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Ce1−xPrxOBiS2 (0. 1 ≤ x ≤ 0.9) single crystals were grown using a CsCl flux

method. Their structural and physical properties were examined by X-ray diffraction,

X-ray absorption, transmission electron microscopy, and electrical resistivity. All of

the Ce1−xPrxOBiS2 single crystals with 0.1 ≤ x ≤ 0.9 exhibited tetragonal phase.

With increasing Pr content, the a-axis and c-axis lattice parameters decreased and

increased, respectively. Transmission electron microscope analysis of Ce0.1Pr0.9OBiS2

(x = 0.9) single crystal showed no stacking faults. Atomic-resolution energy dispersive

X-ray spectrometry mapping revealed that Bi, Ce/Pr, O, and S occupied different

crystallographic sites, while Ce and Pr randomly occupied the same sites. X-ray

absorption spectra showed that an increase of the Pr ratio increased the ratio of

Ce4+/Ce3+. All of the Ce1−xPrxOBiS2 crystals showed superconducting transition, with

a maximum transition temperature of ∼4K at x = 0.9.

Keywords: BiS2 superconductor, flux growth, TEM, single crystals, XAFS

INTRODUCTION

Flux synthesis has been utilized widely for the synthesis of solid-state materials (Oishi et al., 2004;
Akira et al., 2019), especially for discovering compounds with complex structures (DiSalvo and
Clarke, 1996; Bugaris and zur Loye, 2012) Nonetheless, an interesting feature of synthesis using a
flux, in addition to structural determination, is to explore various properties (Yamane et al., 1997;
Mizuno et al., 2014; Miura et al., 2016; Chiang et al., 2018). Superconducting materials also can be
synthesized by the flux method, and the properties of the synthesized products can be controlled by
the synthesis condition (Nagao, 2017). For example, we very recently found that Sm(O,F)BiS2 single
crystals synthesized by KCl-KI exhibited superconductivity (Kinami et al., 2019), in contrast to the
non-superconducting Sm(O,F)BiS2 powder and crystals synthesized using CsCl-KCl flux reported
previously (Thakur et al., 2015). Thus, flux synthesis under different experimental conditions could
be a promising approach for discovering new superconducting materials.

BiS2-based layered compounds, composed of alternate BiS2 and RO layers (R: rare
earth elements), have been studied widely as a new family of superconducting and
thermoelectric materials (Mizuguchi, 2019). Superconductivity can be induced by carrier doping
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(Mizuguchi et al., 2012) and in-plane chemical pressure
(Mizuguchi et al., 2015). Carrier doping can be achieved by
doping of F− into O2− sites or by valence fluctuation of rare
earths, such as Ce3+ and Ce4+ (Nagao et al., 2016; Tanaka
et al., 2017; Miura et al., 2018; Hanada et al., 2019). The
induction of carrier by Ce valence fluctuation can be formulated
as below;

Ce3+ = Ce4+ + e−

To present, various ROBiS2 and R(O,F)BiS2 compounds have
been synthesized using flux methods (Nagao et al., 2013, 2014a,
2015, 2016, 2019; Miura et al., 2014, 2015, 2018; Sagayama
et al., 2015; Tanaka et al., 2017; Hanada et al., 2019). Recently,
we reported the synthesis and superconducting properties
of (Ce,Pr)OBiS2. (Ce,Pr)OBiS2 powders showed a maximum
superconducting temperature of ∼2.4 K, when the ratio of
Ce/Pr was the same, but these were a mixture of tetragonal
and monoclinic phases (Miura et al., 2018). The monoclinic
phase, slightly distorted from the tetragonal phases, affects
the dimensionality of the conduction path of the BiS2 layer
significantly. The monoclinic distortion from the tetragonal cell,
a/b ratio, is only ∼0.001, which can be detected only by a
highly monochromatic synchrotron X-ray. To clarify the origin
of the superconductive phase, we conducted flux growth of single
crystals and found that the tetragonal phase of Ce0.5Pr0.5OBiS2
is superconducting. However, the investigation of single crystals
in (Ce,Pr)OBiS2 is limited with Ce0.5Pr0.5OBiS2. The flux growth
of (Ce,Pr)OBiS2 single crystals with various Ce/Pr ratios would
provide an opportunity for discovering new superconductors.

In this study, we successfully grew Ce1−xPrxOBiS2
superconducting single crystals with different Ce/Pr ratios
(x = 0.1, 0.3, 0.5, 0.7, 0.9) using a CsCl flux. The crystals with
high Pr contents showed superconducting properties with a
maximum transition temperature of ∼4K, which could not be
observed in powder samples synthesized without using the flux
(Miura et al., 2018). The single crystals of Ce1−xPrxOBiS2 were
characterized by X-ray diffraction and also X-ray absorption fine
spectroscopy for the Ce and Pr valence and superconducting
properties. Transmission electron microscope analysis revealed
direct evidence for mixed Ce/Pr sites and other elements with
specific crystallographic sites.

EXPERIMENTAL

Single crystals of Ce1−xPrxOBiS2 (0.1 ≤ x ≤ 0.9) were grown
using CsCl flux (Miura et al., 2018). The raw materials of Ce2S3
(99.9%:Mitsuwa Chemicals), Pr2S3 (99.9%:Mitsuwa Chemicals),
Bi2O3 (99.9%: Kojyundo Chemical Lab.), Bi2S3 (99.9%: Mitsuwa
Chemicals) were weighed to have a nominal composition of
Ce1−xPrxOBiS2 (0.1≤ x≤ 0.9). The mixture of the raw materials
(0.8 g) and CsCl flux (5.0 g) were ground by using a mortar, and
then sealed into an evacuated quartz tube. The quartz tube was
heated at 950◦C for 10 h, followed by cooling to 650◦C at a rate
of 1◦C/h, then the sample was cooled down to room temperature
in the furnace. The heated quartz tube was opened in air, and the

obtained materials were washed and filtered by distilled water for
removing the CsCl flux.

The compositional ratio of the single crystals was evaluated
by energy dispersive X-ray spectrometry (EDS) (Bruker, Quantax
70) associated with the observation of the microstructure by
using scanning electron microscope (SEM) (Hitachi High-
Technologies, TM3030). The obtained compositional values were
normalized using S = 2.00, with Ce, Pr, and Bi measured to a
precision of two decimal places. After that, the Pr composition
is normalized by the total Pr and Ce content. Identification
and orientation of the grown crystals were performed by
X-ray diffraction (XRD) using Rigaku MultiFlex with CuKα

radiation. Crystal system and lattice parameters of (Ce,Pr)OBiS2
single crystals were evaluated from synchrotron powder X-ray
diffraction measurements using crushed single crystals powder.
Synchrotron powder X-ray diffraction measurements were
performed at 150K in SPring-8 using the BL02B2 beamline
with the approval of 2018A0074. Local structure and elemental
distribution of Ce0.1Pr0.9OBiS2 (x = 0.9) single crystal along
the c-axis were observed by scanning transmission electron
microscope with energy dispersive X-ray spectrometry (STEM-
EDS) (JEOL JEM-ARM200F).

The valence state of the Cerium and Praseodymium
component in the obtained single crystals was estimated by X-ray
absorption fine spectroscopy (XAFS) analysis of Ce-L3 and Pr-
L3 edges using an Aichi XAS beamline with a synchrotron X-
ray radiation (BL11S2: Experimental No.201801025). For XAFS
sample, the obtained single crystals were grinded and mixed
with boron nitride (BN) powder, pressed into a pellet of 4
mm diameter.

The Resistivity-temperature (ρ-T) characteristics of the
obtained single crystals were measured by the standard four-
probe method with a constant current density (J) mode using
physical property measurement system (QuantumDesign; PPMS
DynaCool). The electrical terminals were fabricated by silver
paste. And, ρ–T characteristics in the temperature range of
0.25–15K were measured with an adiabatic demagnetization
refrigerator (ADR) option for PPMS. The magnetic field applied
for operating the ADR was 3 T at 1.9 K; subsequently, it was
removed. Consequently, the temperature of sample decreased to
∼0.25K. The measurement of ρ–T characteristics was started
at the lowest temperature (∼0.25K), which was spontaneously
increased to∼15K. The superconducting transition temperature
(Tc) was estimated from the ρ–T characteristics. The transition
temperature corresponding to the onset of superconductivity
(Tonset

c ) is defined as the temperature at which deviation from
linear behavior is observed in the normal conducting state in the
ρ–T characteristics. The zero resistivity (Tzero

c ) is determined as
the temperature at which resistivity is below 10 µ� cm. The ρ–T
characteristics of Ce0.1Pr0.9OBiS2 (x = 0.9) single crystal under a
magnetic field (H) parallel to the c-plane with range of 0.1–9.0 T
and the c-axis with range of 0.1–0.3 T were measured in the
temperature range of 2.0–10.0 K. We measured the angular (θ)
dependence of resistivity (ρ) in the flux liquid state under various
magnetic fields (H) and calculated superconducting anisotropy
(γ s) using the effective mass model (Blatter et al., 1992; Iwasaki
et al., 1995).

Frontiers in Chemistry | www.frontiersin.org 2 February 2020 | Volume 8 | Article 44



Nagao et al. (Ce,Pr)OBiS2 Single Crystals

RESULTS AND DISCUSSION

Figure 1 shows a typical SEM image of a (Ce,Pr)OBiS2 single
crystal. The single crystals obtained had a plate-like shape, size of
around 1.0mm, and thickness of 30–50µm. Qualitative analysis
by EDS showed that the estimated atomic ratios of Bi and S
elements in the single crystals were almost stoichiometric, with
Bi:S = 1.01 ± 0.06. On the other hand, Cs and Cl from the
flux were not detected in the single crystals with a minimum
sensitivity limit of ∼1 wt%. Analytical Pr contents of the single
crystals obtained with various Ce/Pr ratios (x) are shown as
Table 1. The analyzed values were almost in the same ratio as the
nominal compositions.

Figure 2 shows the XRD patterns of a well-developed plane
in the obtained Ce1−xPrxOBiS2 (0.1 ≤ x ≤ 0.9) single crystals.
The appearance of only 00l diffraction peaks indicates that the
c-plane is well-developed. This is a typical feature of BiS2-based
single crystals (Nagao et al., 2013, 2014a, 2015, 2016; Miura
et al., 2014, 2015, 2018; Sagayama et al., 2015; Hanada et al.,
2019). Synchrotron powder X-ray diffraction measurements of
the crushed single crystals at 150K exhibited no splitting of
110 diffraction peaks, suggesting tetragonal phases. The lattice
parameters are shown in Figure 3. The a-axis lattice parameters
decreased with increased Pr contents (x), but increased slightly
at x = 0.9. The lattice parameter of the c-axis increased with
increased Pr contents (x).

FIGURE 1 | Typical SEM image of (Ce,Pr)OBiS2 single crystal.

TABLE 1 | Nominal and analytical Pr ratios.

Pr contents Nominal (x) 0.1 0.3 0.5 0.7 0.9

Analytical

(Ce + Pr = 1.00)

0.091 0.32 0.48 0.71 0.90

The analytical Pr ratio were calculated from the total of Ce and Pr.

Direct observation of the stacking layers along the c-axis was
performed by energy dispersive X-ray spectrometry mapping
with a scanning transmission electron microscope (STEM-EDS).
Figure 4 shows the high-angle annular-dark-field (HAADF)
STEM image taken with the incident beam parallel to the [010]
direction for (Ce,Pr)OBiS2 with x = 0.9 single crystal and also

FIGURE 2 | XRD patterns of well-developed plane of (Ce,Pr)OBiS2 with

0.1 ≤ x ≤ 0.9 and CeOBiS2 (x = 0) (Nagao et al., 2016) single crystals.

FIGURE 3 | Lattice parameters of a and c-axes of (Ce,Pr)OBiS2 single crystals

with 0.1 ≤ x ≤ 0.9 at 150K.
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FIGURE 4 | [010]-zone axis HAADF-STEM image and Ce, Pr, Bi, O, S elemental maps of (Ce,Pr)OBiS2 with x = 0.9 single crystal.

FIGURE 5 | (A) Ce L3-edge, XAFS obtained at room temperature for (Ce,Pr)OBiS2 with 0.1 ≤ x ≤ 0.9 single crystals, CeOBiS2 (x = 0) single crystals, Ce2S3, and

CeO2. (B) Pr L3-edge, XAFS obtained at room temperature for (Ce,Pr)OBiS2 with 0.1 ≤ x ≤ 0.9 single crystals, PrOBiS2 (x = 1) (Nagao et al., 2019) single crystals,

Pr2S3, and Pr6O11.

shows the corresponding elemental maps obtained using Ce-
L, Pr-L, Bi-M, O-K, and S-K in the same area. No stacking
faults were observed in the STEM image for a wide area.
Atomic-resolution EDS mapping revealed that Bi, Ce/Pr, O, and
S occupied different crystallographic sites, whereas Ce and Pr
randomly occupied the same sites.

We evaluated the valence state of Ce and Pr in the obtained
(Ce,Pr)OBiS2 single crystals by XAFS analysis. Figure 5 shows
(a) Ce L3- and (b) Pr L3-edge absorption spectra of (Ce,Pr)OBiS2
single crystals with 0 ≤ x ≤ 1.0 obtained by XAFS analysis at
room temperature. The Ce L3-edge of the (Ce,Pr)OBiS2 single
crystals showed a peak at around 5,727 eV, assigned as Ce3+,
with is consistent with the other XAFS result for the trivalent
electronic configuration (Ce3+) (Yaroslavtsev et al., 2010).

Peaks around 5,731 and 5,738 eV evolved with increase of Pr
content (x), and these peaks were assigned tetravalent electronic
configuration (Ce4+) (Yamazaki et al., 2000). Therefore, the ratio
of Ce4+ [Ce4+/(Ce3+ + Ce4+)] increased with increase of Pr
content (x), suggesting that the valence state of Ce fluctuated
in the (Ce,Pr)OBiS2 single crystals. On the other hand, the Pr
L3-edge of the (Ce,Pr)OBiS2 single crystals showed a peak at
∼5,968 eV, which can be assigned as Pr3+. This is consistent with
the other XAFS results for the trivalent electronic configuration
(Pr3+) (Ku et al., 2002; Lin et al., 2003). The tetravalent electronic
configuration (Pr4+) shows a signature peak at ∼5,980 eV (Ku
et al., 2002; Fujishiro et al., 2012), which was hardly observed in
the (Ce,Pr)OBiS2 single crystals (Miura et al., 2018). Therefore,
Pr valence in the (Ce,Pr)OBiS2 with 0.1 ≤ x ≤ 0.9 single crystals
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was only trivalent. The Ce valence in the (Ce,Pr)OBiS2 with 0.1
≤ x ≤ 0.9 single crystals was a mixed state consisting of both
trivalent (Ce3+) and tetravalent (Ce4+) valences.

Figure 6 shows the temperature (T) dependence of resistivity
normalized at 15K [ρ/ρ(15K)] for the (Ce,Pr)OBiS2 single

FIGURE 6 | Temperature (T ) dependence of resistivities normalized at 15K

[ρ/ρ(15K)] for (Ce,Pr)OBiS2 with 0 ≤ x ≤ 0.9 single crystals in the temperature

range of 0.25–15K. The data of x = 0 was referred from the literature (Nagao

et al., 2016).

FIGURE 7 | (A) The Pr contents (x) dependence of Tonset
c and Tzero

c for

(Ce,Pr)OBiS2 with 0 ≤ x ≤ 0.9 and PrOBiS2 (x = 1) (Nagao et al., 2019) single

crystals. (B) The Pr contents (x) dependence of Ce4+ ratio [Ce4+/(Ce3+ +

Ce4+)] in (Ce,Pr)OBiS2 with 0 ≤ x ≤ 1.0 single crystals.

crystals with 0 ≤ x ≤ 0.9 in the temperature range of 0.25–15K.
Above 5K, decrease in temperature increases relative resistivity.
The increases in relative resistivity are suppressed by higher
Pr content. Figure 7A shows the Pr content (x) dependence of
Tonset
c and Tzero

c . Tonset
c , and Tzero

c . An increase in Pr content (x)
increased the transition temperatures up to x= 0.9. In particular,
(Ce,Pr)OBiS2 with x = 0.9 showed a highly superconducting
transition temperature of ∼4K. The Pr content (x) dependence
of the Ce4+ ratio [Ce4+/(Ce3+ + Ce4+)] in (Ce,Pr)OBiS2 single
crystals with 0 ≤ x ≤ 1.0 showed similar tendency of the
transition temperatures (Figure 7B).

Figure 8 shows the ρ-T characteristics of (Ce,Pr)OBiS2 single
crystal with x = 0.9. The resistivity at normal state shows
almost metallic behavior although it shows an anomaly at 80–
120K. Similar anomalies of Nd(O,F)BiS2 and La(O,F)BiSe2 single
crystal are reported in 60–140K (Nagao et al., 2013) and 20–
80K (Nagao et al., 2014b), respectively. These anomalies are
probably a common phenomenon of BiCh2-based (Ch:S,Se)
superconductors although further investigation is required to
reveal the origin of these anomalies.

Figure 9 shows the temperature dependence of resistivity for
(Ce,Pr)OBiS2 single crystal with x = 0.9 below 10K under the
magnetic field (H) parallel to the c-plane (H//c-plane, H =

0.1–9.0 T) and to the c-axis (H//c-axis, H = 0.1–0.3 T). The
superconducting transition was monotonically suppressed with
increasing magnetic fields parallel to the c-plane. The magnetic
fields dependence of the Tonset

c under the magnetic field (H)
parallel to the c-plane (H//c-plane) is plotted in the inset of
Figure 9A. The linear extrapolation of Tonset

c with H//c-plane
approaches 16.3 T, which is estimated to be the maximum
of upper critical field on the c-plane (H//c−planeC2). In a

FIGURE 8 | Resistivity–temperature (ρ-T ) characteristics of (Ce,Pr)OBiS2 with

x = 0.9 single crystal.
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FIGURE 9 | Temperature (T ) dependence of resistivity (ρ) for (Ce,Pr)OBiS2 with x = 0.9 single crystal under the magnetic fields (H) parallel to the (A) c-plane

(H = 0.1–9.0 T) and (B) c-axis (H = 0.1-0.3 T). The inset of (A) is the magnetic fields dependence of the Tonset
c for (Ce,Pr)OBiS2 with x = 0.9 single crystal under the

magnetic field (H) parallel to the c-plane (H//c-plane), and the lines are liner fits to the data.

conventional (BCS-like) superconductor in the weak-coupling
limit, the Pauli limit is calculated to be 9.22 T, derived fromHp =

1.84 Tc, (Tonset
c = 5.01K) (Lu et al., 2013). Thus, the maximum

of upper critical field in the c-plane (H//c−planeC2 = 16.3 T) is
significantly higher than the Pauli limit (Hp = 9.22 T), indicating
the possibility of an unconventional superconductor. In contrast
to the superconductivity in the c-plane, its superconductivity in
the applying magnetic fields perpendicular to the c-axis almost
disappeared at 2 K with only 0.3 T (Figure 9B), suggesting its
large superconducting anisotropy of (Ce,Pr)OBiS2 with x =

0.9. The upper critical field on the c-axis (H//c−axisC2) and the
superconducting anisotropy (γ s) could not be estimated from
Tonset
c , because the superconductivity was disappeared with low

magnetic field (0.3 T).
We also evaluated the superconducting anisotropy (γ s) of

the (Ce,Pr)OBiS2 single crystal with x = 0.9 by an effective-
mass model (Blatter et al., 1992). The angular (θ) dependence of
resistivity (ρ) was measured under different magnetic fields (H)
in the flux liquid state to estimate the superconducting anisotropy
(γ s). The reduced field (Hred) is calculated using the following
equation for an effective mass model:

Hred = H(sin2θ + γ−2
s cos2θ)1/2 (1)

where θ is the angle between the c-plane and the magnetic field
(Iye et al., 1992; Iwasaki et al., 1995). The γ s was estimated from
the best scaling of the ρ–Hred relationship. Figure 10 shows the
θ dependence of ρ under different magnetic fields (H = 0.1–
3.0 T) at 3.0 K in the flux liquid state for (Ce,Pr)OBiS2 single
crystal with x = 0.9. The ρ–θ curve exhibited an almost two-fold
symmetry. Figure 11 shows the ρ–Hred scaling obtained from
the ρ–θ curves in Figure 10 using Equation (1). The scaling was
performed by taking γ s = 31. In contrast, the superconducting
anisotropy (γ s) of (Ce,Pr)OBiS2 with other Pr concentrations (x
= 0.3, 0.5, 0.7) single crystals using Equation (1) were estimated
to be 7.5–13. These results suggest that the superconducting
anisotropy of (Ce,Pr)OBiS2 single crystal with x = 0.9 is highest.

FIGURE 10 | Angular (θ ) dependence of resistivity (ρ) in flux liquid state at

3.0 K under various magnetic fields H = 0.1–3.0 T for (Ce,Pr)OBiS2 with

x = 0.9 single crystal.

DISCUSSION

(Ce,Pr)OBiS2 single crystals with various Ce/Pr ratios were
synthesized and characterized. All of the crystals exhibited
tetragonal phase, and the superconducting transition
temperature increased to 4K with increasing ratio of Pr.
With increasing Pr content, the lattice parameters of the a-axis
decreased and those of the c-axis increased. TEM analysis
revealed mixed occupancy of Ce and Pr without stacking faults.

The crystal structure and superconducting features found in
the single crystals with high Pr concentrations were different
from those of the corresponding powder samples reported
previously (Miura et al., 2018). Single crystals obtained with
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FIGURE 11 | Reduced magnetic field Hred dependence of resistivity (ρ) scaling

by Equation (1): Hred = H(sin2θ+γ−2
s cos2θ )1/2 using Figure 10 data.

flux exhibited tetragonal structure, whereas powders obtained
without flux had a mixture of tetragonal and monoclinic
structures. Although the single crystals with tetragonal structure
showed the highest transition temperature at Ce0.1Pr0.9OBiS2
(x = 0.9), the corresponding powder sample with mainly
monoclinic structure did not show zero resistivity (Miura et al.,
2018). Therefore, although the analyzed compositions were
similar, flux growth definitely affected the crystal structure and
superconducting properties.

Superconducting transition temperature can be explained
by carrier concentration and in-plane chemical pressure. The
existence of Ce3+ and Ce4+ detected by X-ray absorption can
provide carrier into the BiS2 layers. The increase in Ce4+ ratio
found at high Pr content can compensate the decrease of Ce
content. The increase in Ce4+ ratio showed a similar tendency
as the increase in transition temperature (Figure 6). Considering
the ionic radii (Ce3+ = 1.143 Å, Ce4+ = 0.97 Å, Pr3+ = 1.126
Å) (Shannon, 1976), increase in the ratio of Pr can decrease the
lattice parameter of the a-axis. The decrease in a-axis can enhance
the in-plane chemical pressure in the BiS2 plane, which would
increase the superconducting transition temperature (Mizuguchi
et al., 2015).

Ce0.1Pr0.9OBiS2 (x = 0.9) showed the highest
superconducting transition temperature of ∼4K and also
showed high superconducting anisotropy. When compared
with Ce0.3Pr0.7OBiS2 (x = 0.7), the lattice parameter of the
a-axis was slightly longer and that of the c-axis was significantly
longer. The elongated c-axis could be the reason for the high
superconducting anisotropy. The ratio of Ce4+/Ce3+ was the

highest in the series, but this cannot explain the increase in the
lattice parameters considering the ionic radii. TEM analysis did
not show the ordering of Ce and Pr. Structural analysis using
single crystal X-ray diffraction via a highly monochromatic
synchrotron source would facilitate better understanding of the
relationship between structure and superconductivity.

CONCLUSION

Ce1−xPrxOBiS2 (0.1 ≤ x ≤ 0.9) platelet single crystals were
grown using a CsCl flux. The crystal structures of Ce1−xPrxOBiS2
single crystals with 0.1 ≤ x ≤ 0.9 maintained the tetragonal
phase. Increase in Pr content up to x = 0.7 decreased the lattice
parameter of the a-axis and increased the parameter of the c-axis.
Ce0.1Pr0.9OBiS2 single crystal showed a slightly elongated a-axis
lattice parameter but a significantly elongated c-axis parameter.
Atomic-resolution TEM analysis of the Ce0.1Pr0.9OBiS2 single
crystal showed no stacking faults and no ordering of Ce and Pr.
The superconducting transition temperature of Ce1−xPrxOBiS2
single crystals increased with increasing Pr content, showing
a trend similar to that of the ratio of Ce4+/(Ce3+ + Ce4+).
High superconducting transition temperature of ∼4K and high
superconducting anisotropy appeared in the Ce0.1Pr0.9OBiS2
(x = 0.9) single crystal. While the Ce0.1Pr0.9OBiS2 (x = 0.9)
single crystal with tetragonal structure showed the highest
transition temperature, the corresponding powder samples of
mainly monoclinic phase did not show zero resistivity (Miura
et al., 2018). Therefore, we believe that flux growth is a promising
approach for exploring new superconductors.
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