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1  | INTRODUC TION

Gymnosperms emerged in the Devonian (about 350 Myr ago), long 
before the appearance of angiosperms (Augusto, Davies, Delzon, 
& Schrijver, 2014) (Figure 1). The rise of the angiosperms and the 

concomitant decline of gymnosperms in the Late Cretaceous 
(about 100–60 Myr ago) are among the most important phyto-
geographic phenomena in the history of the planet. The radiation 
of angiosperms during the Cretaceous (termed an “abominable 
mystery” by Charles Darwin; Berendse & Scheffer, 2009) resulted 
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Abstract
Although gymnosperms were nearly swept away by the rise of the angiosperms in 
the Late Cretaceous, conifers, and pines (Pinus species) in particular, survived and 
regained their dominance in some habitats. Diversification of pines into fire-avoiding 
(subgenus Haploxylon) and fire-adapted (subgenus Diploxylon) species occurred in re-
sponse to abiotic and biotic factors in the Late Cretaceous such as competition with 
emerging angiosperms and changing fire regimes. Adaptations/traits that evolved in 
response to angiosperm-fuelled fire regimes and stressful environments in the Late 
Cretaceous were key to pine success and are also contributing to a new “pine rise” in 
some areas in the Anthropocene. Human-mediated activities exert both positive and 
negative impacts of range size and expansion and invasions of pines. Large-scale af-
forestation with pines, human-mediated changes to fire regimes, and other ecosys-
tem processes are other contributing factors. We discuss traits that evolved in 
response to angiosperm-mediated fires and stressful environments in the Cretaceous 
and that continue to contribute to pine persistence and dominance and the numer-
ous ways in which human activities favor pines.
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in extraordinarily high species numbers and considerable expan-
sion of the area occupied by angiosperms. Angiosperms attained 
dominance at low latitudes in the Late Cretaceous, while many 
gymnosperms (Bennettitales and Cheirolepidiaceae) went ex-
tinct (Bond & Scott, 2010). The emergence of angiosperms was 
more successful in suppressing nonconiferous gymnosperms such 
as cycads, seed ferns, and free-sporing plant groups including 
mosses, lycopods, sphenophyta, ferns, and fern allies (Lidgard & 
Crane, 1988). Some conifers also declined during the ecological 
rise of angiosperms. Taxa in the extinct family Cheirolepidiaceae 
declined, and other conifers faced major species turnover during 
Late Cretaceous (Augusto et al., 2014). In general, however, mod-
ern conifers fared much better than other gymnosperms during 
the rise of angiosperms (Willis & McElwain, 2002); they are thus 

a poor proxy for gymnosperm lineages that were eliminated by 
angiosperms (Augusto et al., 2014).

In response to competition posed by the emergence of angio-
sperms and changing fire regimes, pines (Figure 2) diversified into 
two lineages: (a) Diploxylon (fire-adapted “hard pines”; subgenus 
Pinus) and (b) Haploxylon (“soft pines”; subgenus Strobus, which are 
fire avoiders) (López, Kamiya, & Harada, 2002). Fire-avoider pines 
expanded into abiotic stressful environments, and fire-adapted 
pines occurred in relatively productive environments of subtrop-
ical and temperate latitudes (Keeley, 2012; Schwilk & Ackerly, 
2001). The large size of pines and the physiological and anatomi-
cal adaptations of (especially Haploxylon) pines helped them per-
sist in extreme environments (Tomback & Linhart, 1990). Pinus 
(≈115 species), all but one species (P. merkusii) with native ranges 

F IGURE  1 Key drivers and responses during the evolution of pines. Gymnosperms originated in the Devonian (350 Myr ago), but pines 
originated ~150 Myr ago. Oval shapes indicate environmental filters, red ovals for Diploxylon and blue ovals for Haploxylon pines. The 
presence of different groups is represented by numbers: 1, gymnosperms; 2, pines prior to diversification; 3, Diploxylon; 4, Haploxylon; 
5, angiosperms; 6, C3 grasses; 7, C4 grasses. Solid red ovals indicate fire as a driver, and solid blue ovals denote extreme environments as 
drivers. Dashed red or blue ovals indicate the impact of humans. Angiosperms, mainly shrubs and herbs, appeared as understorey ruderals 
in the Late Cretaceous (65–145 Myr ago) and later proliferated in response to novel fire regimes. This resulted in the shift of community 
structure as slow-growing gymnosperms were replaced by fast-growing angiosperms, resulting in the decline of gymnosperms except 
conifers. Changes in the climate in the Miocene (5–24 Myr ago) led to the replacement of woodlands with grasslands dominated by C4 
species. Highly flammable C4 grasses became abundant in open areas with higher light availability. Pinus has shown remarkable adaptability 
to highly flammable ecosystems, including frequently burned C4 grasslands. The timing of angiosperm evolution overlaps with the origin and 
diversification of pines into Diploxylon and Haploxylon taxa. Haploxylon taxa are fire-avoiding and occur in drier and colder regions, whereas 
Diploxylon taxa are fire-adapted and occur in more productive environments at subtropical and temperate latitudes. Diploxylon pines evolved 
to adapt to fire and codominate with angiosperms in some more productive regions outside tropical rain forests
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confined to the Northern Hemisphere, is the coniferous genus 
with the largest number of species and the largest global distribu-
tion (Brodribb, Pittermann, & Coomes, 2012; Richardson, 1998). 
Pines had colonized the entire supercontinent of Laurasia by the 
end of the Cretaceous (Gallien, Saladin, Boucher, Richardson, & 
Zimmermann, 2016; Keeley, 2012). They currently occupy large 
areas in both temperate and subtropical ecosystems (Figure 2). 
The tropical distribution of pines is also associated with savan-
nas in the southeastern United States (up to 12° latitude N), the 
Caribbean region, and parts of Central America.

Pines originated in the circumpolar continent of Beringia 
during the Mesozoic era and started expanding across lower 
latitudes around late Mesozoic and early Cenozoic eras (Mirov, 
1967). Pine expansion aided the diversification in major extant 
clades of pines with Eurasian and North American origin through 
the Oligocene with various events of vicariance (Eckert & Hall, 
2006). Palynological fossil evidence suggests a shift in dominance 

from broad-leaved deciduous forest to pine-dominated forest 
during the Pliocene and Pleistocene in eastern Europe (Stuchlik, 
1994).

The Holocene, the current geological epoch, began approxi-
mately 11,650 cal years before present, after the last glacial pe-
riod. The increase in human populations during this epoch and of 
the human footprint on the planet’s ecosystems has led to calls for 
the Holocene to be seen as the first stage of the Anthropocene, or 
indeed for the terms “Holocene” and “Anthropocene” to be consid-
ered as synonymous (Certini & Scalenghe, 2015). In this paper, we 
use the term “Anthropocene” to refer to the period during which 
human activity has become the dominant influence on climate 
and the environment. Many pine species have undergone major 
range expansions in the Anthropocene by expanding their ranges 
in the Northern Hemisphere (Améztegui, Brotons, & Coll, 2010; 
Jakubos & Romme, 1993; Lubetkin, Westerling, & Kueppers, 2017; 
Prévosto, Hill, & Coquillard, 2003; Taylor, Maxwell, Pauchard, 

F IGURE  2 Pines in the Northern 
(native) and Southern (nonnative) 
Hemispheres. (a) Pinus longaeva in the 
White Mountains, California, USA; (b) 
P. contorta, southern California, USA; 
(c) P. halepensis, southern France; (d) 
P. pinaster, Andalucía, Spain; (e) P. contorta, 
colonizing subalpine meadow, Sequoia 
National Forest, California, USA; (f) 
P. roxburghii in the Himalaya, Uttarakhand, 
India; (g) P. contorta invading Patagonian 
steppe vegetation, near Bariloche, 
Argentina; (h) P. pinaster invading fynbos 
shrubland, Western Cape, South Africa. 
Photograph credits: D.M. Richardson (a–e, 
g, and h), Inderjit (f)

(a) (b)

(c)

(g) (h)

(e)

(d)

(f)



10348  |     SINGH et al.

Nuñez, & Rew, 2016b; Taylor et al., 2016a) and, due to large-scale 
plantings and invasions, mainly in the Southern Hemisphere (Essl, 
Mang, Dullinger, Moser, & Hulme, 2011; Richardson, Williams, 
& Hobbs, 1994; Simberloff et al., 2010). Pine is the dominant 
taxon in natural forests over parts of the Northern Hemisphere 
(Richardson, 1998), and more than 20% of pine species are in-
vasive in regions outside their native ranges (Nuñez et al., 2017; 
Rejmánek & Richardson, 2013; Richardson & Rejmánek, 2004; 
Rundel, Dickie, & Richardson, 2014; Simberloff et al., 2010). Pines 

have expanded their ranges in the Northern Hemisphere due to 
planting by humans (e.g., Brundu & Richardson, 2016) and by en-
croaching into previously treeless ecosystems. Examples in North 
America are where the native species P. contorta has colonized 
grasslands and shrublands (Figure 2e; Jakubos & Romme, 1993; 
Lubetkin et al., 2017; Taylor et al., 2016b), in France where P. syl-
vestris has spread into abandoned lawns and heathlands (Prévosto 
et al., 2003), and in Spain where P. uncinata has expanded its 
range in the Pyrenees (Améztegui et al., 2010). Pine invasiveness 

F IGURE  3 Schematic representation that connects the diversification of pines into two lineages (Haploxylon and Diploxylon taxa) 
to their diversification and domination over evolutionary time and their ability to (a) evolve novel traits and adaptations for extreme 
environments; and (b) manipulate nutrient cycling to dominate globally. It depicts the ecological drivers, traits, and responses during the 
evolution of conifers (pines) and angiosperms in evolutionary time. Drivers (colored boxes) of pine dispersal and dominance in evolutionary 
time (black boxes) resulted in the occupation of extreme environments by pines, coexistence of fire-adapted pines with angiosperms in 
productive habitats, and expansion, invasion and contraction of pines in Anthropocene (white boxes). Fire regimes, life-history traits, 
adaptations, and ectomycorrhizal associations played important roles in the diversification of pines into fire-avoiding (Haploxylon) and fire-
adapted (Diploxylon) taxa in response to the emergence of angiosperms in the Late Cretaceous. As a result, fire-avoiding pines occupied 
stressful extreme environments, which were much less suitable for angiosperms. Fire-adapted pines share some productive habitats with 
angiosperms. Some pines are currently expanding their ranges in the Northern Hemisphere, and widespread plantings and associated 
human activities have resulted in widespread pine invasions in the Southern Hemisphere. Adaptations/traits that evolved in response 
to angiosperm-mediated fire regimes and stressful environments in the Late Cretaceous were key to pine success through Neogene and 
Paleogene and also contribute to the pine dominance in the Anthropocene. For example, life-history traits that were important in the 
pine diversification also are key driver of pine dominance in the Anthropocene. Other crucial drivers of pine dominance are as follows: 
ecosystem-driven processes, fire as disturbance, and human-assisted plantations. Human impacts on fire regime, grazing/browsing, use of 
pine material for construction purposes, manipulation of natural ecosystem, alteration of biota through species reshuffling, anthropogenic 
pollution and land use result in the adverse effects of the establishment, and growth and range size of pines
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is associated with ruderal strategies, large niche breadth, human 
use, historical biogeography, and climate (Essl et al., 2011; 
Gallien et al., 2016; Grotkopp et al., 2002; McGregor, Watt, 
Hulme, & Duncan, 2012; Pauchard et al., 2016; Procheş, Wilson, 
Richardson, & Rejmánek, 2012). Pine invasions are increasing in 
importance especially in areas with large-scale afforestation with 
nonnative pines (Richardson, van Wilgen, & Nuñez, 2008). This 
process is evident in countries in the Southern Hemisphere such 
as New Zealand (Ledgard, 2004), South Africa (Figure 2h; Rouget, 
Richardson, Milton, & Polakow, 2001; Van Wilgen & Richardson, 
2012), Argentina (Figure 2g; Nuñez, Horton, & Simberloff, 2009; 
Sarasola, Rusch, Schlichter, & Ghersa, 2006), Chile (Langdon, 
Pauchard, & Aguayo, 2010), and Brazil (Zenni & Simberloff, 2013). 
Several pine species are also invasive in the Northern Hemisphere 
where nonnative pines were introduced for forestry, for example, 
in Sweden (Engelmark et al., 2001) and the British Isles (McGregor 
et al., 2012).

The radiation and emergence of angiosperms in the Late 
Cretaceous are well covered in the literature (Augusto et al., 
2014). However, more work is needed to understand the diversi-
fication and dominance of pines in evolutionary time. We discuss 
two questions: (a) How pines could persist in the Late Cretaceous 
when angiosperms were emerging and spreading? and (b) Why 
have pines become the dominant conifer taxon in many environ-
ments over evolutionary time? The major events in pine diver-
sification and dominance can be compartmentalized into three 
phases: (a) pine diversification in the Late Cretaceous; (b) current 
range expansion and invasion of pines; and (c) range contraction of 
pines. Five drivers play key roles in these phases: (a) fire-adapted 
traits; (b) adaptations to extreme environments; (c) fire character-
istics; (d) ecosystem-mediated processes; and (e) large-scale plant-
ing and dissemination by humans (Figure 3). There are similarities 
in the drivers of pine diversification in the Late Cretaceous and of 
pine dominance in the Anthropocene. Elaboration of these factors 
provides the means to unravel the causes that explicitly drive pine 
dominance (fire as an ecological disturbance, ecosystem-mediated 
processes, and large-scale pine planting by humans) (Figure 3). 
Such insights could be utilized to predict and manage pine forests 
in the future.

2  | WHY PINES PERSISTED DURING THE 
RISE OF ANGIOSPERMS?

Conifers were widespread during the Cretaceous (Harland, Francis, 
Brentnall, & Beerling, 2007; He, Pausas, Belcher, Schwilk, & Lamont, 
2012). The decline of gymnosperms happened in the Late Cretaceous 
when angiosperms were emerging. The adaptations of pines to fire 
regimes and the traits that allowed them to survive in extreme en-
vironments lead to the diversification of pines (Bond & Scott, 2010; 
He et al., 2012). In the following sections, we discuss adaptations to 
fire and traits that helped pines to survive in extreme environments 
in the Late Cretaceous.

2.1 | Pine adaptations to fire regimes

Fire was a major driver of the rise of angiosperms in the Late 
Cretaceous (Figure 1; Bond & Scott, 2010). The timing of angiosperm 
evolution overlaps with the diversification of pines (Keeley, 2012), 
partly because angiosperms altered fire regimes by promoting more 
frequent fires than the slower growing gymnosperms. Pine therefore 
diversified into fire-adapted and fire-avoider lineages. In discussing 
fire-adapted pines, Keeley (2012) identified pines with fire-tolerater, 
fire-embracer, and fire-refugia strategies. Taxa with fire-tolerater 
strategies have long needles and thick bark (Keeley, 2012). The thick 
bark of these pines protects their cambium from extreme heat due 
to intense fire, but their long needles contribute to intense fires by 
creating a loosely packed litter layer (Fonda, Belanger, & Burley, 
1998; Keeley, 2012). Pine bark with thickness >15 mm can protect 
its cambium for up to 3 min against surface fires when temperatures 
reach 400°C (He et al., 2012). These pines delay the time gap be-
tween building surface fuel load and canopy fire by synchronization 
of their taller height and self-pruning of dead branches. Pine seeds 
germinate better on bare soil after surface fires (Keeley, 2012). The 
reduced number of repeated fires due to limited availability of crown 
fire loads facilitates the recruitment of pine seedlings close to par-
ent trees (Keeley, 2012). Pinus sylvestris in Europe and Asia, P. pinea 
and P. pinaster in Europe, and P. ponderosa in North America are ex-
amples of taxa with fire-tolerater strategies (Keeley, 2012). An in-
teresting life-history trait in some pines is the delayed development 
(5–10 years) of the trunk; this is known as the “grass stage” (Keeley, 
2012). Pines with this strategy accumulate needles over apical buds 
to protect them against fire (He et al., 2012). A thick tuft of green 
needles protects the meristem in the seedlings of P. palustris in the 
coastal plains of southern United States and in P. merkusii in eastern 
Himalaya and South-East Asia. With the appearance of a perennial 
bunch grass for several years, pine seedlings at the grass stage de-
velop a deep root system. After the release from this stage, seedlings 
may grow by about 1.5 m in a couple of years, and trees that develop 
from them may live for hundreds of years (Platt, Evans, & Rathbun, 
1988). Such adaptations in pines arose between 126 and 89 Myr (He 
et al., 2012), indicating either that fire acted as an evolutionary agent 
much earlier or that these characters already existed in pines and 
proved advantageous in fire-prone ecosystems.

The second category of fire-adapted pines identified by Keeley 
(2012) is fire-embracing pines, which employ crown fire to promote 
the intense fires that consume tree canopies. Retention of dead 
wood by these pines in their crowns to promote crown fire results 
in postfire regeneration of serotinous seeds (Keeley, 2012). Serotiny, 
a pivotal fire-embracer trait, allows pines to release seeds in large 
numbers after intense fires (He et al., 2012). Besides pines, serotiny 
is also exhibited in the family Pinaceae by Picea mariana and probably 
by Larix gmelinii (He et al., 2012). However, most pines (85 out of the 
115 species) are nonserotinous (Asia, 29 out of 33 species; Europe, 9 
out of 13 species; North America, 27 out of 40 species; and Central 
America, 20 out of 29 species are nonserotinous; McGregor et al., 
2012).
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Similar to fire-tolerater or fire-embracer pines, fire-refugia pines 
(e.g., P. sabiniana in California, USA) have thick bark and retain dead 
branches in the crown, but lack cone serotiny that characterizes fire-
embracer pines (Keeley, 2012). Fire-refugia pines can grow well in 
grasslands and chaparral, rock outcrops, or riparian areas (Keeley, 
2012). These strategies in pines, developed in the Late Cretaceous, 
enabled them to survive in the fire-prone productive habitats domi-
nated by angiosperms.

Fire can also have negative impacts on pines and reduce the 
area occupied by them. Pinus nigra, for example, was a dominant 
species in the northern Iberian Plateau of Spain during the early 
Holocene. There was, however, a major decline in the extent of for-
ests of this species in 1,300–1,200 cal BP due to human-associated 
fires and intense farming (Morales-Molino, Tinner, Garcia-Anton, & 
Colombaroli, 2017).

2.2 | Pine adaptations for extreme environments

Buds and the bark of many evergreen pines (e.g., P. aristata, P. con-
torta, P. koraiensis, P. monticola, P. mugo, P. parviflora, P. peuce, 
P. pumila and P. rostrata) can survive at −90°C (Strimbeck, Schaberg, 
Fossdal, Schröder, & Kjellsen, 2015). Haploxylon pines can establish 
in extreme environments because they are well adapted to dry and 
cold habitats that seldom experience fire (Keeley, 2012). Waring 
and Franklin (1979) asked what drives the evolution of coniferous-
dominated forests compared to the deciduous hardwood forests in 
the temperate regions. They found that height (large trees) and the 
evergreen needles of conifers provide a buffer against nutrient- and 
moisture-stressed habitats. The longer juvenile period in Haploxylon 
pines (McGregor et al., 2012; Yeaton, 1978) may be the result of a 
conservative strategy prioritizing individual survival over early re-
production. Also, longer life spans in Haploxylon taxa (McGregor 
et al., 2012) may indicate that they belong in more stressful habitats, 
as longevity and establishment in stressful environments have been 
positively correlated (Strauss & Ledig, 1985; Valladares & Niinemets, 
2008). Also, larger seeds have been related to higher tolerance to 
different types of stress, such as drought or shade (Baker, 1972; 
Grime, 1965; Westoby, Falster, Moles, Vesk, & Wright, 2002; Wright 
et al., 2010) and Haploxylon pines tend to have bigger seeds than 
Diploxylon taxa (McGregor et al., 2012; Tomback & Linhart, 1990; 
Yeaton, 1978). Pines in stressful conditions face difficulties in lo-
cating safe sites for the regeneration of seedlings (Keeley, 2012). In 
this context, dispersal by animals provides a more effective way of 
finding suitable regeneration sites (Tomback & Linhart, 1990), and 
this mode of dispersal is much more common in Haploxylon than in 
Diploxylon pines (McGregor et al., 2012; Tomback & Linhart, 1990). 
For example, the bird Nucifraga columbiana efficiently disperses 
seeds of P. edulis in north-central Arizona (Vander Wall & Balda, 
1977) and seeds of P. albicaulis in California (Tomback, 1982), and 
the red squirrel (Sciurus vulgaris orientis) disperses seeds of P. ko-
raiensis in Japan (Hayashida, 1989). Also, the seeds of P. cembra are 
dispersed by both N. caryocatactes and S. vulgaris in the Italian Alps 
(Zong et al., 2010).

2.3 | Ectomycorrhizal associations

The success of pines in temperate northern latitudes and at higher 
altitudes in the tropics has been attributed to the replacement of 
arbuscular mycorrhizal (AM) forests rich in tree diversity with ecto-
mycorrhizal (EM) forests rich in fungal diversity but low in tree di-
versity, often culminating in vast monodominant stands of Pinaceae 
(Malloch, Pirozynski, & Raven, 1980). Many traits extant in Pinaceae 
were common throughout the group until subsequent divergences 
triggered by environmental conditions (Burleigh & Matthews, 2004; 
Chaw, Parkinson, Cheng, Vincent, & Palmer, 2000). Ectomycorrhizal 
associations were common in early gymnosperms, such as members 
of Gnetales and Cupressaceae. These turned out to be an apomor-
phic character and were only employed by Pinaceae for support-
ing establishment and sustenance under conditions of nutrient and 
water stress. The oldest fossils of EM roots of gymnosperms are from 
about 50 Myr ago in the Middle Eocene and are associated with Pinus 
(Le Page, Currah, Stockey, & Rothwel, 1997). Development of pine-
ectomycorrhizal associations coincides with diversification, estab-
lishment, and dominance of pines progressively at different stages 
in the history of its evolution. About 270 Myr ago in the Permian, 
gymnosperms in the families, Gnetaceae or Aurocariaceae, shifted 
habitat preferences toward mesic sites and their stress tolerance 
mechanisms became redundant (Gao & Lan, 2016; Wan et al., 2018). 
Ectomycorrhiza played an important role in the diversification of 
pines in the Late Cretaceous, particularly in extreme environments.

Pines probably originated in the mid-Mesozoic Era (Keeley, 
2012). Radiations in basidiomycetes during the Paleogene and 
Neogene (Bruns et al., 1998) gave rise to fungal species in taxa 
such as Rhizopogon and Suillus which formed EM associations with 
the rapidly diverging Pinaceae. The coincidence in the timing of di-
versification between EM and pine provides support for the notion 
that mycorrhizal support was a key factor in pine diversification. 
Palaeotropic-specific clades of Inocybaceae diversified during the 
Cretaceous and early Paleogene in response to angiosperm diver-
sification but also showed a transition to association with Pinaceae 
during the Paleogene (Matheny et al., 2008). Cooler climatic condi-
tions aided in the spread of pines and Fagales. Since both groups are 
obligately EM, this helped in dispersal and further diversification of 
the fungi involved in EM (Berggren & Prothero, 1992; Malloch et al., 
1980).

3  | WHY HAVE PINES BECOME THE 
DOMINANT CONIFER TA XON IN MANY 
ENVIRONMENTS OVER E VOLUTIONARY 
TIME?

Pines were able to colonize large areas after the glacial era 
(Macdonald, Cwynar, & Whitlock, 1998). Pinus ponderosa expe-
rienced a long delay establishment, followed by rapid expansion 
across large parts of the central Rocky Mountains in North America, 
suggesting climate- rather than dispersal-driven expansion (Norris, 
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Betancourt, & Jackson, 2016). Desponts and Payette (1993) recon-
structed the postglacial history of P. banksiana and found that this 
species formed small stands from 300 to 2,400 B.P. and that re-
gional expansion of its range occurred between 2,400 and 1,750 B.P. 
Carrión, Sánchez-Gómez, Mota, Yii, and Chaín (2003) reconstructed 
the vegetation history of Sierra de Gádor, southern Spain, and found 
pollen spectra for the period ca. 6,850–6,060 cal yr. B.P. to be domi-
nated by pines; they observed three phases of decline at ca. 6,750, 
6,550, and 6,350 cal yr. B.P. An increase in pine pollen was observed 
up to ca. 1,700 cal yr. B.P., but pine then declined, with an increase 
in oaks, Cupressaceae and Poaceae. Pine increased and oak declined 
during the period ca. 3,940–1,760 cal yr. B.P. Fire events played 
a significant role during this period when increased fire intensity 
and human activity might have facilitated pines during ca. 1,760–
1,620 cal yr. B.P. (Carrión et al., 2003).

Pines have expanded their ranges in many parts of the Northern 
Hemisphere during the Anthropocene. For example, native P. con-
torta has expanded by invading high-altitude meadows in many parts 
of the western United States and P. ponderosa has established in for-
est–grassland ecotones in Colorado, USA (Rundel et al., 2014). Pine 
plantations now cover huge areas outside the native range of the 
genus in the Southern Hemisphere, where they are planted mostly 
for timber and pulp. There are about 2 million ha of P. radiata plan-
tations in Chile and 1.2 million ha of P. taeda in Brazil (Nuñez et al., 
2017; Simberloff et al., 2010). Invasive pines are largely Diploxylon 
taxa, belonging to lineages that were good colonizers in the past 
(Gallien et al., 2016). Climate could be an important determinant 
for predicting the potential area that could be invaded by pines, but 
expansion and invasion of pines in introduced ranges are also medi-
ated by seed predation, propagule pressure, mycorrhiza, and com-
petition with resident species in recipient communities (Nuñez & 
Medley, 2011; Nuñez, Simberloff, & Relva, 2008; Richardson, 2006; 
Richardson & Bond, 1991; Richardson et al., 1994). Human activities 
such as altered fire regimes, construction activities, altered land-
use practices, establishment of plantations, manipulation of natural 
ecosystems, alteration of soil biota through species reshuffling, and 
anthropogenic pollution exert negative impacts on certain pines by 
reducing their range and dominance (Richardson et al., 2007). Below, 
we discuss that in addition to the adaptations to fire and extreme 
environments that drove pine diversification and spread in the Late 
Cretaceous, fire characteristics, mycorrhizal associations, ecosystem 
processes, biogeographical–evolutionary advantages, and diverse 
human activities are now interacting in complex ways to mediate 
pine dynamics (Figure 3).

3.1 | Fire as a facilitator of pine expansion  
and invasion

The extraordinary potential of pines to establish and spread fol-
lowing fire and to alter fire regimes has helped them to dominate 
globally (Raffaele, Nuñez, Enestron, & Blackhall, 2016). Fire-adapted 
traits of pines that helped them to survive and spread in the Late 
Cretaceous during angiosperm emergence continue to facilitate 

their spread in the Anthropocene (Figure 3). Flammable long needles 
of P. palustris exert huge impacts by increasing the temperature and 
extending the long periods of heat, which negatively affect other 
trees in pine savanna (Ellair & Platt, 2013). The question is whether 
fire-adapted pines exploit fire as an ecological driver for their sur-
vival and spread (thereby being effectively “passengers of change”) 
or whether they utilize fire in a novel way to gain dominance (thereby 
“driving change”).

Fire, a key ecological disturbance, facilitates the spread of pines 
in their nonnative ranges (Franzese & Raffaele, 2017). Invasive pines 
can alter spread, severity, flammability and frequency of fire, and 
fuel loads (Mandle, Bufford, Schmidt, & Daehler, 2011; Paritsis 
et al., 2018; Taylor et al., 2017). Fire-adapted invasive pines exert 
positive feedbacks on fire, and fire in turn can stimulate pine re-
generation (Baker, 2009; Richardson & Cowling, 1992). Although 
some communities are resilient to invasion of pines followed by fire 
(Nuñez & Raffaele, 2007), other communities can be replaced with 
fire-adapted communities as a consequence of the invasion of fire-
adapted pines. Taylor et al. (2017) studied the positive feedbacks 
between fire and P. contorta invasion in Argentina, Chile, and New 
Zealand. Dense P. contorta stands have massive fire loads which 
result in severe fires and intense soil heating which favors P. con-
torta regeneration but hinders regeneration of fire-sensitive native 
Patagonian trees. Severe fires in P. contorta stands eliminate herba-
ceous cover, thereby reducing competition which favors P. contorta 
whose seedlings are susceptible to competition with grasses (Taylor 
et al., 2017). Positive fire–pine feedbacks help to understand the 
role of fire in the invasion of pines in the Southern Hemisphere.

Fire may also be a driver of range contraction of certain pines. 
Pinus nigra is reported to be sensitive to intense fires and lacks traits 
such as serotiny; this allows the expansion of oak woodlands into 
forests once dominated by P. nigra (Morales-Molino et al., 2017). 
Pinus palustris was historically dominant on the coastal plains of 
the southeastern United States (Chandler, 2014), but currently 
covers only about 2% of its original range (Means, 1996). Human-
assisted fire may play a key role in degrading Haploxylon pine for-
ests (Chandler, 2014). Stralberg et al. (2018) predicted that most of 
Alberta’s natural regions in Canada are likely to be converted into 
deciduous woodlands and grasslands within a century. They argued 
that rising summer temperatures and reduced soil moisture, which 
lengthens the wildfire season, are key drivers of vegetation change 
in the boreal forests of Alberta.

3.2 | Life-history and functional traits

Pines often form monocultures, both in their native and nonnative 
ranges, and exert varied impacts in invaded ecosystems such as 
dramatic alterations to fire and hydrological regimes, changed soil 
nutrients, and aboveground and belowground communities (Nuñez 
et al., 2017; Simberloff et al., 2010). The causes of species mono-
dominance vary between habitats. Mycorrhizal associations play 
an important role in the species monodominance in tropical for-
ests (Corrales, Mangan, Tuner, & Dalling, 2016; Peh, Lewis, & Lloyd, 
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2011). In this section, we discuss briefly the impact of adaptation/
traits in pines, ecosystem process, mutualistic associations, and bio-
geographical advantages in the current rising dominance of pines in 
many parts of the world.

Pines have various physiological traits and adaptations that 
have allowed them to survive in extreme environments, for exam-
ple, under drought conditions. The ability of pines to close stomata 
at relatively higher (less negative) water potential enables them to 
survive in dry habitats (Singh, Zobel, Garkoti, Tewari, & Negi, 2006). 
Since pine seeds are desiccation-tolerant, their regeneration is less 
affected by drought. Pines also need not use evaporative cooling 
to regulate leaf temperatures; they can afford to close their sto-
mata on hot and dry days (Waring & Schlesinger, 1985). Native fire-
intolerant oaks (e.g., Quercus laevis) facilitate the establishment of 
newly germinated seedlings of fire-adapted P. palustris in the xeric 
sites of southeastern United States (Loudermilk et al., 2016). Adults 
of P. palustris are not sensitive to drought because they are capable 
of hydrolytic lift but adult pines have high fire loads which results 
in severe fire which is often detrimental to young pine seedlings 
(Espeleta et al., 2004; Grace & Platt, 1995; Taylor et al., 2017). Litter 
build-up by P. palustris helps to retain water and improve nutrient 
availability (Harrington, 2006). Although P. palustris has a grass stage 
that lasts up to 20 years, its 1- to 2-year-old seedlings are sensitive 
to drought (Loudermilk et al., 2016). The establishment and early 
growth of P. palustris seem to be facilitated by oaks (Loudermilk 
et al., 2016). Quercus laevis, a native midstorey oak and often asso-
ciated with P. palustris, can facilitate pine seedling growth and sur-
vival by hydrolytic lift, thereby acting as a nurse plant (Loudermilk 
et al., 2016). Species such as Q. rubra, which occurs in mixed forests 
with P. banksiana, is fire-tolerant and is better adapted to xeric con-
ditions than pines due to root sprouting. Pines, however, outcom-
pete oaks due to their vigorous postfire recruitment and eventually 
attain greater heights and thus overshadow the shorter statured oak 
(Frelich, Reich, & Peterson, 2017). A better understanding of positive 
interactions between fire-intolerant natives and fire-tolerant pines 
or between fire and pines is needed to design effective management 
strategies.

Expansion and invasion of pines may be limited until the onset of 
favorable conditions. A time lag in the invasion of pines following fire 
could be due to lack of mycorrhizae or absence of vegetation (Nuñez 
et al., 2009, 2013; Raffaele et al., 2016; Richardson et al., 1994). 
Dovčiak, Frelich, and Reich (2005) studied the two-phased invasion 
of P. strobus (white pine) into drought-prone and nutrient-poor old 
fields with oak savanna in the north-central United States. The first 
phase of P. strobus expansion occurred during a period of favorable 
climate, which allowed pines to establish in shaded forest edges. A 
second phase occurred about 5 years later when high precipitation 
and cooler conditions facilitated the spread of P. strobus into open 
fields devoid of trees. These authors identified three successional 
pathways in P. strobus expansion, first, slow and creeping spreading 
of P. strobus with low seed rain into shaded forest edges, and sec-
ond, abundant seed rain which facilitates rapid P. strobus expansion. 
In the third pathway, no or very little expansion occurs due to low 

seed rain and lack of shade conditions, which allows grasses to es-
tablish. This study illustrates the importance of seed rain, shade, and 
climate in P. strobus colonization. Invasion of P. contorta in Chilean 
Patagonia resulted in the selection of shade-tolerant species with 
conservation of reproductive traits such as heavier seeds, epizoo-
chorous seed dispersal, higher plant height, and different fruit types 
(Bravo-Monasterio, Pauchard, & Fajardo, 2016).

3.2.1 | Ectomycorrhizal associations

Ectomycorrhizal associations are important mediators of pine estab-
lishment and spread in native and nonnative ranges (Nuñez et al., 
2009). EM trees experience positive feedbacks under canopies of 
their conspecifics, but AM trees experience negative feedbacks in 
soil beneath conspecifics (Bennett et al., 2017). Positive feedbacks 
to EM trees could be due to the ability of EM to channel nitro-
gen to their host in nitrogen-poor soils compared to AM (Corrales 
et al., 2016). Ectomycorrhizal fungi produce N-degrading enzymes 
that give them greater access to organic N compared to AM fungi 
(Nashölm et al., 1998; Read & Perez-Moreno, 2003), thus enabling 
pines to access organic N. This difference between AM and EM trees 
allows pines to become dominant species with great ecosystems 
impacts.

Pinus contorta has been introduced to many parts of the world. 
Nonnative mammals present in some parts of the introduced range 
of P. contorta have helped to spread Northern Hemisphere ectomy-
corrhizal fungi that were cointroduced with the pine, thereby facil-
itating invasion (Nuñez et al., 2013; Wood et al., 2015). In this case, 
EM spread is independent of pines but the dispersal of EM by non-
native mammals helps pines to expand their ranges. Native trees, 
however, did not develop associations with nonnative EM, which are 
associated with P. contorta. Therefore, only the pines can use their 
own mycorrhizal fungi, which excludes native species. This supports 
facilitation in pines, in accordance with the invasional meltdown hy-
pothesis (Simberloff & von Holle, 1999).

3.2.2 | Ecosystem processes

Litterfall influences ecosystem processes such as nutrient cycling, 
which mediates the range expansion of pines in their native range 
(Read & Perez-Moreno, 2003). Litter and canopies of P. ponderosa 
have a negative impact on the growth and establishment of the in-
vasive shrub species Centaurea stoebe by modifying soil and nutrient 
availability and its allelopathic effects (Metlen & Callaway, 2015). 
Negative impacts of P. contorta on native Chilean Patagonia vegeta-
tion are determined by its height and canopy size (Franzese, Urrutia, 
García, Taylor, & Pauchard, 2017).

Pines invade treeless temperate grasslands and fynbos shrub-
lands (Figure 2g,h) and have significant impacts on nutrient cy-
cling, carbon sequestration, and ecohydrology (Rundel et al., 2014). 
Gymnosperms dominate in low-nutrient situations and angiosperm 
dominance in the productive habitats (Berendse & Scheffer, 2009). 
The low nutrient requirements of pines, and their ability to mobilize 



     |  10353SINGH et al.

soil nutrients, allow them to outcompete broad-leaved species with 
higher nutrient demands. In central Himalaya, the net primary pro-
ductivity per unit foliar nitrogen in P. roxburghii forest is 2.3–4.5 
times more than those of oak (Q. leucotrichophora), śāl (Shorea ro-
busta), and other forest types (Singh & Singh, 1992). Pinus strobus 
invades nitrogen-limited grasslands by having a longer nitrogen 
residence time which keeps the annual demand lower than for all 
other species including other tree species and grasses (Laungani & 
Knops, 2009). Thus, nitrogen retention is probably one of the driv-
ers of range expansion of pines. Keeping nutrient availability low 
is one of the several strategies where conifers have an advantage 
over more nutrient-demanding plants in fertile sites (Berendse & 
Scheffer, 2009).

The infertile and acidic soils from the oldest coastal terraces in 
northern California support pygmy conifers (e.g., P. contorta var. bo-
landeri, P. muricata, and Cupressus pygmaea) and certain ericaceous 
species (Northup, Dahlgren, Aide, & Zimmerman, 1999). Northup, 
Yu, Dahlgren, and Vogt (1995) found that P. muricata releases poly-
phenols in the infertile soils of heath forests which helps in the re-
lease of dissolved organic nitrogen rather than NO−

3
/NH+

4
. P. muricata 

thus survives in the extremely harsh conditions by using a nitrogen 
conservation mechanism in an ecosystem with severe N deficiency. 
Pines can utilize organic nitrogen through their mycorrhizal symbi-
onts. Pines seem to conserve nitrogen in infertile soils by producing 
polyphenol (tannin)-rich litter (Hättenschwiler & Vitousek, 2000). 
The capacity of tannin to precipitate protein, however, is mediated 
by the composition, hydroxylation, substitution, polymerization, and 
linkage connecting monomer units of condensed tannins (Suseela & 
Tharayil, 2017). It is not clear why conifers are abundant in old ter-
races worldwide (Coomes et al., 2005). More evidence is required to 
clarify whether condensed tannin-driven short-circuiting of the ni-
trogen cycle by pines gives them advantages over their competitors.

3.2.3 | Biogeographical–evolutionary advantages

Many of the hypotheses that are currently debated in invasion ecol-
ogy assume that species experience biogeographical–evolutionary 
advantages in their introduced ranges compared to their native 
ranges (Hierro, Maron, & Callaway, 2005; Inderjit, Catford, Kalisz, 
Simberloff, & Wardle, 2017; Inderjit, Wardle, Karban, & Callaway, 
2011). Gallien et al. (2016) reported that understanding biogeo-
graphical and evolutionary histories is valuable for understanding 
pine invasions. They found that pines belonging to lineages that 
were particularly successful at colonizing new regions over the evo-
lutionary history of the genus are more likely to be invasive. The 
role of climate-niche evolution in pine invasion has also been clearly 
demonstrated. Gallien et al. (2016) argued that an expansion of 
pines in the climatic niche between native and invasive ranges may 
be driven not by local adaptation, but by the potential of pines to 
spread in climatic conditions that are not available in native ranges. 
Pines may experience these advantages in terms of their responses 
to consumers, competitors, or mutualists in novel ranges (Taylor 
et al., 2017; Wood et al., 2015). Pines suppress species richness in 

both native and introduced ranges but can grow much faster in intro-
duced ranges than native ranges (Taylor et al., 2016b). Pinus contorta 
exerts greater impact on species richness of individual species and 
impact on composition of native species along invasion gradient in 
introduced ranges than in the native range (Taylor et al., 2016b). We 
have limited empirical evidence to identify the mechanisms behind 
advantages experienced by pines in their introduced ranges.

Pines may not always experience enemy release (sensu Keane & 
Crawley, 2002) in their introduced ranges. Pinus radiata was intro-
duced to Spain where it currently coexists with the native P. pinas-
ter (Moreira, Zas, & Sampedro, 2013). Zas, Moreira, and Sampedro 
(2011) found that the pine weevil Hylobius abietis in the coastal area 
of NW Spain prefers the native P. pinaster to the introduced P. radi-
ata. Greater damage to the nonnative pine, despite the preference 
of the weevil for the native pine, was attributed to the lack of in-
ducible defense due to effect of genetic bottleneck in the nonnative 
species. Moreira et al. (2013), however, found that native herbivores 
supported by P. pinaster use P. radiata as a host; this suggests genetic 
constraints on the evolution of resistance against herbivores in its 
introduced range.

More research is needed on biogeographical–evolutionary ad-
vantages experienced by nonnative pine species in their introduced 
ranges. Pine invasions occur predominantly in treeless ecosystems 
where the lack of native trees reduces competition for the nonnative 
pines (Rundel et al., 2014). In Argentina and Chile, there are several 
cases of invasion in the Patagonian steppe, an arid environment dom-
inated by grasses and shrubs where no native trees grow (Langdon 
et al., 2010; Sarasola et al., 2006). South African fynbos, another 
virtually treeless ecosystem, is highly invaded by pines (Richardson 
& Brown, 1986; Richardson, Cowling, & Le Maitre, 1990). In New 
Zealand, large areas of grasslands and shrublands have been invaded 
by P. contorta (Ledgard, 2001). Richardson et al. (1994) reviewed 
the habitats invaded by the different pine species in the Southern 
Hemisphere; they found that the absence of native trees, due to nat-
ural factors or human activities, is a very common characteristic of 
invaded habitats. In alpine ecosystems, pines may also have an ad-
vantage if they can grow above the native tree line. In Chile and New 
Zealand, native trees can grow up to 1,950 m.a.s.l. and 1,350 m.a.s.l., 
respectively, while pines can grow up to 4,000 m.a.s.l. in their native 
range (Körner & Paulsen, 2004). This capability of pines to endure 
the stressful conditions of alpine environments may help them in-
vade above tree line in their introduced range. Invasions above tree 
line have already occurred along the Andean range (Pauchard et al., 
2015) and in New Zealand (Simberloff et al., 2010). The genus Pinus 
is an excellent model system for designing experiments to unravel 
the mechanisms of range expansion in native range and invasion 
in introduced ranges (Richardson, 2006). More data are needed to 
determine whether pines experience plant–soil feedbacks, enemy 
release, novel chemicals and litter decomposition, and nutrient avail-
ability in their introduced ranges.

Pines may resist the invasion of nonnative species in their na-
tive ranges. Pinus ponderosa exhibits strong competitive potential 
in its native range in North America and resists invasion by some 
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aggressive nonnative species. Acidic conditions and low phospho-
rus levels under canopies of native P. ponderosa in the northern 
Rocky Mountains favor native grasses such as Festuca idahoen-
sis and Pseudoroengaeria spicata (Gundale, Sutherland, & DeLuca, 
2008), and the aggressive Eurasian species Centaurea stoebe does 
not invade in the habitat where P. ponderosa was present (Metlen & 
Callaway, 2015). Pine litter is known to exhibit allelopathic potential 
(Lodhi & Killingbeck, 1982), and this could be the mechanism for pre-
venting the establishment of C. stoebe (Metlen & Callaway, 2015). 
This supports a key invasion hypothesis: “biotic resistance to inva-
sion.” Biotic resistance to invasion by soil microbial communities is 
widely studied (see Inderjit & van der Putten, 2010), but few studies 
have explored the role of chemicals produced by native species in 
resisting invasion by other species. More research is needed to es-
tablish the role of chemicals released by pines in resisting invasion 
by nonnative plant species.

3.3 | Human-mediated pine dominance

Pines have flourished in many areas during the Anthropocene due to 
many factors associated with the accelerating impacts of humans on 
ecosystems. Increased fire intensity, human-mediated disturbance, 
and climate change have dramatically altered opportunities for pine 
establishment and spread (Carrión et al., 2003). Pinus is the most 
widely planted tree genus in the world (Brown & Ball, 2000); this 
has provided propagule pressure to launch invasions in many areas 
(Braga, Zenni, & Hay, 2014; Essl, Moser, Dullinger, Mang, & Hulme, 
2010; Nuñez et al., 2009, 2017; Pauchard et al., 2016; Procheş et al., 
2012; Simberloff et al., 2010). Such human-mediated movements 
and the capacity of pines to change nutrient cycling and other func-
tional traits have enabled them to persist, expand, and dominate in 
many environments in the Northern and Southern Hemispheres, and 
pines are widely invasive in the Southern Hemisphere.

Pines owe their invasiveness to small seed mass, propagule 
pressure, rapid population growth (Gallien et al., 2016; Rejmánek & 
Richardson, 1996), wide niche breadth (McGregor et al., 2012), and 
widespread and sustained human use (Procheş et al., 2012). Some 
pine taxa (e.g., P. contorta, P. densiflora, P. halepensis, P. pinaster, and 
P. radiata) are light-demanding and fast-growing; these species re-
generate abundantly as even-aged cohorts following natural or 
human-mediated disturbances and differ from other conifers in their 
ability to aggressively colonize disturbed sites (Richardson, 1998). 
Although many facets of the invasion ecology of pines have been 
studied in many habitats around the world, more work is needed 
to expand our knowledge of the full range of factors that mediate 
success. For example, further research is needed to determine the 
roles of pine chemicals, litter-manipulated ecosystem processes 
(plant–soil feedbacks), and biogeographical–evolutionary advan-
tages gained by pines in their introduced ranges.

One element of human-mediated global change, global warming, 
could increase forest fire by increasing drought frequency and could 
cause earlier onset of the growing season (Westerling, Hidalgo, 
Cayan, & Swetnam, 2006). Scots pine (P. sylvestris) was dominant in 

the early Holocene when temperatures were 2.5°C warmer than in 
late 19th century (Kullman & Kjällgren, 2006). Pines are likely to re-
gain dominance in tree line ecotones in response to changing climate 
regimes, as occurred in the early Holocene (Kullman & Kjällgren, 
2006). Pines may shift or expand their ranges or regain dominance in 
response to climate change.

Human impacts such as alterations to fire and grazing regimes 
and land use, plantations, the reshuffling of biotas, and pollution 
could reduce or shift pine ranges (Richardson et al., 2007). Grazing 
by rats, rabbits, sheep, and cattle exerts negative impacts on the 
regeneration of pine seedlings in many areas (e.g., P. contorta, P. ra-
diata var. binata, and P. sylvestris) (Nasca, Relva, & Núñez, 2018; 
Richardson et al., 2007). Several pine taxa with small ranges are 
facing the threat of extinction through habitat transformation, 
heavy utilization, and other factors associated with human actions. 
Richardson et al. (2007) discussed examples of factors that can re-
sult in the reduction and/or shift in pine ranges.

4  | CONCLUSIONS

Adaptations to fire regimes in the Late Cretaceous mediated the 
diversification of pines, and fire as an ecological disturbance drives 
the current pine expansion. Traits that evolved in response to 
angiosperm-fuelled fire cycles continue to drive pine expansion in the 
Anthropocene. Adaptations to fire such as serotiny, self-pruning of 
dead branches, long needles, and the grass stage helped pine to sur-
vive and flourish in fire-prone environments in the Late Cretaceous 
(Figure 3). Pines developed traits and diversified in extreme environ-
ments where angiosperms could not survive. These traits include the 
following: adaptation to premonsoon drought, the capacity to close 
stomata on hot and dry days and at high water potentials, various 
ruderal strategies, vigorous regeneration, high competitive abilities, 
and reduced growth and acclimatization during drought (Figure 3). 
Traits such as enormous seed pressure, height, fast-growing, ecto-
mycorrhiza, or thick bark contribute to the survival and dominance of 
pines. Intentional and accidental fires related to practices in agricul-
ture, forestry, and human settlements have the potential to trigger 
or enhance pine invasion (Le Page, Oom, Silva, Jönsson, & Pereira, 
2010). Land-use change is providing conditions that allow for the 
successful implementations of fire strategies that have been devel-
oped in course of the evolution of Diploxylon pines. The transition 
from hardwood forests to habitats dominated by pines was aided by 
shifting cultivation and land abandonment (Delcourt, Delcourt, Ison, 
Sharp, & Gremillion, 1998). With man-made fires now more important 
than wildfires in many parts of the current range of pines (e.g., 84% 
of fire events and 44% of the total burnt area in the United States; 
Balch et al., 2017), fire-adapted species are being favored. Century-
old traditions relating to land usage and characteristic vegetation of 
North American tallgrass prairies have seen increase in fire frequen-
cies, leading to the exclusion of fire-sensitive species (Grimm, 1984). 
In ecosystems with conditions suitable for wildfires, litter quality and 
quantity limit such incidents. The introduction of species associated 
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with flammable fuel load can alter fire regimes and lead to vegetation 
change (Thonicke, Venevsky, Sitch, & Cramer, 2001).

Ecological, evolutionary, and diverse human-mediated factors 
have interacted to mediate the range of pines over evolutionary 
time and in recent centuries with increased influence of humans 
(Figure 3). Pines have a complicated ecology that combines two 
principal strategies: (a) adaptations to various fire regimes and the 
effect of fire as an ecological disturbance; and (b) adaptations to 
extreme conditions. The management of pine-dominated ecosys-
tems in both the native and adventive range of the genus is facing 
increasing challenges in the Anthropocene (Brundu & Richardson, 
2016; Nuñez et al., 2017; Richardson, 1998; Richardson et al., 
2007). Insights from all the processes shown in Figure 3 are 
needed to formulate sustainable strategies for management 
to meet diverse goals relating to biodiversity and ecosystem 
functioning.
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