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Abstract
Although SARS-CoV-2 viral attacks starts by the interaction of spike protein (S Protein) to ACE2 receptor located at the cell 
surface of respiratory tract and digestive system cells, different endocrine targets, endocrine organs and metabolic condi-
tions are of fundamental relevance for understanding disease progression and special outcomes, in particular those of fatal 
consequences for the patient. During pandemic, moreover, a specific phenotype of COVID-19 metabolic patient has been 
described, characterized by being at particular risk of worse outcomes. In the present paper we describe the mechanism of 
viral interaction with endocrine organs, emphasizing the specific endocrine molecules of particular relevance explaining 
COVID-19 disease evolution and outcomes.
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1 Introduction

Endocrine targets are of particular relevance for either 
SARS-CoV-2 viral entrance to the cells as well as regard-
ing modulation of disease expansion in a given host [1]. 
Lung cells are among others of the respiratory tract, those 
through which serious disease is initiated. Expression of 
different molecules in the respiratory tract cells surface is 
therefore crucial for SARS-CoV-2 viral attack. Besides this 
respiratory tropism, digestive epithelium is another entrance 
door for SARS-CoV-2 and part of the initial symptoms are 
clearly related to the viral invasion of the gut system. Once 
the disease has achieved this point, systemic involvement 
may happen and it is at this moment when endocrine organs 

involvement may take place, either as victims of the viral 
attack or as suicidal actors amplifying the viral damage, in 
particular cytokine storm expansion.

In this paper we aim to make an overview of these two 
pivotal positions of the endocrine organs and system in the 
COVID-19 sanitary earthquake.

2  COVID‑19 and pathogenic mechanisms

COVID-19 can alter the function of different endocrine 
glands and metabolic processes and put patients at risk of 
acute or late-onset endocrine or metabolic dysfunction. In 
addition, preexisting endocrine disorders or metabolic pro-
cesses can increase the predisposition to develop COVID-19 
or a more severe clinical presentation and outcome (Fig. 1).

SARS-Cov-2 infection has a similar mechanism of action 
than SARS-Cov-1 and this is by via binding to ACE2 pro-
tein, which has an important expression in several endo-
crine tissues including testis, thyroid, adrenal, pituitary, 
hypothalamus and adipose tissue [2]. The SARS-Cov-2 
virus binds to the ACE2 receptor and uses the cellular ser-
ine protease TMPRSS2 for S protein priming. Both ACE2 
and TMPRSS2 mRNA have been reported in different endo-
crine tissues [2]. The possible mechanisms by which the 
SARS-CoV-2 virus, after entering an endocrine gland and 
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binding the ACE2 receptor, can produce damage include 
characteristically thrombosis and hypoxia that are typical of 
highly vascularized organs, such as endocrine organs par-
ticularly the pituitary. In addition, other mechanisms that 
can play a role include immune response against the virus 
and cytokine storm [2].

2.1  Pathogenic mechanisms involved in COVID‑19 
infection targeting different endocrine organs

The hypothalamic-pituitary (HP) axis may also be a target 
of the SARS-CoV-2 [3]. Coronavirus infections can also 
affect the central nervous system, including the hypo-
thalamus and pituitary. It is still not well known whether 
the entry is via bloodstream or direct though the cribri-
form plate. Direct deleterious effect on these organs is 
suggested by the fact that SARS-CoV-1 viral particles 
have been detected in autopsy studies involving neuronal 
degenerated tissue [4]. In this regard, ACE2 and cellular 
serine protease-TMPRSS2 receptors, that are entries of 
the SARS-CoV-2 virus, are present in the hypothalamic-
pituitary region [5]. SARS-CoV-2 has been reported in 
the cerebrospinal fluid and also in autopsy studies of the 
hypothalamus in COVID-19 patients [6, 7]. Another pos-
sible mechanism of pituitary injury during COVID-19 
is the generation of an immune-mediated hypophysitis, 
which has also been previously reported in SARS-CoV-1. 
Moreover, functional hypopituitarism probably related to 
the increase in circulating cytokines produced by the viral 
infection has been reported in both SARS-CoV-1 and 
SARS-CoV-2 infections. It is interesting that abnormali-
ties related to hypopituitarism can persist long-term after 
SARS-CoV-1 infection, even months after the infection 
[1]. This could also be the case in SARS-CoV-2, in which 
follow-up studies of pituitary function are ongoing.

Thyroid dysfunction is a frequent finding in COVID-
19 patients that can be mediated by direct or indirect 

viral effects. In SARS-CoV-1 infection, destruction of 
the follicular epithelium and the parafollicular cells were 
reported [8]. ACE2 expression has been found in thyroid 
follicular cells, and cases of atypical subacute thyroiditis 
with negative autoantibodies have been found associated 
with SARS-CoV-2 infection [9–12]. This type of thy-
roiditis has been traditionally associated to a viral origin. 
A recent report showed scintigraphy findings typical of 
subacute thyroiditis in one third of patients three months 
after COVID infection, pointing to a much more preva-
lent phenomenon than previously thought and it is now 
considered as a sequela associated with COVID-19 [10]. 
The COVID-19 cytokine storm may eventually precipi-
tate the development of autoimmune thyroid disorders 
including Graves’ disease, Graves’ ophthalmopathy, and 
Hashimoto thyroiditis [13]. Nevertheless, the most com-
mon thyroid manifestation in COVID-19 patients, mostly 
in hospitalized patients, is a kind of euthyroid sick syn-
drome, including decrease in T3 and T4 in some occa-
sions, which run in parallel with an increase in cytokines. 
These abnormalities could also be very persistent in time 
as it was also reported in SARS-CoV-1 [14]. Follow-up 
studies regarding these abnormalities are still awaiting.

A direct cytopathic effect on adrenal cortical cells 
with generation of diverse lesions, including necrosis of 
these cells, has been reported in autopsies from SARS-
CoV-1 patients [4]. A similar effect could happen in 
SARS-CoV-2 virus, as ACE2 receptors are present in 
the adrenal gland. Another possible mechanism that has 
been described in SARS-CoV-1 is the homology between 
certain amino acid sequences of the virus and have with 
ACTH. In this regard, antibodies that are primarily pro-
duced against SARS-CoV-1 could also cross-react and 
destroy ACTH [15]. This mechanism could happen not 
only in SARS-CoV-1, as has been described, but also 
in SARS-CoV-2 as SARS-CoV-2 is structurally more 
than 95% homologous to SARS-CoV-1. However, this 

Fig. 1  Different pathogenic 
mechanisms including direct 
and indirect viral action could 
explain why different endo-
crine glands/organs that can be 
affected by COVID-19
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mechanism of production of adrenal insufficiency has 
not been proved yet in SARS-Cov-2. Moreover, another 
possible mechanism that could provoke adrenal insufic-
ciency in severe forms of COVID-19 is a critical illness 
related corticosteroid insufficiency (CIRCI). This condi-
tion is directly related to the severity of the stress situ-
ation generated during a critical illness. In this regard, 
severe forms of COVID-19 could produce CIRCI and 
cause inadequate stress corticosteroid mediated response 
[16].

There is no data on the potential direct effect of COVID-
19 on the parathyroid glands or the bones. Nevertheless, 
hypocalcaemia is a frequent complication and is a predic-
tor of more severe forms of COVID-19 and an unexpected 
high frequency of silent fractures has been described in these 
patients [17].

Severity and fatality related to COVID-19 have been 
observed more in males than in females [18]. Regarding 
the testis, ACE2 and TMPRSS2 are expressed both in 
spermatogonia and somatic (Leydig and Sertoli) cells. 
The testes are probably a high-risk organ for SARS-
CoV-2 infection. Destruction of germ cells with reduced 
sperm cell count [19] and lymphocytic infiltrates in Ser-
toli and Leydig cells [19, 20] has been reported in the 
testis from autopsies of SARS-CoV-1 patients, pointing 
to an immune-mediated damage. SARS-CoV-2 viral par-
ticles have also been observed in testis autopsies of these 
patients [20]. Semen analyses of men with COVID-19 
have shown the presence of SARS-CoV-2, but little is 
yet known about its potential relationship with infertility 
development [21]. In females ACE2 is also expressed in 
the ovary, but TMPRSS2 appears to be absent.

2.2  Pathogenic mechanisms, endogenous 
and exogenous molecules involved in COVID‑19 
infection in different metabolic and endocrine 
organs.

2.2.1  Diabetes

It is now accepted that diabetes is an important risk fac-
tor for COVID-19 infection and the severity of disease 
[22–24]. A significant part of this risk condition can be 
attributed solely to hyperglycemia. People with type 1 
and type 2 diabetes have an increased risk of hospitaliza-
tion, need of intensive care and mortality from COVID-
19 due to bad glycemic control in a dose-dependent 
manner [25]. COVID mortality related to any type of 
diabetes has been associated with aging, mal gender, low 
socioeconomic conditions, non-white ethnicity, previous 
cardiovascular disorders, impaired renal function, poor 
glycemic control, as well as to obesity and underweight. 
According to this phenotype, a nationwide Swedish 

study [26], has found that type 2 diabetes people showed 
increased risk of hospitalization, admission to intensive 
care and death for COVID-19 in comparison to type 1 
diabetes subjects. These later presented few admissions 
into intensive care and deaths compared to type 2. Peo-
ple with type 2 and type 1 diabetes have a higher risk of 
hospitalization, intensive care and mortality compared 
to control population. However, this excess of risk only 
remained significant in type 2 diabetes after adjustments 
for comorbidities and pharmacological treatment.

Different hypotheses have been formulated to caus-
ally explain such an association; one plausible explana-
tion that the generalized multisystemic inflammation 
process observed in SARS-CoV-2 infection potentiates 
a hyperglycemic state and vice-versa, and this phenom-
enon possibly favors viral replication [27]. Additionally, 
abnormal acute glycosylation of the SARS-CoV-2 virus 
has been suggested as a potentiator of viral pathogenesis 
through modification of viral epitopes that otherwise 
would have been targeted by the immune system [28]. 
And also, glycosylated ACE2 on target cells enhances 
viral tropism and penetration, leading to a higher inten-
sity of COVID‐19 infection and severity in hyperglyce-
mic people [28].

The virus infects peripheral monocytes in a more effi-
cient way under hyperglycemic conditions and upregu-
lates ACE2. After this happens, improved cytokine pro-
duction by immunocompetent cells take place and can 
turn to an overexaggerated production of what has been 
denominate “cytokine storm”. Thus, an adequate insulin 
treatment is required to control the glucose availability 
for activated M1 macrophage and the glycolytic flux that 
feds the viral replication process. In this regard, the viral 
enhancement of hypoxia-inducible factor-1a (HIF-1a) is a 
critical regulator of glycolysis in this situation, in a way 
that a metabolic rewiring is produced at the monocyte 
levels which is beneficial for the viral replication and 
shedding.

In addition, it has been proposed that complement-
ing the treatment with an eucaloric ketogenic diet could 
be a potential metabolic tool for reducing adenosine 
triphosphate production from aerobic glycolysis in the 
M1 macrophage phenotype [29]. This combined thera-
peutic option could theoretically reduce the overproduc-
tion of cytokines and, consequently, the accumulation of 
neutrophils, monocytes, and platelets from the blood. In 
addition, it could be advantageous for the metabolism 
of anti-inflammatory M2 macrophages because these 
cells predominantly express oxidative phosphorylation 
enzymes and are best fed by the oxidation of fatty acids 
in the mitochondria.

Finally, it has been demonstrated that human β-cells 
express viral entry proteins and SARS-CoV-2 indeed 
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infects and replicates in cultured human islets. Infec-
tion of endocrine pancreas leads to morphological and 
functional changes, including reduced numbers of insu-
lin-secretory granules in β-cells and impaired glucose-
stimulated insulin secretion [30].

2.2.2  Obesity

Obesity is an important risk factor for contracting 
COVID-19, as it is also for other infections either of viral 
or bacterial origin and also for developing more severe 
forms of the disease [31]. Obesity is usually causally 
associated with pulmonary dysfunction, thus facilitating 
viral and bacterial infections. Several mechanisms have 
been proposed to explain the higher risk of obesity to 
contracting COVID-19. One feasible option is related 
to the higher expression of ACE2 in adipocytes which 
may facilitate prolonged viral shedding [32, 33]. Another 
important mechanism involved in the increased severity 
in obese people is associated to the COVID-19 driven 
cytokine storm, which is characterized by an overproduc-
tion of pro-inflammatory cytokines and an increase in 
inflammatory cells with a decrease in anti-inflammatory 
cytokines and regulatory cells [34, 35]. The cytokine 
storm identified in multiple respiratory viral infections 
including COVID-19 exhibits an overproduction of inter-
feron, tumor necrosis factor α, interleukins, and differ-
ent chemokines. Considering that subjects with obesity 
have also a pre-set proinflammatory milieu, it is feasi-
ble that COVID-19 could further exacerbate this basal 
obesity-related inflammation, exposing them to an abso-
lute higher level of circulating inflammatory molecules 
compared to lean human subjects. This seems a plausible 
mechanistic explanation of the increased risk of severe 
complications of COVID-19 in subjects with obesity [36].

Obese individuals may exhibit greater viral shedding 
suggesting potential for enhanced viral exposure, espe-
cially if several family members are overweight. This 
may be aggravated in overcrowded multigenerational 
households, which are more common in the socioeco-
nomically deprived communities in which obesity is 
prevalent [37]. In addition, as it has been described 
for influenza infection, obesity not only increases the 
severity but also enhances viral diversity. The altered 
microenvironment associated with obesity supports the 
emergence of a more virulent influenza virus population 
capable of inducing greater disease severity. This could 
be related to an impaired interferon response in obese 
subjects, which has been demonstrated in experimental 
models, both in obese mice and obesity-derived human 
bronchial epithelial cells [38]. The same could happen 
in COVID-19 infection in humans.

3  General mechanisms involving endocrine 
molecules as SARS‑CoV‑2 viral targets

SARS-CoV-2 viral entry requires at least two host pro-
teins [39]: the angiotensin converting enzyme-2 (ACE2) 
and the TMPRSS2 protease. Angiotensin-converting 
enzyme 2 (ACE2) is the only recognized human homo-
logue of ACE, the key regulator of blood pressure, and 
has approximately 42% identical protein sequences. 
Since its discovery in 2000 [40, 41], ACE2 has been 
implicated in heart function, hypertension, and diabetes, 
with its effects being mediated, in part through its abil-
ity to convert angiotensin II to angiotensin. ACE2 biol-
ogy and crucial contribution to SARS-CoV-2 viral dis-
ease development will be extensively covered in another 
chapter of the present issue. SARS-CoV-2 targets cells 
through the viral structural spike protein (S protein) that 
binds to the ACE2 receptor. ACE2 is expressed in human 
pancreas, and coronavirus could enter beta-cells bind-
ing to its receptor, causing acute beta-cell dysfunction, 
hyperglycemia and transient diabetes [42]. A chapter in 
this monograph focuses on the study of this mechanism 
and COVID-19 infection. The transmembrane serine pro-
tease type 2 (TMPRSS2) in the host cell activates viral 
S protein and cleaves ACE2 receptor, further promoting 
viral binding to host cell membrane [39].

Other endocrine molecules have been described as virus 
targets, as neuropilin-1 (NRP1) or human dipeptidyl pepti-
dase 4 (DPP-4) (Fig. 2). Table 1 summarizes the endocrine 
targets effects on COVID-19 of each molecule reported in 
this chapter.

3.1  TMPRSS2 protease

Transmembrane serine protease type 2 (TMPRSS2) is a cell 
surface protein primarily expressed across the respiratory and 
digestive tracts. SARS-CoV-2 requires TMPRSS2 as well as 
ACE2 receptor for entry into epithelial host cells. Both ACE2 
and TMPRSS2 are present in nasal and bronchial epithelium 
and pneumocytes, described as SARS-CoV-2 primary target 
cells in the early infection phase. Furthermore, coronavirus rep-
lication in the lungs needs TMPRSS2. Experimental studies 
showed that TMPRSS2-/- knockout mice infected with corona-
virus reduced the severity of the infectious disease with lower 
viral replication in lungs than wild-type mice [43], indicating 
the critical role of this pathway in coronavirus disease initiation.

Gastrointestinal symptoms, such as diarrhea and abdomi-
nal pain, are observed in COVID-19 patients, often preced-
ing respiratory symptoms. TMPRSS2 is also expressed in 
intestinal epithelial cells across the gastrointestinal tract, 
which is the target for many enteric viruses. Some studies 
have shown that SARS-CoV-2 infects intestinal enteroids 
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cells and TMPRSS2 as well as TMPRSS4 promotes SARS-
CoV-2 active infection in these cells [44]. Many endocrine 
tissues and organs, such as pancreas, thyroid, testis or pitui-
tary, express TMPRSS2 and this could be related to endo-
crine manifestations of COVID-19 disease [45].

Androgens upregulate the transcriptional activity 
of the TMPRSS2 gene which could contribute to the 
male predominance observed in severe infections [46]. 
TMPRSS2 is also expressed in prostate epithelial cells 
and, different mutations in its gene, particularly its 
fusion, represents one of the most frequently biologic 
defects observed in primary prostate cancer. Confirming 
the hypothesis that androgenic upregulation may be of 
importance in disease severity, it has been described that 
patients with prostate cancer treated with androgen dep-
rivation seem to be partially protected from SARS-CoV-2 
infection [47]. In this sense, as TMPRSS2 inhibitors are 
currently available for treating prostate cancer, this could 
represent an appealing target for the prevention or treat-
ment of COVID-19 disease [39, 46].

3.2  Neuropilin‑1

Neuropilin-1 (NRP1) is a pleiotropic type 1 trans-
membrane protein cell surface receptor involved in 

angiogenesis, tumorigenesis, viral entry, axonal guidance 
and immune function [48] and has been considered as a 
potential therapeutic target in differents pathologies as 
cancer or autoimmune diseases. NRP1 has been recently 
described in experimental studies to be a complimentary 
entry mediador factor of SARS-CoV-2 into host cells, in 
addition to ACE2 and TMPRSS2, thus acting as a poten-
tiator of SARS-CoV-2 infectivity [49, 50]. SARS-CoV-2 
S protein, which is instrumental for the binding and fusion 
with host cell membrane, is to get bound to NRP1 after 
its cleavage [49].

NRP1 is also used as a surface receptor by different pro-
teins, as the vascular endothelial growth factor (VEGF) or 
semaphorin 3 family [51]. NRP1 is expressed in vascular 
endothelial cells and may contribute to the organ tropism 
of COVID-19 disease beside the respiratory tract [49, 50]. 
Severe and later stages of the disease are related to vascular 
dysfunction as arterial injury, increased coagulation or sep-
sis and could be possibly due to NRP1 [52, 53].

NPR1 has been found also to show different degrees of 
expression in parathyroid, adrenal and testis and a lower 
expression in thyroid gland compared to the former endo-
crine organs. Indeed, it is possible that NRP1 could partici-
pate in SARS-CoV-2 attack to the pituitary gland as VEGF 
receptors are also present in the pituitary [54].

Fig. 2  Possible endocrine and 
metabolic targets that have 
been considered for COVID-19 
therapy. Different hormones and 
drugs have been included as 
possible targets for COVID-19 
including melatonin, oxytocin, 
DPP-4 (human dipeptidyl 
peptidase 4) inhibitors, GLP-1 
(glucagon-like peptide-1) 
agonists, ACE-2 (angiotensin 
converting enzyme-2) inhibi-
tors, corticosteroids, estrogens, 
anti-androgens and statins
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Hyperglycemia, ketosis and diabetic ketoacidosis have 
been observed in non-previously diabetic patients with 
COVID-19 [55]. An abnormal allele of NRP1 has been 
described in pancreatic beta cells [56] that could modify 
the binding of the S protein of SARS-CoV-2 to NRP1 in 
the islets and could potentially cripple the insulin secretory 
pathway causing hyperglycemia or even diabetic ketoaci-
dosis. The upregulation of NRP1 in diabetic kidney cells 
suggests the importance of this protein in SARS-CoV-2 cell 
entry as a contributing factor and explains the increased risk 
of this infection in patients with diabetes [50].

As previously mentioned, a direct effect of SARS-CoV-2 
virus on adipose tissue is plausible but not well known. In 
vitro studies have described NRP1 [57], ACE2 protein [58] 
and TMPRSS2 expression [45] in adipocytes and adipose tis-
sues. Indeed, human adipose tissues present the highest level of 
NPR1 expression among all human tissues examined and high 
levels of ACE2 protein and TMPRSS2 expression [59], sug-
gesting a possible direct role of SARS-CoV2 in adipose tissue 
that might explain the severity of the infection in obese patients.

A recent study has observed a reduction of the entry and 
infectivity of SARS-CoV-2 in the cell by inhibiting the inter-
action between virus S1 protein and NRP1 [49] suggesting 
a new therapeutic target pathway.

3.3  Pineal gland

Melatonin, a well-known anti-inflammatory and anti-oxidative 
molecule, can protect against acute respiratory distress syn-
drome caused by viral and other pathogens through their known 
enhancement of increased inflammatory cytokines and reactive 
oxygen species generation. There are several mechanisms by 
which melatonin could have potential benefits in COVID-19 
infection. In the first place, it could have antiviral activity. In 
studies performed through pharmacology-based platforms, 
melatonin has been found to be a potential drug with anti-
CoV viruses’ activity [60]. Moreover, melatonin can inhibit 
angiotensin II activation and facilitate angiotensin 1–7 action 
[61]. Melatonin has also very potent anti-inflammatory and 
antioxidant effects that could reduce and/or counteract proin-
flammatory cytokines during the cytokine storm observed in 
severe COVID-19 cases [62]. Notably, there is a well-known 
decrease of melatonin synthesis and secretion with aging condi-
tion, thus favoring a much severe COVID-19 clinical form, as 
the endogenous antioxidant and antiviral action of melatonin 
is naturally impaired. Moreover, long standing diabetes can 
be associated with autonomic neuropathy which impairs pro-
foundly melatonin secretion [63]. Thus, melatonin impairment 
related to aging and/or diabetes may be an important risk factor 

Table 1  Endocrine targets with potential usefulness for SARS-CoV-2 treatment

Possible action against SARS-CoV-2 Recommendation

TMPRSS2 • Viral alternative receptor • No recommendation so far
NRP1 • Viral alternative receptor • No recommendation so far
Melatonin • Anti-inflammatory and antioxidant effects could be useful 

in the cytokine storm
• Improves circadian rhythm, better sleep and shorter ICU 

stay

• Potentially useful in sleep regulation and neurocognitive 
protector as adjuvant therapy

Oxytocin • Immunomodulatory and anti-inflammatory properties could 
reduce cytokine storm

• Enhances endothelial integrity and could have cardio-pro-
tective properties and reduce thromboembolisms

• No recommendation till clinical trials are conducted

Corticosteroids • Anti-inflammatory action • Highly recommended in severe hospitalized patients
Antiandrogens • Decrease TMPRSS2 expression • Antiandrogens should be continued in patients previously 

treated
No recommendation till clinical trials are conducted as primary 

indication
Estrogens • Protective action in endothelial function

• Stimulate humoral immune response
• Modulate inflammatory response

• Menopausal hormonal therapy should be continued
• Hormonal contraception treatment should be discontinued or 

switched to progesterone only contraceptives in hospitalized 
women

• No recommendation till clinical trials are conducted
DPP-4 • Potential alternative viral target

• Anti-inflammatory properties
• Immunomodulator
Facilitates glycaemic control

• DPP-4 inhibitors should be continued if previously indicated

Statins • Promote plaque stabilization
• Immune and anti-inflammatory effects helpful in the con-

tainment of the cytokine storm

• Statins should be continued if previously indicated
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contributing to suffer COVID-19 infection and to develop a 
more severe outcome.

In addition, melatonin regulates the circadian rhythm. 
During the lockdown periods, disruption of the circadian 
rhythmicity has been very frequently described, especially 
in aged individuals. Chrono-disruption is also very com-
mon in hospitalized and critically ill patients. In this regard, 
treatment with melatonin in intensive care units has been 
found to improve sleep and shorten ICU stay [64]. In a recent 
retrospective study melatonin exposure after intubation was 
significantly associated with a positive outcome in COVID-
19 and non-COVID-19 patients requiring mechanical ven-
tilation [65].

Furthermore, melatonin can have neuroprotective proper-
ties. Cognitive deficits have been reported during COVID-
19 infection [66]. Confusion, forgetfulness, fatigue and low 
mental energy may be some of the sequela of COVID-19 
infection. Melatonin could have potential benefits in these 
patients as it can improve the quality of sleep and cogni-
tive performance, mostly if they have required ICU support 
[67–69].

In summary, melatonin could have potential benefits in 
relation to its anti-inflammatory and anti-oxidative proper-
ties; it could also ameliorate chrono-disruption and have 
neuroprotective properties that could improve outcomes in 
COVID-19 patients. Notably, melatonin has a high safety 
profile, however the specific doses by which melatonin may 
reduce the severity of COVID-19 are not defined to date 
and further placebo-controlled randomized clinical trials are 
needed.

3.4  Oxytocin

There is probably a dysfunction on the oxytocin (OXT) 
secreting system related to SARS-CoV-2 infection. In this 
regard, situations that are known to increase the risk of 
developing COVID-19 and also of developing more severe 
forms, such as age and menopause, are associated with a 
decline in OXT [70]. In addition, evidence of an involve-
ment of the hypothalamic-pituitary region characterized by 
an abnormal hyperintensity signal in mammillary bodies and 
hypothalamus has been reported in T-2 magnetic resonances 
of 2 COVID-19 patients [71]. Since the mammillary bodies 
are the center of OXT production, infection of these areas 
could probably lead to changes in OXT activity and secre-
tion in COVID-19 patients.

OXT exerts different roles in the immune system. First, 
OXT can decrease different cytokines including IL-1 and 
IL-6 in the early phases of infectious diseases [72]. Thus, 
this could ameliorate COVID-19-related cytokine storm [70]. 
In addition, OXT could also prevent SARS-CoV-2infection 
itself, inducing γ-interferon production [73] and revers-
ing lymphocytopenia, as it can promote differentiation of 

T-lymphocytes in the thymus [74]. Therefore, both mecha-
nisms, if sufficiently activated, can be very beneficial, ame-
liorating and protecting from COVID-19 infection.

In addition to its effects on the immune system, OXT can 
enhance endothelial integrity [75] and has cardio-protective 
properties that could reduce inflammation and promote 
angiogenesis. These actions are probably very important in 
COVID-19 patients as OXT could thus reduce thromboem-
bolisms and protect the cardiovascular system, which is a 
major target of this virus [76]. Of particular interest, it is 
the possible modulation of nitric oxide production by OXT, 
which is a key signaling molecule acting as a host response 
modulator in viral infections.

OXT could also have a role in some of the comorbidities 
that have been associated with a higher risk of more severe 
forms of COVID-19. OXT could reduce hyperlipemia and 
could also prevent weight gain and attenuate hypertension 
[70]. In addition, OXT has also been involved in the regu-
lation of glucose metabolism and the development of dia-
betes mellitus [77]. In summary, if OXT could ameliorate 
these comorbidities, it could improve COVID-19 morbidity 
and mortality burden. As there are currently no specifically 
effective treatments for COVID-19, OXT could be a safe 
and cheap option and a clinical trial is warranted in these 
patients.

3.5  Corticosteroids

Corticosteroids have been used as an anti-inflammatory and 
immunosuppressive treatment for different diseases of dif-
ferent nature. Severe COVID-19 disease is characterized 
by an inflammatory organ injury and a high production of 
inflammatory endogenous molecules known as cytokine 
storm, which may progress to an Acute Respiratory Distress 
Syndrome (ARDS) as well as to other different organs dam-
age, as i.e. vasculitis, kidney damage and myocarditis among 
other. Under the basis of its previous utilization in a variety 
of diseases, in which a high degree of endogenous inflam-
mation concurs, corticosteroids were postulate as potentially 
useful and in fact they have demonstrated to contribute to 
reduce or attenuate the overactivation of the immune system 
in COVID-19 patients [78, 79].

Data reported regarding the effectiveness of glucocorti-
coids for COVID-19 treatment are somehow contradictory 
[80, 81], probably due to the heterogeneous characteristics 
of the patients and different classes of glucocorticoids used 
among the studies. However, the Recovery study, published 
in July 2020, showed that glucocorticoids, particularly daily 
6 mg of dexamethasone treatment up to 10 days, reduced 
mortality in severe inpatients with COVID-19 receiving 
invasive mechanical ventilation or oxygen therapy [79]. 
These promising data led to the modification of the stand-
ard of care guidance for COVID-19, as shown in the last 
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recommendations of the World Health Organization (WHO) 
[82] that introduced systemic glucocorticoids in the treat-
ment of severe and critical COVID-19 patients but not in 
patients with mild symptoms. Nowadays, many clinical stud-
ies are ongoing to check the effectiveness of glucocorticoids 
treatment in severe COVID-19 patients.

The preferred choice is a compound with a high glucocor-
ticoid effect and no mineralocorticoid action, such as dexa-
methasone. Dexamethasone has a potent anti-inflammatory 
action, but also a very well-known hyperglycaemic effect. 
As mineralocorticoid action could be harmful due to the 
enhancement of RAAS, it may potentially stimulate the viral 
spread through ACE2 and also has detrimental effects on 
hypertension and cardiac and pulmonary function, therefore 
dexamethasone is a convenient option [83, 84].

The use of high doses of glucocorticoids may cause 
hyperglycemia in a high percentage of patients by increas-
ing hepatic gluconeogenesis [85] and decreasing periph-
eral glucose use [86]. Indeed, high doses of glucocorticoids 
exacerbate hyperglycemia in patients with diabetes, previ-
ously diagnosed or undiagnosed, and may precipitate hyper-
glycemia and steroid-induced diabetes in those patients at 
risk [87]. Glycemic control in severe COVID-19 in patients 
treated with glucocorticoids is a challenge, especially in 
patients with previous diabetes treated with insulin due to 
the aforementioned effects upon glucose metabolism as 
well as the impact of high circulating concentrations of 
cytokines present in severe COVID-19 cases. Diabetes UK 
has published a clinical guideline for the hyperglycemia 
management in COVID-19patients treated with dexametha-
sone [87], recommending glucose monitoring to all patients 
and an initial insulin dose of 0.3 ui/kg/day, which should 
be quickly adjusted according to daily glucose levels. In 
our personal experience, these patients need high insulin 
doses of about 1–1.3 ui/kg/day on average, and active daily 
medical supervision to achieve glycemic goals between 
7.7–10 mmol/l.

3.6  Antiandrogens and estrogens

Gender is one of the determinants for the evolution of severe 
forms of SARS-CoV-2 infection [88]. Men are more severely 
affected by COVID-19 than women, even after adjustments 
for age, BMI and comorbidities [89, 90]. A possible explana-
tion of the worse prognosis in men could be the androgenic-
enhanced expression of TMPRSS2 that facilitate SARS-
CoV-2 cell entry. However, young men have better outcomes 
than older men despite having higher levels of testosterone. 
Among young men, those with androgenic alopecia present a 
higher risk of severe COVID-19 forms and worse outcomes 
[91], presumably due to increased intracellular conversion 
from testosterone to 5-alpha dihydrotestosterone, thus facili-
tating SARS-CoV-2 to increase infectivity.

Last but not least, low testosterone levels have also been 
associated to a poor prognosis and mortality in severe 
SARS-CoV-2 men cases [92]. A recent report indicates that 
in a cohort in which the mean age of men was 63 years, 
circulating testosterone was consistently low in those devel-
oping a more severe form of the disease [93]. On the other 
hand, a polymorphism of the androgen receptor gene has 
been described predisposing some men to develop more 
severe COVID-19 forms. These patients showed high circu-
lating testosterone levels indicating receptor resistance [94]. 
Finally, low testosterone could also be related to hypotha-
lamic hypogonadism, as observed in other metabolic, inflam-
matory diseases and severe COVID-19 forms. Therefore, the 
information published so far indicates that different factors 
interplay in the severity of COVID-19 disease in men, either 
in association with high or low circulating androgens.

Antiandrogenic treatment, particularly androgen recep-
tor inhibitors as cyproterone, spironolactone, eplerenone or 
flutamide and 5-alpha-reductase inhibitors, as well as finas-
teride and dutasteride, seem to protect from COVID-19 in 
men. However, this question remains very controversial at the 
moment [95]. Spironolactone and eplerenone have both an 
antiandrogenic and an antagonistic mineralocorticoid effect, 
contributing to cardiovascular protection on these patients, as 
aldosterone represents the bioactive RASS end-product [96]. 
Dutasteride and finasteride are 5-alpha-reductase inhibitors 
that block the conversion of testosterone to 5-alpha DHT and 
mitigate TMPRSS2 expression in prostate cancer [97]. For 
these effects, they have been proposed as an adjuvant treat-
ment for SARS-CoV-2 infection, particularly in men with 
androgenic alopecia. Different clinical trials using antian-
drogen, aldosterone antagonist or TMPRSS2 inhibitors treat-
ments trials are underway [92]. But, at the moment, results 
are not yet available. Male patients on previous antiandro-
genic therapy for prostate cancer should continue the therapy 
with a careful evaluation and follow-up.

Concerning women, the increased risk of developing 
severe forms and complications of COVID-19 infections is 
mostly related to menopause age [98]. Indeed, estrogens may 
have a favorable effect against viral infections due to their 
protective action on endothelial function, the stimulation 
of the humoral immune response and the modulation of the 
inflammatory response [99–102]. Furthermore, the RASS is 
favorably modulated by estrogens in women [103, 104], while 
TMPRSS2 expression has a dual correlation with estrogens 
[105, 106]. In conclusion, estrogens, particularly estradiol, 
could be eventually protective against COVID-19 and may 
prevent severe complications. There are ongoing clinical tri-
als using estrogens, progesterone and anti-androgens com-
pounds, but no final data are currently available [92]. How-
ever, it is also crucial to remind that COVID-19 is associated 
to the development of micro and/or macro thrombotic events 
[107, 108], and this could represent a limitation for estrogens 
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utilization in this disease. Regarding women under menopau-
sal hormone replacement therapy (MHT), it has been recom-
mended to continue treatment, although adding low molecular 
weight heparin treatment in hospitalized cases [109]. How-
ever, the general advice on hormonal contraception treatment 
is to discontinue the therapy or switch to progesterone-only 
contraceptives in hospitalized women.

3.7  DPP‑4

Human dipeptidyl peptidase 4 (DPP-4)/CD26 has also 
been identified as a functional receptor of the S protein of 
MERS-Co-V [110]. MERS-CoV binds to the DPP-4 recep-
tor-binding domain and interacts with T cells and nuclear 
factors, such as NF-kB, which is critical in the pathogenesis 
of inflammatory disorders. DPP-4 is a known regulator of 
the immune system by activating T cells and enhancing the 
NF-kB pathway [111]. Transgenic mouse models express-
ing human DPP-4 exposed to MERS-CoV had an impaired 
monocyte/macrophage phenotype, CD4 + T cells, and lower 
TNF alpha, IL-6 and Arg1 [112]. The human DPP-4/CD26 
may also interact with the S1 domain of the viral spike gly-
coprotein of SARS-CoV-2, thus allowing an additional way 
for virus entry into the cell [113].

Therefore, the question is whether DPP-4 inhibitors 
used currently for type 2 diabetes treatment may not just 
improve metabolic control in these patients but also con-
tribute to modify COVID-19 attack, either inducing protec-
tion or progression of infection. It is tempting to postulate 
that inhibition of DPP-4 with the current antidiabetic drugs 
targeting this molecule may impair the virus/DPP-4 inter-
action, thereby enhancing the cell’s self-defense from virus 
entrance. However, the binding of SARS-CoV-2 compared 
to MERS-CoV occurs at residues not located near the DPP-4 
binding pocket of current gliptin drugs; thus, more studies 
are required to clarify this question [114].

It is also known that DDP-4 inhibition modulates inflam-
mation and has anti-fibrotic effects. Depending on the 
potency of these properties, DPP-4 inhibitors may eventually 
have some protective effects in case of severe COVID-19 
infection. The potential decrease of the magnitude COVID-
19 cytokines storm under DPP-4 inhibitor treatment action 
sounds attractive but, so far, no data are available to provide 
a consistent answer.

3.8  Statins

A systematic review and meta-analysis found that the use 
of statins was associated with improved clinical outcomes 
in patients with COVID-19 [115]. The results to date have 
been controversial, as some studies but not all have found a 
reduced risk of severe COVID-19 presentation [116–119]. 
In those positive studies, although patients had multiple 

comorbid conditions mainly associated with an increased 
cardiovascular risk, statins were associated to a reduction of 
poor outcomes of COVID-19 disease [8, 9]. Mechanistically, 
there is evidence that cholesterol present in the cell mem-
brane and the viral envelope could enhance SARS-CoV-2 
cell entry as it does for other coronaviruses [120–122].

The known statins cardioprotective effects may have 
probably been implicated in the protection of COVID-19 
cardiac injury, as recently reported in a series in which 
cardiac complications, including myocardial injury was 
only observed in 7% in those treated and 30% in non-statin 
treated patients [123]. Possible mechanisms implicated a 
greater plaque instability related to the COVID-19 inflam-
mation milieu, especially when cytokine storm is present 
[120], thus treatment with statins in these patients could 
promote additional plaque stability. Moreover, statins have 
also immune and anti-inflammatory effects that could con-
tribute to mitigate the cytokine storm. As a consequence 
of these reports, the recommendation for patients on 
statins, is to keep on the statins treatment in case of getting 
infected with COVID-19. In patients who haven’t received 
this therapy previously, results of ongoing clinical trials 
are needed to make a firm recommendation on the ini-
tiation of statins. Nevertheless, their possible actions in 
cardiac protection, plaque stabilization, anti-inflammatory 
and immunomodulatory properties make them good can-
didates for high-risk COVID-19 patients [120].

4  Conclusions

COVID-19 pandemic has dramatically impacted the whole 
society worldwide and almost broken the health care sys-
tem of some countries. Since the beginning of the pan-
demic, a metabolic and endocrine phenotype of patient has 
emerged and required quick adaptation and protection of 
these patients trough specific medical treatment of endocrine 
nature. With accumulating evidence generated in the last 
18 months we now know that virtually all endocrine organs 
and systems may be affected by the SARS-cov-2 virus. As 
a consequence, the knowledge of the main features of endo-
crine nature that can be present in everyday patient is cru-
cial for an adequate and successful therapeutic approach. 
From ACE2, TMPRSS2 to NRP1, many endocrine targets 
and molecules of endocrine nature are at the entrance of the 
viral attack and can contribute to its expansion and magnifi-
cation of systemic lesions through amplification of cytokine 
storm. In this regard, optimization of glycaemic control and 
diminution of glycaemic excursions contribute to better out-
comes in these patients. In addition, other relevant hormonal 
products, such as thyroid hormones, melatonin, oxytocin, 
sex hormones and corticosteroids have been either been 

145Reviews in Endocrine and Metabolic Disorders (2022) 23:137–150



1 3

impacted by their organ lesion or as potential or demon-
strated beneficial therapeutic agent.

Endocrinology of COVID-19 has revealed the existence 
of a specific phenotype including a high frequency of obese 
type 2 diabetic aged males, with all the concurrent meta-
bolic components, but also with a high prevalence of hypo-
vitaminosis D and hypocalcemia, hypogonadal function and 
multiple endocrine organs damage, including the hypothala-
mus. Thus, endocrinologists and physicians taking care of 
COVID-19 patients require to evaluate these conditions and 
implement the most appropriate support to achieve survival 
and prevent excessive mortality.
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