servomotor modifies the high-pressure steam intake volume by altering the inlet valve, hence regulating the system 
power and being crucial to the unit’s performance [1]. A volume servo integrated powertrain, which offers the benefits of a high 
power-to-weight ratio, short response time, good control performance and low cost, is adopted by an EHSPCS [2], and is widely used in 
aerospace [3], wind power [4], vessel [5], engineering machinery [6] and other fields. In recent years, with the continuous break-
throughs in servo motor technology, the EHSPCS’s control precision and reaction time have been greatly improved. The working time 
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in complex and harsh environments has become longer and longer, and the requirements for performance and safety have also become 
higher [7]. This has led to more and more technicians and enterprises researching and promoting the use of EHSPC technology [8,9]. 
However, the EHSPCS multiple subsystems such as mechanical, electronic, hydraulic, and control, with strong nonlinearity and 
time-varying characteristics. Under internal and external disturbances of the system, there are motor torque fluctuations, quantitative 
pump pressure pulsation, and system leakage. In addition, coupled with complex failure mechanisms and other unknown factors, the 
system is easy to appear degradation and failures [10]. In order to prevent serious consequences caused by the degradation or failure of 
the system’s health status, operators must timely acquire the operating status of mechanical equipment. Therefore, it is particularly 
important to quickly and accurately assess the system’s health state. 

In the 1970s, the United States had already proposed the concept of the integrated vehicle health management (IVHM) in the 
aerospace field, aiming to build a comprehensive management system for real-time analysis and processing of aircraft health state 
[11]. With the continuous development and optimization of information processing and artificial intelligence methods, researchers 
have also achieved new breakthroughs in the health assessment methods of electro-hydraulic servo systems. Kim [12] applied wireless 
sensors for status monitoring in system maintenance and management, and developed a method for extracting data features using the 
Boruta algorithm, which achieved stability assessment of the hydraulic system’s various components’ current operational state. 
Kosova [13] presented a feature extraction method based on linear discriminant analysis (LDA) to reduce the dimension of features. 
Macaluso [14] proposed a PHM health assessment system based on critical factor analysis and detection (FMECA), which enabled 
accurate assessment of system status with fewer sensors. Duan [15] presented a fuzzy comprehensive evaluation (FCE) health 
assessment method based on enhanced risk coefficient optimization, which reduced subjective judgment errors caused by expert 
experience and improved the accuracy of health assessment. Mei [16] proposed a method that combines the cloud models with the 
Dempster Shafer evidence theory and achieved health status assessment of complex hydraulic systems. 

Based on the strong adaptability, self-learning and nonlinear mapping capabilities of neural network, different types of neural 
network were also widely employed in the health assessment research of the electro-hydraulic servo systems. Gareev [17] proposed a 
neural network health assessment method based on gated convolutional autoencoder, which achieved accurate recognition of hy-
draulic system status in a short period of time, with an average assessment accuracy of over 99%. In order to determine the state value 
boundary of the power system, Lu [18] established a new ISF based game, proposed ensemble learning of LSTM to obtain predicted 
states, and used parameter Gaussian distribution to describe the uncertainty of the states. Chen [19] proposed a new two-layer 
nonlinear combination method, EELELM, which utilizes long short term memory neural network (LSTM), elman neural network 
(ENN), and extreme learning machine (ELM) to respectively predict wind speed. Simulation results show that higher accuracy levels 
can be achieved. Keleko [20] proposed a condition monitoring (CM) method based on the DNN and multi-sensor data, which improved 
the system health assessment model’s robustness. Song [21] proposed a system health assessment model of hydraulic on the basis of 
the GRNN, established an adaptive health baseline assessment system, and achieved the switching of assessment models and adaptive 
threshold adjustment under different working conditions. Nie [22] developed a real-time thermal network modified models inno-
vatively using artificial neural networks, which uses trained models and online data to calibrate parameters and analog the deterio-
ration of online EHA performance, for the health management (PHM) and prognosis (PH) of EHA in real-world operating 
circumstances. 

In summary, scholars had made many key advances and technological achievements in the health assessment of electro-hydraulic 
servo systems. However, there is relatively little research on the health assessment of the EHSPCS, and there is no public literature 
published in the field of the EHSPC servomotor. The application of neural network also extracts features separately from temporal or 
spatial dimensions, which has certain limitations. At the same time, there has been no research on deep aggregation of LSTM, GRNN, 
and ANN (BP) neural networks. Therefore, based on the analysis of performance indicators for health assessment of the EHSPCS, this 
article proposes an LSTM-GRNN-ANN (LGA) deep neural network health assessment method that integrates LSTM, GRNN, and ANN 
(BP). This method captures the mutual influence relationship between system parameters from both time and space dimensions, which 
can further improve the accuracy of health assessment, provide theoretical support for the health assessment research of EHSPCS. 

The main innovations of this article are as follows:  

1) On the basis of theoretical analysis, performance indicators such as oil gas content, servo motor air-gap flux density, and system 
leakage coefficient are proposed innovatively. Moreover, an EHSPCS health assessment performance index system is established, 
and the performance index threshold of the system is further set.  

2) Taking advantage of the fast computation speed or strong ability in forecasting of LSTM, GRNN, and ANN (BP), an LSTM-GRNN- 
ANN (LGA) deep neural network health assessment method combining LSTM, GRNN, and ANN (BP) is proposed. This method 
extracts feature parameters from both temporal and spatial dimensions and handles the interrelationships between parameters. 
Finally, an EHSPCS health assessment model is established based on this method for the health assessment of the EHSPCS. 

2. Principle and mathematical modeling of the EHSPCS for servomotor 

2.1. Servo motor model 

The EHSPCS researched in this article is divides into three parts: hydraulic, electrical and mechanical. The hydraulic part consists of 
a servo motor, an axial quantitative piston pump, an accumulator, two one-way valves, two relief valves, a cylinder, and hydraulic 
accessories. The EHSPCS adopts the principle of volume control. The servo motor drives the axial quantitative piston pump coaxial; 
The discharge and suction ports of the pump are directly connected to the low and high pressure load chambers of the cylinder; The 
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accumulator connects the low-pressure chamber of the system to replenish oil to the system through the one-way valve; The relief 
valve provides pressure overload protection for the system; The cylinder changes the high-pressure steam intake air of the turbine by 
adjusting the opening of the inlet valve. The system composition and working principle is shown in Fig. 1. 

2.2. Mathematics modeling of the EHSPCS 

2.2.1. Servo motor model 
This article adopts a servo motor vector control method based on rotor magnetic field orientation. When the EHSPCS reaches steady 

state, the servo motor model can be shown as Eq. (1): 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Te =
3
2

φfpniq

Uq = Lq i̇q + Rsiq + Keωe

Te − TL = JLω̇m + Bmωm

(1)  

where Te is electromagnetic torque, Uq is the q-axis component of stator voltage, φf is the permanent magnet flux, Pn is the pole pairs, iq 
is the q-axis equivalent component of stator current, Lq is the q-axis equivalent inductance of stator inductance, Ke is the back emf 
coefficient, Rs is the stator resistance, ωe is the rotor angular velocity, TL is the load torque, JL is the equivalent rotational inertia, Bm is 
the damping coefficient, and ωm is the mechanical angular velocity. 

2.2.2. Axial piston pump model 
Considering the compression and leakage of the axial piston pump, Eq. (2) displays the pump’s intake and exit flow: 

{
q1 = Dp · np − Cip
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/
βe

q2 = Dp · np − Cip
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p1 − p2

√
+ Cep

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p2 − p0

√
+ V2ṗ2

/
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(2)  

where q1 and q2 represent the pump’s intake and exit flow, p1, p2 and p0 represent the pump’s high-pressure, low-pressure sides and oil 
discharge pressures, np is the pump speed, Dp is the pump displacement, Cip and Cep represent the pump’s internal and external leakage 
coefficients, V1 and V2 are the pump’s outlet and inlet sides compressed volume, and βe is the oil’s effective bulk modulus. 

2.2.3. Straight through one-way cone valve model 
The one-way valve can achieve one-way flow of oil. Due to the presence of viscous damping, there is a certain pressure drop when 

the oil passes through the one-way valve. Eq. (3) represents the interrelation between flow and pressure difference: 

qc =Δpe
1

0.2pk − 0.2 =(pa − p0)
1

0.2pk − 0.2 (3)  

where qc is the flow of the one-way valve, Δpe is the one-way valve’s pressure difference, pa is the accumulator’s outlet pressure, and pk 
is the one-way valve’s opening pressure. 

2.2.4. Single rod piston hydraulic cylinder model 
Engineering machinery usually uses a single rod piston hydraulic cylinder as the actuator, ignoring coulomb friction and distur-

bance force. The mathematical model can be shown as Eq. (4): 
{

qL = Acẋc + CtcpL + VtṗL/(4βe)

AcpL = mcẍc + Bcẋc + Kxc + FEL
(4) 

Fig. 1. Composition and working principle of the EHSPCS. 1: Servo motor; 2: axial quantitative piston pump; 3: Oil drain filter; 4.1/4.2: One-way 
valve; 5.1/5.2: Relief valve; 6: Accumulator; 8: cylinder. 
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where qL is the load flow, Ac is the cylinder’s effective working area, xc is the piston rod displacement, Ctc is the total leakage coefficient 
of cylinder, Vt is the total compressed volume, pL is the load pressure, mc is the converted load’s total mass, Bc is the viscous damping 
coefficient for the piston and load, K is the spring stiffness at load equivalent, and FEL is external force acting as a load on the piston. 

2.2.5. Oil drain filter model 
To prevent scratches and blockages on pump, valves, and cylinder in the system, an oil drain filter needs to be placed. The 

interrelation between pressure difference, flow and flow area of the filter passage of the filter is expressed as Eq. (5): 

Qf =CdKAAf0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
(
pf1 − pf2

)/
ρ

√

(5)  

where Qf is the filter’s output flow, Cd is the flow coefficient, KA is the effective area coefficient, Af0 is the initial filtration area, pf1 and 
pf2 are the filter’s inlet and outlet pressures, and ρ is the oil’s density. 

Based on the hydraulic schematic diagram and mathematical models of various key components mentioned above, a simulation 
model of the EHSPCS is built using MATLAB/Simulink software for determining the system performance index threshold, algorithm 
design, and parameter debugging. 

3. Establishment of the health assessment performance system for the EHSPCS 

3.1. Analysis of factors influencing health assessment performance 

The main task of establishing a health assessment performance indicator system is to determine performance indicators. Taking 
into account the factors that affect the operational status of the EHSPCS, this paper analyzes the three aspects of transmission medium, 
power input, and system efficiency to determine the performance indicators for system health assessment. 

3.1.1. Analysis of hydraulic oil compressibility 
Hydraulic oil, as the power transmission medium of the system, is a key factor to ensure stable output of the system. Oil 

compressibility is a major performance indicator of hydraulic oil, often characterizes by the effective volume elastic modulus E, as 
shown in Eq. (6): 

E= − V
(

dp
dV

)

(6)  

where p is the oil’s working pressure, and V is the oil’s volume. 
The effective volume elastic modulus is mainly affected by the oil’s working pressure, temperature, and gas content, and its 

relationship can be simplified as Eq. (7): 

E=Esap − mΔp + nΔT (7)  

where Esap is the volume elastic modulus at standard atmospheric pressure, m is the pressure change coefficient of volume elastic 
modulus, Δp is the pressure change, n is the volume elastic modulus ’s temperature change coefficient. and ΔT is the temperature 
change. 

When the system is in a steady-state state, the steady-state value fgH of air mass void fraction set according to Herry’s law is directly 
proportional to the oil pressure. The steady-state mathematical model for a given air mass void fraction can be expressed as Eq. (8) 
[23]: 

fgH =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fg (p ≤ pv)

fg0

(

1 −
p − pv

ps − pv

)

(pv < p ≤ ps)

0 (p > ps)

(8)  

where fg0 is the initial amount of air in the oil, pv is the liquid phase saturated vapor pressure, and ps is the air separation pressure. 
Typically, the volume elastic modulus of pure oil does not change much with pressure and temperature, while the oil’s gas content 

has a significant impact on the volume elastic modulus. One of the major variables affecting system performance is the effective 
volume elastic modulus of the oil, which falls as the gas content rises. 

3.1.2. Analysis of torque features of servo motor 
As the power source of the EHSPCS, servo motor is the foundation for ensuring the establishment of system pressure and the output 

of actuator force. Eq. (9) displays the servo motor’s output torque: 

TL =Te − Tf − JL
dωm

dt
+ Bmωm (9) 
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According to Eq. (9), without considering the mechanical losses of the motor (Tf = 0), The motor’s load torque Te is determined by 
the electromagnetic torque Tem of the motor. According to the Maxwell stress tensor method, Tem can be obtained as shown in Eq. (10) 
[24]: 

Tem =
2Pnlef

μ0

∮

l
r2Bn(θ)Bτ(θ)dθ (10)  

where TemT is the theoretical electromagnetic torque, lef is the iron core ’s axial length, μ0 is the vacuum permeability, r is the pole 
diameter at any point on the integral curve, Bn(θ) and Bτ(θ) represent the normal and normal components of the air-gap flux density. 

A motor’s operating characteristics are significantly influenced by the air-gap density of the motor. The air-gap flux density’s 
harmonic componen can cause an increase in electromagnetic torque fluctuation and vibration of the motor, affecting the smoothness 
of the motor’s output torque [25]. 

3.1.3. Analysis of system leakage 
System oil leakage is the main reason for system low efficiency and slow pressure building and regulation. The axial piston pump 

and the single rod piston hydraulic cylinder are the two primary components of the system that leak in this article. The leakage of axial 
piston pump is divided into gap leakage Qldp between the cylinder block and valve plate, gap leakage Qlp between the piston and the 
inner wall of the cylinder body, and leakage Qlsp between the ball joint pair composed of the sliding shoe and the plunger. The total 
leakage Qtlp can be expressed as Eq. (11) [26]: 

Qtlp =Qldp +Qlp +Qlsp =
φdrdδ3

d

12μld
p1 +

πdpδ3
p

(
1 + 1.5ε2

p

)

12μ
∑n

i=1

pcpi

Lpi
+

πδ3
s

6μ ln(r2/r1)

∑n

i=1
pcpi (11)  

where φd is the leakage angle of the oil allocating pair, rd is the radius of the flow distribution shaft, δd is the gap between the rotor and 
plunger, μ is the oil dynamic viscosity, ld is the contact length, dp is the plunger diameter, δp is the oil clearance of the plunger pair, εp is 
the eccentricity of the plunger, pcp is the pressure difference between the low and high pressure chambers, Lp is the length of the contact 
surface between the cylinder block and plunger, δs is the slipper pair’s oil clearance, r1 and r2 are the slipper pair oil sealing belt’s inner 
and outer radius. 

The leakage Qcl of cylinders mainly occurs in the annular gap between the piston and cylinder body, which can be expressed as Eq. 
(12): 

Qcl =
πdch3

c

12μlc
Δpc ±

vc

2
πdchc (12)  

where dc is the hydraulic cylinder piston diameter, vc is the speed of the piston rod, hc and lc respectively represent the height and 
length of the clearance between the piston and the cylinder barrel’s inner wall. When the speed direction is consistent with the pressure 
difference direction, "+" is taken, and vice versa, "-" is taken. 

According to Eqs. (11) and (12), the system is affected by load pressure, which further affects the flow output and stable operation 
of the system. The system leakage coefficient can be used to characterize the size of the system leakage and reflect the operating status 
of the EHSPCS. 

3.2. Establishment of health assessment performance indicators 

Based on the analysis of factors affecting health assessment performance, this article takes the oil volume gas content, servo motor 
air-gap flux density, and system leakage coefficient as system health assessment performance indicators, and combines engineering 
practice to provide performance indicator thresholds for identifying the system in health, degradation, and failure states. The range of 

Table 1 
Parameters table of the EHSPCS.  

Physical quantity Symbol Value Unit 

Cylinder’s effective working area Ac 71 mm2 

Total compressed volume Vt 900 mL 
Total mass of converted load mc 2000 kg 
Pump displacement Dp 1.5 mL/r 
Viscous damping coefficient Bc 150 N/(m/s) 
Pump’s internal leakage coefficient Cip 1 × 10− 13 (m3/s)/Pa 
Pump’s external leakage coefficient Cep 1 × 10− 13 (m3/s)/Pa 
Cylinder’s total leakage coefficient Ctc 1 × 10− 13 (m3/s)/Pa 
Effective volume elastic modulus βe 6.5 × 108 Pa 
Load equivalent spring stiffness K 9 × 107 N/m 
Accumulator initial gas volume Vc0 200 mL 
Accumulator initial pressure pc0 3 MPa 
Accumulator initial oil volume V0 200 mL  
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performance indicators for health assessment of the EHSPCS proposed in this article is derived from the Pump Control Oil Servomotor 
Fund project. It is required that the maximum overshoot of the system pressure should not exceed 0.5 MPa and the error at steady-state 
should not exceed 0.2 MPa when the input step pressure signal of the EHSPCS is 0–14 MPa. When the maximum overshoot of the 
system pressure is greater than 1 MPa or the steady-state error exceeds 0.5 MPa, it will cause damage to other equipment, and it is 
considered that the hydraulic system unable continue working. In addition, when the pressure on the suction side of the hydraulic 
pump is less than 0.1 MPa, it is also considered that the system is in a faulty state. 

A single variable pressure step response simulation experiment was conducted using the established EHSPCS simulation experi-
mental platform. The system parameters are shown in Table 1. Further compare the maximum overshoot and steady-state error of the 
system output pressure with the project requirements, and determine the performance threshold of the system under failure, degra-
dation, and failure states as shown in Table 2: 

4. Health assessment of LGA deep neural network for the EHSPCS 

The health assessment methods for hydraulic systems are divided into two types: methods based on failure physical models and 
data-driven assessment methods. Considering the difficulty in obtaining accurate failure physical models for EHSPCS, and the fact that 
the EHSPCS can accumulate a large amount of state data reflecting the system’s operating status during testing and use, this provides a 
data foundation for implementing data-driven health status assessment methods. This article proposes an LSTM-GRNN-ANN (LGA) 
deep neural network health assessment method that integrates LSTM, GRNN, and ANN (BP). 

4.1. Principles of LGA deep neural network 

The LGA deep neural network model consists of LSTM, GRNN, and ANN (BP), as seen in Fig. 2. The LSTM is applied to extract the 
features of temporal data in the time dimension; while the GRNN is applied to extract features of data in spatial dimensions. The ANN 
(BP) extracts feature and performance parameters fitting section, which is used to fit the nonlinear relationship between the extracted 
temporal and spatial data features and performance parameters. Compared to a single neural network, LGA neural network can capture 
the mutual influence between feature parameters and performance parameters from both temporal and spatial dimensions, which can 
improve the accuracy of health assessment models. 

The input for LGA deep neural network model in Fig. 2 is the feature parameter values, and the output is the performance in-
dicators. Time-series data is the feature parameter values arranged in chronological order by the EHSPCS. The “y1” output from the 
LSTM, the “y2” output from the GRNN, and the “Y” output from the ANN (BP) are all individual values, which are performance in-
dicators values. 

4.2. Extraction of feature parameters for LGA health assessment model 

The health assessment model needs to select feature parameters as inputs, and further extract the temporal and spatial features of 
the system through LSTM and GRNN, respectively. The extraction process of feature parameters is as follows:  

(1) Feature parameters extraction of the oil volume gas content: The compressibility of oil is influenced by factors such as the 
volume change ΔV of the oil, the pressure change Δp of the oil, the temperature change ΔT of the system, and the oil volume gas 
content. Among them, oil volume gas content has the greatest impact on the compressibility of the oil, but it is difficult to 
directly measure and interacts with other factors that affect the compressibility of the oil, Therefore, neural network can be used 
to predict the oil volume gas content by using the directly measured variables mentioned above.  

(2) Feature parameters extraction of the motor air-gap flux density: Servo motor’s air-gap flux density is influenced by factors such 
as controller output voltage U, motor q-axis current iq, and motor operating temperature T. However, the air-gap flux density 
cannot be directly measured. Therefore, neural network can be available to predict the air-gap flux density using the directly 
measured variables mentioned above.  

(3) Feature parameters extraction of the system leakage: The leakage of system is primarily affected by factors such as the inlet 
pressure p1 of pump, the outlet pressure p2, and the speed np of axial piston pump, but it is difficult to directly measure. 
Therefore, neural network are used to predict system leakage using the directly measured variables mentioned above. These 
variables can be collected through corresponding sensors on the testing platform, and the extracted feature parameters are 
shown in Table 3. 

Table 2 
Performance assessment threshold.  

Health status Oil volume gas content Air-gap flux density (T) Leakage coefficient 

Health ＜8% ＞1.75 ＜1.3 
Degradation 8%–15% 1.75–1 1.3–5 
Failure ≥15% ≤1 ≥5  
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4.3. Design of system health assessment model 

The health assessment model of the EHSPCS evaluates the degradation level based on health assessment performance indicators. 
The collected feature data is used as the original dataset of the model, with a portion of the dataset used as the training dataset to train 
the health evaluation model of the EHSPCS, and the other portion used as the testing dataset to test the accuracy of the health model 
evaluation. Three performance indicators correspond to one LGA neural network observer, and each LGA neural network observer 
corresponds to one LGA deep neural network. The structural principle of its model is shown in Fig. 3. 

The input of the LGA observer is the feature parameter values, and the output is the performance indicators. The corresponding 
relationship between the two is shown in Table 3. The specific instructions for the input and output quantities of each LGA observer are 

pp p p np

pp p p np

Y

x x

y y

p p p np

S S S nS

X X nX

XX

X X nX

Fig. 2. Principle of LGA deep neural network model.  

Table 3 
Feature parameters of LGA health assessment model.  

Performance indicators Serial number Feature parameter Symbol Unit 

Oil volume gas content 1.1 Outlet pressure of pump p1 bar 
1.2 Rotational speed of pump np r/min 
1.3 Oil temperature T K 
1.4 Inlet pressure of hydraulic cylinder p3 bar 
1.5 Load torque of servo motor TL N ·m 

Air-gap flux density of servo motor 2.1 Rotational speed of pump np r/min 
2.2 Operation temperature of servo motor T2 K 
2.3 Controller outputs control signals Ue mV 
2.4 q-axis current of servo motor iq mA 
2.5 Output torque of servo motor Te N ·m 
2.6 Load torque of servo motor TL N ·m 

System leakage coefficient 3.1 Rotational speed of pump np r/min 
3.2 Outlet pressure of pump p1 bar 
3.3 Inlet pressure of pump p2 bar 
3.4 Inlet pressure of hydraulic cylinder p3 bar 
3.5 Outlet pressure of hydraulic cylinder p4 bar 
3.6 Outlet flow of pump q1 L/min 
3.7 Inlet flow of pump q2 L/min  
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as follows:  

(1) The input of LGA observer 1 is the feature parameter values corresponding to the oil volume gas content, and the output is the 
oil volume gas content;  

(2) The input of LGA observer 2 is the feature parameter values corresponding to servo motor’s air-gap flux density, and the output 
is the servo motor’s air-gap flux density;  

(3) The input of LGA observer 3 is the feature parameter values corresponding to the system leakage coefficient, and the output is 
the system leakage coefficient. 

According to the performance indicator threshold in Table 2, set the health status classification label of the system as shown in 
Table 4. The output results of system health performance indicators of LGA observers in Table 4 are indexed to obtain the overall health 
status of the EHSPCS. 

4.4. Algorithm design and parameter debugging of LGA deep neural network 

The algorithm design of the health assessment model in this article is founded on the MATLAB software’s built-in neural network 
toolbox. The health assessment model is designed through parameter debugging of the invoked neural network function model 
through simulation. Collect 300 sets of state quantity data for each performance indicator of the system in both healthy and degra-
dation states on the experimental platform, and 400 sets of state quantity data in fault state, totaling 3000 sets. Import the raw data into 
the MATLAB workspace in chronological order, divide the raw data into training and testing datasets, and standardize the data for 
algorithm design and parameter debugging. 

4.4.1. GRNN module 
The standardized data in the MATLAB workspace is processed by invoking the maximum function max(), minimum function min(), 

mean function mean(), and mean square error function var() to obtain the feature matrix of the GRNN. Select the submatrix of the 
feature matrix as the network input, create a GRNN, and configure parameters. The number of neurons in the pattern layer and the 
summation layer is determined by the quantum particle swarm optimization algorithm, and the output layer is connected to the input 
layer of the ANN (BP) model. 

The feature selection of GRNN has a significant impact on the accuracy of health assessment. In order to analyze the impact of each 
feature combination on the model evaluation results, different feature combinations were input into the model for training. The 
average prediction accuracy is obtained through the test, and the input feature group of the observer corresponding to the highest 
accuracy is selected as the input matrix of the GRNN module in each LGA observer to improve the accuracy of the overall health 
assessment results. 

The feature selection of GRNN has a significant impact on the accuracy of health assessment. In order to analyze the influence of 
each feature combination on the model assessment results, different feature combinations are input to the model for training, and the 
average prediction accuracy is obtained through the test, and the observer input feature group corresponding to the highest assessment 
accuracy of the model is selected, and it is used as the input matrix of the GRNN module in each LGA observer to improve the overall 
accuracy of health assessment results. 

Y

Y

Y

m

x x

h h h mh

m

x x

h h h mh

m

x x
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Fig. 3. Health assessment model of the EHSPCS.  
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4.4.2. LSTM module 
Compose the standardized data in the MATLAB workspace into an input matrix in chronological order, create an LSTM, and 

configure parameters. The network consists of two hidden layers, connected by Dropout to prevent overfitting, and the output is 
constrained by ReLU activation function. The output layer consists of a fully connected layer and a softmax layer, which are connected 
to the input layer of the ANN. The network optimizer is Adam. 

The learning rate and batch processing volume of the main hyperparameters of the LSTM have a significant impact on the accuracy 
of the assessment results. To analyze the impact of each hyperparameter on the model, the single variable principle is adopted. During 
each training, only one variable’s value is changed, and other variables are fixed for simulation experiments. The results are shown in 
Fig. 4. 

From Fig. 4A, the assessment accuracy shows a trend of first increasing and then decreasing as the number of learning rates in-
creases. When the learning rate is 0.01, the assessment accuracy of the model is the highest, so 0.01 is set as the learning rate during the 
training process; From Fig. 4B, the assessment accuracy tends to decrease as the batch processing volume increases. When the batch 
size is 16, the assessment accuracy of the model is the highest. Therefore, 0.01 and 16 are set as the learning rate and maximum batch 
processing during the training process, respectively. The hyperparameter values of other LSTM are shown in Table 5. 

Table 4 
Feature parameters for LGA health assessment model.  

Oil volume gas content Air-gap flux density of servo motor System leakage coefficient Label 

H H H 1 
H H D 2 
H H F 3 
H D H 2 
H D D 2 
H D F 3 
H F H 3 
H F D 3 
H F F 3 
D H H 2 
D H D 2 
D H F 3 
D D H 2 
D D D 2 
D D F 3 
D F H 3 
D F D 3 
D F F 3 
F H H 3 
F H D 3 
F H F 3 
F D H 3 
F D D 3 
F D F 3 
F F H 3 
F F D 3 
F F F 3 

Note: H represents health, D represents degradation, and F represents failure. 

Fig. 4. Assessment accuracy under different learning rates and batch processing volumes. Figure A: Assessment accuracy for different learning rates; 
Figure B: Assessment accuracy of different batch processing volumes. 
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4.4.3. ANN(BP)module 
The input matrix X of the ANN (BP) is obtained by combining the outputs of LSTM and GRNN. The ANN’s (BP) structure is as 

follows: 
The input layer has two neurons for inputting the outputs of GRNN and LSTM. 
The output layer has one neuron for outputting performance parameters. 
There are two hidden layers in the middle, where each hidden layer’s total number of neurons is determined by the improved 

quantum particle swarm optimization (QPSO) algorithm. 

4.4.4. QPSO algorithm 
The QPSO algorithm is based on swarm optimization algorithms to find the optimum for the target task, where particles represent a 

feasible solution. This article uses QPSO to maximize the number of neurons in two hidden layers of a neural network. The range of 
values for each hidden layer’s number of neurons is [5500]. The goal task is to accurately predict the performance indicators values, 
and the calculation process is shown in Fig. 5. 

5. Design of performance indicators test 

5.1. Test platform 

A test platform for the (steam turbine) pump control servomotor was built as shown in Fig. 6. Through functional valve blocks, the 
servo motor, axial piston pump, hydraulic valves, and sensor are incorporated into the cylinder. T he mechanical spring is connected to 
the cylinder by a abutment to simulate the load, and necessary electrical components including the shaft controller and servo driver are 
integrated within the electric control cabinet [7]. 

The main component models of the hydraulic system are shown in Table 6. 
The experimental platform is equipped with torque, flow, pressure, and temperature sensors for measuring torque, flow, pressure, 

and temperature signals in the feature parameters. Other feature parameters signals such as control signals, phase currents, and pump 
output speed can be directly read from the servo motor driver. 

5.2. Design of experimental content 

Based on the performance indicators analysis in the previous text, the hydraulic system of the pump control servomotor is modified, 
and oil gas content failure simulation test, servo motor air-gap eccentricity failure simulation test, and system oil leakage failure 
simulation test are designed for verifying the feasibility of the proposed a system health assessment method using LGA deep neural 
network. 

5.2.1. Oil gas content failure simulation test 
This article analogs an oil containing gas failure by connecting a valve block (3.1, 3.2) with different cavities in series between the 

axial piston pump and hydraulic cylinder. The outlet and inlet of the valve block are connected to the cylinder and pump through two 
sets of shut-off valves, as shown in Fig. 7. 

It is necessary to complete the filling and exhaust of the system before the gas content simulation test. After the filling and venting 
operation, the oil’s initial mass gas content in the system is about 8.05 × 10− 6, with a volumetric air content of about 3%. The air 
content control valve block is equipped with cavities of different volumes. The volumes of each cavity are calculated based on the air 
content of 4%, 6%, 8%, 10%, 12%, 14%, and 16%.During the test, open the shut-off valves at both ends of the corresponding cavities 
with different volumes in sequence for simulation testing. Download the program written by AutoThink software to the HollySys 
motion controller, use the software program to give the system a step pressure signal command of 0–14 MPa, and collect the system’s 
state signal through sensors. After each test is completed, the system needs to be filling and venting operation. 

5.2.2. Servo motor air-gap eccentricity failure simulation test 
In practical work, servo motor are not only contaminated by dust and hydraulic fluid, but also have problems such as structural 

wear, strong electromagnetic interference, and load impact, which makes the motor prone to failure during operation. Among them, 
the thermal effect of the stator winding phase current of the servo motor will cause copper loss in the stator winding, which will reduce 
the air gap magnetic density of the motor, thus affecting the low-speed characteristics and torque output of the motor. The occurrence 
of air-gap eccentricity failure in permanent magnet synchronous motors will increase the effective value of stator winding phase 
current and increase the copper loss of the winding. 

This article designs a motor failure eccentricity test to validate the accuracy of the health assessment model in predicting 

Table 5 
Hyperparameters of LSTM.  

Max Epochs Dropout Layer Learn Rate Gradient Threshold LearnRate DropPeriod LearnRate DropFactor 

16 0.1 0.01 0.9 125 0.2  
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performance indicators such as air-gap flux density. However, due to limited experimental conditions, this article uses a controller to 
limit the voltage output to the synchronous motor to simulate motor static eccentricity failure. By software programming, the output 
pressure signals are limited to 95%, 93%, 91%, 89%, and 87% of the normal values. The program written by AutoThink software is 

Fig. 5. Process of quantum particle Swarm optimization algorithm.  

Fig. 6. Test platform for the pump control servomotor.  
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downloaded to the HollySys motion controller, and the step pressure signal command of the system is given as 0–14 MPa using the 
software program. The state signal of the system is collected as training and testing sample data for the health assessment model. 

5.2.3. System oil leakage failure simulation test 
The pump and cylinder may experience abrasion and increase axial clearance during long-term use, which can cause partial oil to 

directly return to the suction chamber from the oil discharge port, making the system flow unable to reach the rated flow rate, resulting 
in the inability to maintain system pressure and an increase in pressure steady-state error. 

This article uses electric-proportional throttle valves (9.1, 9.2) connected in series between the outlet and inlet ports of the cylinder 
and pump, respectively. By controlling the electric-proportional throttle valve opening to simulate different leakage faults in the 
system. Fig. 8 displays the experiment’s schematic diagram of the hydraulic system. 

By analyzing the sample of electronic-proportional throttle valve sample, the flow pressure drop curves of 11 throttle valves with 
different throttle opening degrees were selected, and the corresponding leakage coefficient was calculated as the expected perfor-
mance indicator. The specific operating steps for the system leakage simulation test are:  

(1) Follow the filling and venting operation steps in the oil gas content simulation test until there are no obvious bubbles in the oil 
flowing out of the reserved pressure measuring point;  

(2) Adjust the opening of the electric-proportional throttle valves to the preset position 2, download the AutoThink software 
program to the HollySys motion controller, and use the software program to give the system a step pressure signal command of 
0–14 MPa. When the system pressure remains a steady state, the system state signals are collected as training and testing sample 
data for the health assessment model; 

Table 6 
Information on the primary hydraulic parts.  

Serial number Name Model Parameters 

1 Servo motor HP11321-G202A Nominal torque: 23.5 N m 
Nominal speed: 3000 r/min 

2 Axial piston pump TFH-630-U-PCV-F Displacement: 6.3 mL/r 
Nominal speed: 21 MPa 

3 Accumulator NXQ-A-2.5/31.5-L-Y Nominal volume: 2.5 L 
Nominal pressure: 31.5 MP 

4 Pressure sensor PR110-3403-17-C3.37 Measurement range: 0–25 MPa 
5 Temperature sensor STC-C0120-B04-420A-1-50-F Measurement range: 0~ +120 ◦C  

Fig. 7. Hydraulic schematic diagram for oil gas content simulation test.  

Fig. 8. Hydraulic schematic diagram for system oil leakage failure simulation test.  
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(3) Respectively control the electric-proportional throttle valves to adjust the size of the throttle port to the preset positions 3, 4, 5, 
6, 7, 8, 9, 10, 11, 11.5, and repeat the previous operation;  

(4) Import the collected sample data into the MATLAB workspace for subsequent processing and application of the sample data. 

6. Experimental testing and result analysis 

6.1. Signal data preprocessing 

The working environment of EHSPCS in practical engineering applications is relatively harsh, usually with strong electromagnetic 
interference and circuit thermal noise. The electrical components used in the measurement system state sensor are more sensitive, and 
the output signal will inevitably be interfered, resulting in low or even unusable signal measurement accuracy. The health assessment 
model of the EHSPCS is a data-driven model. The collected signals of the EHSPCS state variables have a significant impact on the 
evaluation results, and noise signals may cause the model assessment results to be inconsistent with the actual state of the system, 
resulting in “false alarms”. Therefore, it is necessary to denoise the collected signals. 

Kalman filter is the optimal state estimator for linear Gaussian space models. It improves the accuracy of signal estimation by using 
dynamic systems containing uncertain factors, and is widely used in the field of health assessment. However, inaccurate prior in-
formation can cause an increase in Kalman filter estimation error and even filter divergence. The adaptive Kalman filter based on the 
IMM algorithm estimates the current state and covariance by setting a model set containing multiple motion states, and fusing the 
estimated values and covariance matrices between different model sets, thereby reducing estimation errors and avoiding filtering 
signal divergence. Therefore, this article uses an adaptive Kalman filter based on the IMM algorithm to filter the collected signals [27]. 
Filter and process the collected system pressure signal using an IMM adaptive filter in MATLAB. 

6.2. Experimental testing analysis 

The failure simulation test is conducted on the established test platform, collecting the state signals of the system under health, 
degradation, and failure during the failure simulation test, and processing them through an IMM adaptive filter as the dataset for 
training and testing the model. 

The oil gas content failure simulation test collects 300 sets of health and degradation status data for each system, and 400 sets of 
failure status data, totaling 1000 sets. 700 sets of data are randomly select as the training dataset for the model, and the remaining 300 
sets of data regard as the testing. By substituting the above data into the LGA deep neural network model for analysis, the health 
assessment results and health assessment error of oil gas content are shown in Fig. 9A and B, respectively. 

The servo motor air-gap eccentricity failure simulation test collected 300 sets of system health and degradation status data each, 
and 400 sets of failure status data, totaling 1000 sets. 700 sets of data are randomly select as the training dataset for the model, and the 
remaining 300 sets of data regard as the testing dataset for the model. By substituting the above data into the LGA deep neural network 
model for analysis, the health assessment results and health assessment error of air-gap flux density are shown in Fig. 10A and B, 
respectively. 

The system leakage failure simulation test collected 300 sets of system health status and degradation status data, and 400 sets of 
failure status data, totaling 1000 sets. 700 sets of data are randomly select as the training dataset for the model, and the remaining 300 
sets of data regards the testing. By substituting the above data into the LGA deep neural network model for analysis, the health 
assessment results and health assessment error of the system leakage coefficient are shown in Fig. 11A and B, respectively. 

From Figs. 9–11, it can be seen that the error between the assessment value of oil gas content and the theoretical value is less than 5 
× 10− 3, the error between the assessment air-gap flux density value and the theoretical value is less than 5 × 10− 2, the error between 
the assessment value of the system leakage coefficient and the theoretical value is less than 0.02. 

The prediction results are indexed into the system health table to obtain the health assessment results of the LGA deep neural 
network as shown in Fig. 12C and compared with the assessment results of the LSTM shown in Fig. 12A and the GRNN shown in 
Fig. 12B. The results are shown in Fig. 12D. 

From the above graph figure, it can be seen that the average accuracy of the LSTM health assessment model is 89.84%, the GRNN 
health assessment model average accuracy is 87.99%, and the average accuracy of LGA deep neural network health assessment model 
can reach up to 96.37%. The aforementioned findings indicate that the health assessment model suggested in this article can accurately 
evaluate the health status of the EHSPCS. 

7. Conclusion 

The health status assessment method of the EHSPCS for servomotor is investigated in this study. The variables influencing the 
operation’s status of the EHSPCS are analyzed. With oil gas content, servo motor air-gap flux density, and system leakage coefficient as 
the system’s health evaluation performance indicators, a health assessment performance indicators system of the system is established. 
The performance index thresholds of the system under health, degradation, and failure are set, and the feature parameters that affect 
the changes in performance indicators are given. Based on this, a health assessment method based on LSTM-GRNN-ANN (LGA) deep 
neural network is proposed. LSTM and GRNN are used to extract the feature parameters of performance indicators in both temporal 
and spatial dimensions, and ANN (BP) is used to fit the nonlinear relations between performance parameters and data features. The 
QPSO is used to optimize the parameters of the LGA deep neural network, and an LGA deep neural network-based health assessment 
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model for EHSPCS is established. Experimental testing shows that the health assessment model’s average accuracy based on LGA deep 
neural network proposed in this article is 97.48%, which has higher accuracy compared to LSTM and GRNN evaluated separately. A 
theoretical and technical foundation for the dependable operation of EHSPCS will be provided by this study. The next step is to 
optimize the health indicator system and evaluation model of EHSPCS and attempt practical engineering applications. In addition, 
enhancing the intelligence of health assessment and improving the self-learning, self optimization, and adaptive capabilities of al-
gorithms is of great significance for future work. 
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