
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Spatial and Spatio-temporal Epidemiology 43 (2022) 100536

Available online 27 August 2022
1877-5845/© 2022 Elsevier Ltd. All rights reserved.

Using trajectory modeling of spatio-temporal trends to illustrate disparities 
in COVID-19 death in flint and Genesee County, Michigan 

Richard Casey Sadler a,*, Thomas W. Wojciechowski b, Zachary Buchalski c, Alan Harris d, 
Danielle Lederer e, Matt Peters f, Pamela Hackert g, C. Debra Furr-Holden h 

a Associate Professor, Michigan State University, Flint, MI, USA 
b Assistant Professor, Michigan State University, East Lansing, MI, USA 
c Data Analyst, Michigan State University, Flint, MI, USA 
d GIS Analyst, Michigan State University, Flint, MI, USA 
e Chief Epidemiologist, Genesee County Health Department, Flint, MI, USA 
f Epidemiologist, Genesee County Health Department, Flint, MI, USA 
g Medical Health Officer, Genesee County Health Department, Flint, MI, USA 
h C.S. Mott Endowed Professor of Public Health, Michigan State University, Flint, MI, USA   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
Spatial analysis 
Health inequalities 
Racial disparities 
Epidemiological methods 
Group-based trajectory modeling 

A B S T R A C T   

COVID-19′s rapid onset left many public health entities scrambling. But establishing community-academic 
partnerships to digest data and create advocacy steps offers an opportunity to link research to action. Here we 
document disparities in COVID-19 death uncovered during a collaboration between a health department and 
university research center. We geocoded COVID-19 deaths in Genesee County, Michigan, to model clusters 
during two waves in spring and fall 2020. We then aggregated these deaths to census block groups, where group- 
based trajectory modeling identified latent patterns of change and continuity. Linking with socioeconomic data, 
we identified the most affected communities. We discovered a geographic and racial gap in COVID-19 deaths 
during the first wave, largely eliminated during the second. Our partnership generated added and immediate 
value for community partners, including around prevention, testing, treatment, and vaccination. Our identifi
cation of the aforementioned racial disparity helped our community nearly eliminate disparities during the 
second wave.   

1. Introduction 

Early findings were essential for providing a baseline understanding 
of socio-ecological risk for COVID-19 death, including neighborhood 
sociodemographic characteristics. Berenguer et al. (2020) established 
higher mortality rates among older patients and patients with chronic 
diseases, with mortality rates defined here as the rate of death due to 
COVID-19 by those infected. Kim and Bostwick (2020) discovered a high 
degree of spatial autocorrelation between percent African-American and 
COVID-19 death rates in Chicago and remarked on how these disparate 
effects were due to the inherent racial inequality in American society. 
Andersen et al. (2021) likewise uncovered urban and Black populations 
as significant predictors of cases and deaths, while (Shim et al., 2020) 
found that communities with affected hospitals had higher COVID-19 
death rates (due, in part, to secondary transmission of the disease to 

healthcare workers). Political polarization, meanwhile, has hindered 
prevention efforts around SARS-CoV-2 transmission in the United States, 
as many communities have been manipulated into downplaying the 
severity of the pandemic (Makridis and Rothwell, 2020). 

Ample work has already been conducted on the use of spatial tools to 
model geographic clusters of COVID-19 deaths. Desjardins et al. (2020) 
were amongst the first to use space-time statistics to monitor the 
COVID-19 pandemic; they confirmed Detroit and southeast Michigan as 
one of the earliest hot spots. Urban and Nakada (2020) used various 
spatial analysis tools to pinpoint clusters in COVID-19 deaths, using 
their results to remark on the challenges of social distancing in areas 
marked by socioeconomic vulnerability. 

As these findings highlight, spatial tools are essential for under
standing determinants of COVID-19 death, especially as more and more 
findings reveal signature racial and socioeconomic disparities. Even so, 
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Andersen et al. (2021) recommended more local-level analysis of de
terminants. Here we take up their recommendation and build on past 
work on COVID-19 death disparities, exploring racial and sociodemo
graphic correlates of COVID-19 deaths in Flint and Genesee County, 
Michigan. 

Our study sought to identify factors that drove clustering and racial 
disparities in COVID-19 deaths during different points in the first year of 
the pandemic in Genesee County, Michigan. Genesee County is the home 
of Flint, which experienced a water crisis beginning in 2014 as a result of 
a state-directed infrastructure change that led to a widespread increase 
of lead in the municipal water system, as well as Legionella contami
nation (Zahran et al., 2018; Manson et al., 2017; Hanna-Attisha et al., 
2016). This environmental injustice on top of years of disinvestment and 
discrimination has created considerable health disparities (Sadler and 
Highsmith, 2016), resulting in this area becoming increasingly of in
terest to public health research. Some conditions for which Flint has 
disparate health outcomes include blood lead levels, trauma mortality, 
mental health, food insecurity, and asthma (Hanna-Attisha et al., 2016; 
Mikhail et al., 2016; Bergmans et al., 2019; Lewis and Sadler, 2021), to 
name a few. At the outset of the COVID-19 pandemic, Flint and neigh
boring Detroit represented two of the hardest-hit regions outside of New 
York City; ongoing water quality concerns have only exacerbated public 
health concerns (Hyde, 2020). Our analyses therefore sought to identify 
groupings of communities in Genesee County that demonstrated similar 
patterns of COVID–19 death risk during the first two waves of the 
pandemic. . We then worked to identify community-level predictors that 
produced variance in community COVID-19 death risk during these time 
periods. The potential for racial disparities in community-level deaths 
were examined while also accounting for variance in gender composi
tion, age composition, and community economic distress; all of which 
have been shown to potentially demonstrate disparities in COVID-19 
outcomes (Ahmed et al., 2020; Gausman and Langer, 2020; Mena 
et al., 2021). Total number of residents in each census block group (CBG) 
was also controlled for, as more populous CBGs may have had increased 
risk for reporting a COVID-19 death simply by virtue of having more 
residents who may have experienced this outcome. 

2. Methods 

2.1. Data 

Data for this study were provided by the Genesee County Health 
Department (GCHD) and approved for use by Michigan State Uni
versity’s IRB (STUDY00006123). Deaths stemming from positive 
COVID-19 diagnoses—based on detecting SARS-CoV-2 RNA in a clinical 
or autopsy specimen using a molecular amplification test (de Vries et al., 
2021; Williamson et al., 2021)—were compiled by the health depart
ment and identified by the day the case was diagnosed. A total of 657 
COVID-19 deaths were identified in the study period in Genesee County. 
Our team then geocoded 100% of these deaths to the residential address 
for initial spatial analyses. CBGs ranged from 0 to 11 COVID-19 deaths 
within a given testing interval. Data from 3/1/20–1/16/21 were utilized 
in the analyses. These data were split into two waves (described in 
Measures section in greater detail). These points were also aggregated to 
the CBG level (373 areas) for trajectory modeling. CBG aggregation 
provided the highest resolution for identifying more subtle trends while 
providing the largest N, linkage of data to census demographic infor
mation, and still ensured confidentiality and anonymity. All other data 
were taken from estimates from the American Community Survey 
(Manson et al., 2017) or computed from data provided by the GCHD. 

All analyses were split into two waves for several reasons. First, the 
data available to the research team spanned 25 total data points, and 
nuance was lost when conducting full analyses because of a lull in deaths 
and cases during summer 2020. Second, and relatedly, COVID-19 testing 
scope increased a great deal between waves, with three additional 
testing sites added to Genesee County during this time. Further, 

endeavors to improve testing broadly have been undertaken in this time 
(Eberhardt et al., 2020; Rice et al., 2021). While this is likely to have a 
greater effect on case counts, identification of cases and linking them to 
deaths specifically certainly could impact the capacity to attribute 
deaths to COVID-19 accurately. Finally, we also assessed deaths sepa
rately by each wave, as this facilitated determination of whether any 
identified disparities changed as our understanding of COVID-19 
improved and new policy and programming endeavors were under
taken. Decisions like these to delineate data based on testing differences 
have also been observed in prior work, with research on the HIV 
pandemic being one prominent example (Johnson et al., 2017). 

2.2. Measures 

Our dependent variable examined in analyses was a binary variable 
providing an indication of whether or not a given CBG reported a 
COVID-19 death during each specified two-week testing intervals. 
COVID-19 mortality data were tracked beginning 3/1/20 and ending 1/ 
16/21, resulting in a total of 23 testing intervals. Binary variables were 
used for each two-week testing period which delineated CBGs reporting 
having a COVID-19 death during that testing period from those who 
reported no such deaths (0=No; 1=Yes). Given our focus on Black racial 
disparities in COVID-19 deaths during each case wave, our independent 
variable was the racial composition of each CBG. This variable provided 
a proportion of Black residents living in each CBG. We included several 
additional control variables in analyses to control for potential con
founding, including gender, proportion of seniors, and economic 
distress. Gender composition was a proportion of male residents in each 
census block group, and was calculated by dividing the number of male 
residents by the total number of residents living in each CBG. Proportion 
of senior residents was calculated by dividing the number of residents 
aged 65 years and older by the total number of residents in each CBG. 
Economic distress was calculated in an index, and was comprised of a 
non-weighted sum of z-scores of four census block group-level variables 
including: percent of households living below the poverty line, unem
ployed, less than HS education, and single parent households. We also 
controlled for the total number of residents living in each CBG. We 
controlled for population to ensure deaths would account for differences 
in risk based on more or less populated CBGs. The COVID-19 death data 
were provided by the GCHD and every other variable in the study were 
taken from the 2019 American Community Survey data. 

2.3. Analytic strategy 

2.3.1. Group-Based trajectory modeling 
Our analytic strategy included several phases. In a preliminary 

assessment of our COVID-19 death data, we used relative risks (RRs, 
calculated as the absolute risk among Black residents divided by the 
absolute risk in all other groups) to identify racial disparities over time 
in Flint and Genesee County (Schmidt and Kohmann, 2008; Simon, 
2001). Our first formal phase utilized group-based trajectory modeling 
(GBTM) to identify patterns of change and continuity in COVID-19 
deaths within each two-week testing interval (Nagin, 2005) (N = 373 
for each two-week testing interval). This modeling involves the iterative 
process of fixing of polynomial functions of varying complexity and 
number to a set of longitudinal outcome data until a set of trajectory 
groups is identified as providing the best model fit to the data. Poly
nomial complexity could be any of the following growth patterns for 
each group: intercept-only, linear, quadratic, or cubic. The method as
sumes that a set of longitudinal response data is comprised of a mixture 
of a finite number of groups with census block groups assigned mem
bership to a given group. Group membership is designated based upon 
maximum likelihood estimation and construction of a likelihood func
tion. Calculation of this likelihood function is critical, as this facilitates 
identification of the optimum number of groups and their complexity 
and also how census block groups are assorted across those groups in a 
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manner that best fits the data. The combinations of individual trajec
tories are summarized as trajectory groups an indexed by j for a given 
model. The likelihood function is written as a mixture of J conditional 
likelihoods Pj(Yi), where Pj(Yi) is the probability of observing the lon
gitudinal sequence in area i. These conditional likelihoods are defined 
by the Bernouilli distribution with success probabilities modeled as a 
polynomial function of degree . The random selection of a census block 
group is then denoted by πj in order to form the unconditional proba
bility of the data: P(Yi)=

∑J
j πjPj(Yi). For a given set of j, conditional 

independence is assumed for the sequential measurements of Yi across a 
set of longitudinal responses. This assumption of independence in prior 
measurements greatly reduces model complexity and provides tracta
bility for modeling, though there remain concerns over how justifiable 
this assumption is. Nagin (2010) provides additional details on this 
aspect of model estimation. Nested model fit is ascertained through 
examination of Bayesian Information Criterion (BIC) statistics (testing of 
k vs. k + 1 groups in a model based on how well the indexing of census 
block gros into trajectory groups fits to the data overall). BIC is calcu
lated as BIC=kln(n)− 2ln(L) where L is equal to the maximized value of 
the likelihood function calculated in the first equation, k is equal to the 
number of parameters in the model, and n is the sample size. Units of 
analysis are assigned probabilities of membership to each group in the 
model and then actually assigned membership to a given trajectory 
group based on which group they had the highest probability of 
assignment to. These probabilities are based on each unit’s response 
trajectory across time. In addition to BIC, Nagin (2005) also identified 
several additional fit criteria that a model should meet to be selected as 
the best fitting. These include: posterior probabilities of assignment 
exceeding 0.7 for all groups, average odds of correct classification 
exceeding 5 for all groups, and 95% confidence intervals that are rela
tively tightly bound around each identified trajectory group. Two 
models corresponding to the first and second waves of COVID-19 case 
surges/deaths are estimated in the analyses.1 The binary dependent 
variable of COVID-19 mortality for each CBG during each two-week 
testing interval were used to identify similarities in patterns among 
CBG and sort them into trajectory groups in each model. The outcome 
variables actually assessed in regression analyses are then based on the 
assignment of CBGs into trajectory groups and looking at how the in
dependent variables impact assignment of CBGs into the COVID-19 
mortality trajectory groups. 

The first set of GBTM analyses examined the range of COVID-19 
death data beginning 3/1/20 and ending 6/20/20. These time points 
were chosen because testing data first became available on 3/1/20, and 
because the testing period ending at 6/20/20 represented the lowest 
case counts observed in these data. At that time, 90% of CBGs reported 
zero cases. The second set of GBTM analyses examined the time ranging 
from 8/16/20–1/17/21. The date of 8/16/20 was chosen as a starting 
point because this was a low point in the summer lull that also began the 
second wave, where around 70% of CBGs reported zero cases. This 
percentage of CBGs with zero cases decreased considerably to around 
40% at the next testing interval and continued this steady decline 
through the peak of the second wave. Data tracking for the second wave 
was terminated on 1/17/21 because case count data saturation was 
reached at this point, as adding more testing interval data points from 
the near future beyond this testing interval did not meaningfully alter 
findings. 

2.3.2. Logistic regression 
The second phase of analyses entailed the use of multivariate 

regression to understand how the race composition of CBGs influenced 
odds of assignment to trajectory groups. While the GBTM method is a 
somewhat inductive process of model identification that may theoreti
cally result in any given number of groups, these analyses indicated that 
two-group models best fit the data for both the first and second waves. 
As such, logistic regression was chosen as the modeling choice because 
binary outcome variables could easily be computed from these trajec
tory model group assignments. This facilitated more accurate estimation 
of effects given the departure from normality that binary outcomes 
entail. This is then calculated as Yi~Bernouilli(μi) with logit(μi)=beta*x, 
with x a matrix containing the intercept and covariates. Model co
efficients are displayed as odds ratios (OR). These ORs indicate the 
predicted difference in the odds of being assigned to the 1 category 
(high), relative to being assigned to the 0 category (low), based on a one- 
unit difference in a given independent variable, net of all other cova
riates. For the main independent race variable, this would then be 
interpreted concretely as how having a higher or lower proportion of 
Black residents comprising a given CBG increased or decreased the odds 
of being assigned to a given Covid-19 deaths trajectory group. Stata/MP 
16.1 was utilized to conduct all of the analyses described in this. 

2.3.3. Getis-Ord Gi* Hot Spot analysis 
Additionally, reflecting the mapping we provided to the GCHD to aid 

in response efforts, we used individual point-level data to conduct Getis- 
Ord Gi* Hot Spot analyses for each wave. This process uses the presence 
of death as a weight of 1 and all other cases not resulting in death as a 
weight of 0, resulting in the identification of significant clusters of 
COVID-19 death in our study area (signified by the confidence level of 
hot as well as cold spots). To erase individual points and retain confi
dentiality, Thiessen polygons were created from these results showing 
the areas where COVID-19 death was significantly more or less likely. 

3. Results 

To give us an initial impression of racial and geographic disparities in 
COVID-19 death, we began our analyses by computing RRs of dying 

Table 1 
Logistic Regression Model of Covariate Effects on Odds of Assignment to the H1 
COVID-19 Death Trajectory Group Relative to Assignment to the L1 Trajectory 
Group in Odds Ratios (OR) (N = 373).   

OR p- 
Values 

95% Confidence 
Interval 

Proportion of Black Residents 3.881 .004 1.537 9.797 
Proportion of Male Residents .007 .001 <0.001 .305 
Distress Index 1.028 .560 .936 1.130 
Proportion of Residents Aged 65 

Years or Older 
36.365 .026 1.524 867.602 

Total Number of Residents 1.001 <0.001 1.000 1.001 
Constant .533 .556 .066 4.331  

Table 2 
Logistic Regression Model of Covariate Effects on Odds of Assignment to the H2 
COVID-19 Death Trajectory Group Relative to Assignment to the L2 Trajectory 
Group in Odds Ratios (OR) (N = 373).   

OR p- 
Values 

95% Confidence 
Interval 

Proportion of Black Residents 1.113 .800 .485 2.558 
Proportion of Male Residents 1.298 .870 .058 29.201 
Distress Index .952 .252 .876 1.035 
Proportion of Residents Aged 65 Years 

or Older 
49.369 .010 2.564 950.737 

Total Number of Residents 1.001 <0.001 1.000 1.001 
Constant .215 .111 .032 1.422  

1 The two waves are visually identifiable when examining death count and 
case count data for both Michigan as a whole and for Genesee County (State of 
Michigan, 2021). The data explorer tool available through the previous citation 
allows for identification of trend in deaths across time which clearly indicate a 
bimodal distribution that provides impetus for the analytic approach chosen 
wherein individual waves are analyzed. 
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from COVID-19 by week for African-Americans versus all other races. 
Supplementary Table 1 shows the RRs for the first wave, with African- 
Americans having a much higher risk of COVID-19 death throughout 
that time period in both Flint and Genesee County (an average of be
tween 3 and 4 times higher). Supplementary Table 2 shows the RRs for 
the second wave. For Genesee County, a slight disparity still persists, 
with an average RR of 1.34 (not nearly as high as in the first wave), but 
the City of Flint shows virtually no disparity, with an average RR of 1.01. 

Supplementary Table 3 provides descriptive data for all variables 

included in analyses. Table 1 provides logistic regression estimates for 
the first wave trajectory model, whereas Table 2 provides these esti
mates for the second wave trajectory model. 

The GBTM analyses examining the first wave of data identified a two- 
group model (Fig. 1). The Y-axis in Fig. 1 represents the odds that a 
COVID-19 death will be reported by CBGs in each trajectory group 
during each testing interval. N here will refer to the number of CBGs 
included in a given group. The two-group model indicated better fit 
based on BIC compared to the one group and three group models 

Fig. 1. First Wave COVID-19 Death Trajectory Model Aggregated by Census Block Group.  

Fig. 2. Second Wave COVID-19 Death Trajectory Model Aggregated by Census Block Group.  
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(1=− 671.46; 2=− 668.42; 3=− 677.31). The selected model also pro
vided the best nested model fit based on BIC and also met all other 
criteria for selection identified by Nagin (2005). To be specific, the 
chosen model provided adequate fit based on posterior probabilities of 
assignment exceeding 0.7 for all groups (Group 1: 0.781; Group 2:.930) 
and 95% confidence intervals were tightly bound around each group, as 
can be observed in Fig. 1. The first group in the model was characterized 
by a near zero-death rate across the entire first wave, minus a minor 
increase early in the first wave. Because of this, this group is described as 
the First Wave Low or L1 model. 73.19% (N = 273) of CBGs were 
assigned membership to this group and was characterized by a quadratic 
polynomial function. The other group in the model was characterized by 
a high spike in odds of reporting a COVID-19 death during a given 
testing interval and is described as the First Wave High or H1 group. This 
group had the remaining 26.81% (N = 100) of the CBGs assigned 
membership to it and was characterized by a cubic polynomial function. 

Logistic regression analyses conducted on the first wave trajectory 
groups coded the H1 group in the 1 category and the L1 group in the 
0 category. Results indicated that CBGs with a greater proportion of 
Black residents had higher odds of assignment to the H1 trajectory group 
(OR=3.881). This is to say that, the higher the proportion of Black 
residents living in a CBG, the higher the odds that CBG would be 
assigned to the H1 trajectory group. CBGs with more total residents, 
with a greater proportion of female residents, and a greater proportion 
of senior residents also had higher odds of assignment to the H1 group. 

The GBTM analyses examining the second wave of data identified a 
two-group model (Fig. 2). The Y-axis in Fig. 2 represents the odds that a 
COVID-19 death will be reported by CBGs in each trajectory group 
during each testing interval. The percentage mentioned in the legend 
corresponds to the percentage of CBGs in a given group . The two-group 
model indicated better fit based on BIC compared to the one group and 
three group models (1=− 1111.63; 2=− 1062.49; 3=− 1128.64). The 
chosen model met Nagin (2005) criteria associated with average odds of 
correct classification and tightly bound confidence intervals. To be 
specific, the chosen model provided adequate fit based on posterior 
probabilities of assignment exceeding 0.7 for all groups (Group 1: 0.784; 
Group 2:.850) and 95% confidence intervals were tightly bound around 
each group, as can be observed in Fig. 2. The first group was charac
terized by near zero COVID-19 death rate during the time period of in
terest. For this reason, this group is described as the Second Wave Low or 
L2 group; 45.04% (168 CBGs) of CBGs were assigned membership to this 
group. This group was characterized by an intercept-only polynomial 
function. The second group in the model was characterized by a rela
tively high spike in odds of reporting a COVID-19 death during a given 
testing interval across the entirety of the second wave. For this reason, 
this group is described as the Second Wave High or H2 group. This group 
had the remaining 54.96% (205 CBGs) of CBGs assigned membership to 

Fig. 3. High Trajectory Groups and Getis-Ord Gi* Hot Spot Analysis Results for COVID-19 Deaths, Genesee County, 3/1/20–6/20/20 (First Wave).  
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it and was characterized by a quadratic polynomial function.2 

Logistic regression analyses conducted on the second wave trajectory 
groups coded the H2 group in the 1 category and the L2 group in the 
0 category. Results indicated that the ratio of Black residents in a given 
CBG was not a significant predictor of trajectory group assignment 
during the second wave. Having more senior residents and having more 
total residents were both associated with increased odds of assignment 
to the H2 group during the second wave. 

Figs. 3 and 4 illustrate the high groups identified in each of the two 
waves (in purple outline), as well as the significant cold and hot spots 
from the Getis-Ord Gi* Hot Spot analyses (in shades of blue and red, 
respectively). In Fig. 3 (representing the first wave), more of the H1 
group can be found in the City of Flint and Flint Township, corre
sponding closely to the contiguous hot spot. Most of the COVID-19 death 

hot spots in the first wave were clustered in this area dominated by 
poorer and African American residents. In Fig. 4 (representing the sec
ond wave), the H2 group is spread throughout the suburbs, with only a 
single CBG in the City of Flint falling in the H2 group. Generally, COVID- 
19 death hot spots in the second wave are much more dispersed, 
including in the suburbs of Montrose, Clio, Flushing, and Davison in 
addition to Flint Township. This illustrates the data furnished to the 
GCHD to aid in testing, advocacy, and vaccine decision-making and 
indicates the utility of the GBTM method for facilitating this endeavor. 

3.1. Holistic analysis 

Supplementary analyses examined the entirety of the trajectory data 
in a single model, rather than broken down into waves 1 and 2. Fig. 5 
provides visual depiction of the best fitting model. This model was 
generally consistent with the main analyses, as two groups separately 
identified the delineated death risk between the two waves (Late Surge, 
Early Surge). Further consistent with the main analyses, having a greater 
proportion of Black residents was associated with increased risk of 
assignment to the Early Surge group and lower risk of assignment to the 
Late Surge group. Additionally, a Moderate Chronic trajectory group 
was identified that demonstrated some degree of death risk across the 
entire study period. The only thing that seemed to distinguish this 
Moderate Chronic group was having more total residents compared to 
the Late Surge group. 

Fig. 4. High Trajectory Groups and Getis-Ord Gi* Hot Spot Analysis Results for COVID-19 Deaths, Genesee County, 8/16/20–1/17/21 (Second Wave).  

2 The model selected did not fully meet all Nagin (2005) criteria, as posterior 
odds of probability did not exceed .7 and average odds of correct classification 
did not exceed 5 for the L2 group. This model, however, was the only option 
that presented with tightly bound 95% confidence intervals, and also had the 
best BIC score. For these reasons it was chosen over other very similar models. 
In terms of substantive differences, there appeared to be none, as the subse
quent regression models yielded no differences in how CBG characteristics 
predicted assignment to trajectory groups regardless of which trajectory model 
was utilized. This indicates the robustness of these findings. 
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4. Discussion 

Our first major finding—that a racial disparity existed in COVID-19 
deaths during the first wave in spring 2020—precipitated the subse
quent work identifying latent attributes driving COVID-19 death. Ana
lyses indicated that different community characteristics drove the two 
waves of COVID-19 deaths observed in Genesee County during the first 
year of the pandemic. In the first wave (supporting our preliminary re
sults), the highest death rates were seen in the City of Flint and sur
rounding areas, which are marked by higher socioeconomic distress, and 
which therefore have a higher vulnerability to severe COVID-19 cases 
(Sadler and Furr-Holden, 2019; Patel et al., 2020). 

Socioeconomic distress was also an important predictor, suggesting 
that more distressed CBGs were more likely in the H1 group. The 
disappearance of this pattern in the second wave could have to do with 
differential adoption of preventive measures taken in these communities 
versus higher income communities. 

The implications of effective public health interventions and pre
vention strategies can be seen in our work. While predominately 
African-American communities were more heavily affected during the 
first wave, the second wave saw much greater spatial dispersion 
throughout the county, and thus a lower burden on African-American 
community. Our team established a partnership with the GCHD during 
the summer of 2020, which included creating a disparities dashboard 
(GCHD, 2021), holding weekly webinars to disseminate up-to-date and 
locally relevant information. Given the Flint-focused audience and how 
this pandemic became politically charged throughout the country, we 
have reason to believe these efforts helped eliminate the racial disparity 
in COVID-19 deaths in Genesee County. 

These analyses directly informed health department practice in 
additional ways. Our work was used to develop targeted public health 
strategies to prevent and reduce COVID-19 transmission and effectively 
direct allocation of resources in the arenas of community testing and 
vaccine rollout. Specifically, disparity data and COVID-19 mortality 
hotspots were factored into the selection of community testing locations 
and vaccination sites, so that chosen locations would be accessible to 
communities that were most severely impacted by the pandemic. 

GCHD also leveraged the socioeconomic distress metric and COVID 
death hotspot analyses to enhance their vaccine prioritization methods. 
At the beginning of the rollout, vaccine quantity was severely limited, 
and the health department prioritized vaccinations for CBGs with either 
a) above average socioeconomic distress for the county or b) a signifi
cantly high amount of COVID-related deaths relative to the rest of the 
county. 

The immediate availability of this data was an important factor for 
the vaccine rollout. By the time the state health department provided 
ZIP code-level Social Vulnerability Index scores to guide vaccine dis
tribution, Genesee County had already identified key vulnerable pop
ulations with even higher resolution (SVI can vary greatly between 
different areas of a single ZIP Code; utilizing smaller distinctions like 
CBGs can better control for this variation). With the novel dimension of 
prioritization provided by this paper (which would not have been as 
readily available to the health department without our partnership), 
GCHD was able to allocate vaccines in a quick, precise and impactful 
manner. In general, this work demonstrates that other health de
partments may stand to benefit from similar partnerships that allow for 
the integration of data into public health decision processes. 

Even so, we acknowledge we cannot identify the exact reasons for 
the differences in predictors of the H1 and H2 groups between waves. 
While race and socioeconomic status were predictors, the underlying 
reasons for these differences are beyond the scope of our study. Relat
edly, individual-level data beyond race were not available, thus 
complicating the implications that may be drawn from these findings. 
Given the focus of the study at the community-level, however, exami
nation of individual-level predictors of COVID-19 mortality are beyond 
the scope of this study. As one example, we can consider that more 
affluent CBGs drove high death risk in the second wave model. In 
Genesee County, these areas correlate to more conservative-leaning 
residents; lax social distancing and behavioral differences among resi
dents of these CBGs may have led to higher death counts in the second 
wave. We continue to advocate for future research to interrogate these 
issues further so that public health interventions, policy, and outreach 
can be effectively targeted to reach the most at-risk populations. We also 
call for future research to take a more direct approach to evaluating the 

Fig. 5. Full Data COVID-19 Death Trajectory Model Aggregated by Census Block Group.  

R.C. Sadler et al.                                                                                                                                                                                                                                



Spatial and Spatio-temporal Epidemiology 43 (2022) 100536

8

potential impact that public health interventions and outreach like those 
in Genesee County may have had on COVID-19 racial disparities in 
deaths and similar situations in order to determine whether the neces
sary conditions for causal inference were present/absent. 
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