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Abstract
The social amoeba is widely studied for itsDictyostelium discoideum 
multicellular development program as a response to starvation. Aggregates of
up to 10  cells form fruiting bodies containing (i) dormant spores (~80%) that
can persist for months in the absence of nutrients, and (ii) dead stalk cells
(~20%) that promote the dispersion of the spores towards nutrient-rich areas.
It is often overlooked that not all cells aggregate upon starvation. Using a new
quantitative approach based on time-lapse fluorescence microscopy and a low
ratio of reporting cells, we have quantified this fraction of non-aggregating cells.
In realistic starvation conditions, up to 15% of cells do not aggregate, which
makes this third cell fate a significant component of the population-level
response of social amoebae to starvation. Non-aggregating cells have an
advantage over cells in aggregates since they resume growth earlier upon
arrival of new nutrients, but have a shorter lifespan under prolonged starvation.
We find that phenotypic heterogeneities linked to cell nutritional state bias the
representation of cells in the aggregating vs. non-aggregating fractions, and
thus affect population partitioning. Next, we report that the fraction of
non-aggregating cells depends on genetic factors that regulate the timing of
starvation, signal sensing efficiency and aggregation efficiency. In addition,
interactions between clones in mixtures of non-isogenic cells affect the
partitioning of each clone into both fractions. We further build a numerical
model to test the evolutionary significance of the non-aggregating cell fraction.
The partitioning of cells into aggregating and non-aggregating fractions is
optimal in fluctuating environments with an unpredictable duration of starvation
periods. Our study highlights the unicellular component of the response of
social amoebae to starvation, and thus extends its evolutionary and ecological
framework.
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Introduction
Every organism has a set of optimal conditions that maximizes its 
fitness (growth, reproduction and survival). Yet, environments typi-
cally deviate from these conditions. In some cases individuals can 
adapt to changes by sensing the environment and modifying their 
phenotypes accordingly, which is known as phenotypic plasticity1. 
However, if the sensing mechanism is too costly, phenotypic plas-
ticity may not be optimal even in the presence of environmental 
variation. Differentiation on a stochastic basis into different phe-
notypic states adapted to different environments, also known as 
risk spreading or bet hedging, has also been proposed as an adapta-
tion to environmental variation2–6. Dormant states have often been 
described as such bet hedging strategies. Examples include plant 
seed dormancy7, arthropod diapauses8 and bacterial sporulation9. 
For entering and exiting the dormant state, cells or organisms depend 
on environmental cues. Yet, these cues are not always reliable indi-
cators of the future environment. Therefore, in such unpredictable 
environments it pays off for a plant, for instance, to have its seeds 
germinating stochastically at different time scales to insure that at 
least some of them will germinate at the time that is beneficial for 
its growth7.

Here we focus on the dormancy of the cellular slime mold Dictyos-
telium discoideum as an adaptation to nutritional stress. D. discoi-
deum amoebae live in soil where they feed on bacteria and divide 
mitotically. When starved, cells enter into the dormant social phase 
of the life cycle. Up to 106 cells aggregate to form a multicellular 
organism that goes through a “slug” stage followed by the formation 
of a fruiting body. The slug is a motile, chemotactic and phototactic 
worm-like structure that senses and moves towards environments 
that are favorable for dispersion, germination and cell prolifera-
tion. The fruiting body is a sessile mushroom-like structure with 
the spore mass sitting on top of a stalk. Dormant spores can survive 
for months in the absence of food, and germinate into single cells 
upon dispersion towards nutritive areas. The stalk lifts the spores 
from the ground, which helps spore dispersion. Cells in the stalk, 
which represent ~20% of the total cell population, die owing to the 
metabolic cost of making up the stalk10.

Its social behavior has made D. discoideum a very popular system for 
studying altruism, cheating and cooperation11,12, but not all aspects 
of its population-level adaptation to stress have been studied. Our 
main motivation was to study a previously known but neglected fact 
that not all cells aggregate upon starvation13. We have thus revisited 
the D. discoideum population-level response to nutritional stress 
by focusing on the aggregation stage. Incomplete aggregation may 
have significant evolutionary consequences. Aggregation is costly 
due to the death of stalk-forming cells and the arrest of cell division 
during fruiting body formation, which is an irreversible process14. 
Cells that do not aggregate do not pay these costs and may have 
the advantage of resuming growth immediately upon arrival of new 
nutrients. If conditions improve quickly, non-aggregating cells thus 
may have an important adaptive advantage.

In this study we present the first attempt to describe the D. discoi-
deum response to starvation as a functional partitioning into two 
states: aggregating and non-aggregating. We focus on two major 
points: (i) establishing the phenotypic and genotypic sources of 
population partitioning and (ii) assessing the evolutionary signifi-
cance of such partitioning. In microbial systems, cell states such as 
cell cycle phase, nutritional state or age are sources of phenotypic 
heterogeneities9,15. Besides, different genetic backgrounds could 
give rise to different degrees of heterogeneity, giving insights into 
underlying molecular mechanisms. Here we develop a new tech-
nique based on quantitative live cell microscopy to analyze the 
effects of cell nutritional state, genetic background and environ-
mental organization on population partitioning between aggregating 
and non-aggregating cells. In addition, we propose a model based 
on experimentally determined parameters to illustrate the potential 
evolutionary significance of population partitioning in fluctuating 
environments.

Materials and methods
D. discoideum strains and culture
D. discoideum axenic strains used in the study were AX3 (Dictybase 
ID: DBS0235545), DH1 (Dictybase ID: DBS0302388), phg2 (Dic-
tybase ID: DBS0302388), pdsA (Dictybase ID: DBS0237030), and 
carA (Dictybase ID: DBS0236438). All the strains were cultured in 
autoclaved HL5 medium (per L, 5 g proteose peptone, 5 g thiotone 
E peptone, 5 g yeast extract, from USBIO, 10 g glucose, 0.35 g 

            Amendments from Version 1

–	 We have corrected our abstract and conclusions in the 
discussion section concerning the implications of our 
results regarding a bet-hedging strategy in Dictyostelium 
populations. Our text now clearly states that our results 
strongly suggest such a strategy but do not demonstrate it 
formally.

–	 We have clarified the paragraph concerning genetic factors 
that affect population partitioning. Our previous version 
was entitled “genetics of population partitioning...” which 
led to confusions since “genetics” refers traditionally to a 
genetic analysis through a screen to isolate new mutants 
and corresponding genomic mutations, which we have not 
performed. Rather, our study demonstrates that genetic 
factors do affect the partitioning process (using already 
well-known mutants isolated by others), and we further 
show that different genetic clones affect each other’s 
partitioning in mixtures. We have corrected the paragraph 
title as well as a few sentences to cover these two kinds of 
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explains the meaning, implications and importance of this 
set of results.
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mathematical theory and models.

–	 We have added the number of performed experiments in 
figure legends next to the error bar definition (the raw data 
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–	 We have corrected a few typos, added one reference and 
removed the word ‘stress’ from the title.
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at 22°C if not mentioned otherwise. In experiments on nutritional 
effect we used: FM minimal medium (Formedium), NS (per L, 
15.2 g peptone, 7.6 g yeast extract, from USBIO, 5mg Na

2
HPO
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, 
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4
, from Sigma-Aldrich, pH=6.7) and NS with 85mM 

glucose (Sigma-Aldrich) added after autoclaving15. The bacterial 
species used as the nutritional source in our study was Klebsiella 
aerogenes. Heat killed bacterial cultures were prepared by centri-
fuging 50mL of overnight LB cultures at 4°C, 5000 g for 10min and 
diluting the pellet in 1mL KK2 buffer (per L, 22 g KH

2
PO

4
, 7.0 g 

K
2
HPO

4
, Sigma-Aldrich). The suspension was incubated for 20min 

at 80°C and stored at -20°C.

GFP and RFP-expressing cell lines
GFP and RFP-expressing cell lines were obtained by transforming 
cells with pTX-GFP (Dictybase ID: 11)17 or pTX-RFP (Dictybase 
ID: 112) plasmids using a standard electroporation procedure. Cells 
were grown in 75cm2 flasks until dense but not confluent (usually 
1 day before confluency). The medium was changed 4–6h before 
transformation. For transformation cells were re-suspended in 
10mL of ice-cold HL5 and kept on ice for 30min. Cells were cen-
trifuged for 5min, 500 g at 4°C. Supernatant was re-suspended in 
800μl of electroporation buffer and transferred into ice cold 4mm 
electroporation cuvettes containing 30μg of plasmid DNA. Cells 
were electroporated at 0.85 kV and 25 mF twice, waiting for 5 s 
between pulses. Cells were transferred from the cuvette to 75cm2 
flask with HL5. The next day, transformants were selected with 
5μg/ml G418 (Sigma-Aldrich). The concentration of G418 was 
gradually increased to 20μg/ml G418 over 1–2 weeks. Transformed 
strains were maintained at this concentration of G418, yielding GFP 
and RFP-expressing cell lines that were analyzed by flow cytometry 
on a Becton-Dickinson LSRII analyzer to confirm their unimodal 
cellular fluorescence distribution (>99% of fluorescent cells upon 
analysis of 106 cells, see Supplementary Figure S6).

Starvation protocols
Cells were subjected to two different starvation conditions: sud-
den and gradual starvation. For each condition measurement was 
repeated 4–11 times (see Raw data for further details, each meas-
urement is an independent experiment).

Sudden starvation: If not mentioned otherwise, sudden starvation was 
used as a standard plating protocol: When confluent the cell medium 
with antibiotics was replaced with an antibiotic free medium. After 
4–6h cells were washed out of the nutrient medium and centrifuged 
in KK2 buffer at 500g for 5 min. The pellet was re-suspended in 
KK2 buffer to the concentration of 1×105 cells/μL. For the density 
dependent aggregation experiment cells were re-suspended to the 
concentration of 1×103, 1×104, 5×104, 1×105 or 5–7.5×105 cells/μL. 
Green and red fluorescent cells were mixed in ratios indicated in 
Image analysis section. 30μl of suspension was plated on 6cm 
plates filled with 2mL of 2% Phytagel (Sigma-Aldrich) as previ-
ously described18. In the case of pairwise mixtures, strains grown 
in different media or genetically different strains, the ratio of two 
strains was 1:1.

Gradual starvation was induced in liquid cultures and on bacterial 
plates.

Gradual starvation in liquid: the cells were collected 1–2 days 
after reaching confluency in HL5. Cell washing and plating was 
done as in sudden starvation experiment described above.

Gradual starvation on bacterial plates: another way of slowly 
starving the cells is to plate them with bacteria and to let them 
deplete the food source as in natural conditions. Two types of plat-
ing were done: homogenous and heterogeneous plating. In both 
cases RFP-expressing AX3 and GFP-expressing AX3 cells were 
grown in HL5 medium with 20μg/mL G418. When confluent, cells 
were re-suspended in KK2 buffer and centrifuged at 500 g for 5min. 
The cell pellet was re-suspended in KK2 to the concentration of 
1×105 cells/μL. Green and red fluorescent cells were mixed in 
ratios indicated in Image analysis section. For heterogeneous plat-
ing 200μL of heat-killed bacteria was mixed with 100μl of cell sus-
pension. The mixture was spread on a 6cm plate with 2mL of 2% 
Phytagel (Sigma-Aldrich). This gave rise to heterogeneous distribu-
tion of cells and bacteria (Supplementary Figure S2). For homog-
enous plating 200μl of heat-killed bacteria were mixed with 100μl 
of cell suspension. A 100μl drop was plated on a 6cm plate with 
2ml of 2% Phytagel and let to dry under the sterile hood. This gave 
a very homogeneous cell distribution (Supplementary Figure S2). 
In both cases, cells fed for ~8h on heat-killed bacteria before the 
beginning of starvation, and thus divided at most twice after plat-
ing. The density of cells at the onset of starvation (measured via 
a similar method as the one for measuring the non-aggregating 
cell fraction, see below) was comparable to that of cells processed 
according to the sudden starvation protocol.

Time-lapse microscopy
The 6cm diameter Petri dish was imaged on an automated inverted 
microscope setup duplicated from a previous study19. The setup was 
made of: OlympusIX70 inverted microscope, Photometrics Cool-
SNAP HQ2 CCD camera, Zeiss HBO 100 microscope illuminating 
system, Thorlabs SH05 shutter, Thorlabs TSC001 shutter control-
ler, and 2.5×-5×-10×-20× objectives (5× was used for all experi-
ments shown here). Images were acquired in WinView/32 and the 
whole setup was controlled by custom-made Visual Basic software. 
The setup allows Petri dish scanning at regular time intervals (typi-
cally 1h), with phase contrast and fluorescence image acquisition 
at all time points (at 100ms and 1s exposure times respectively). 
A mosaic image is reconstructed by combining all the images of 
contiguous areas of the Petri dish at a given time point by a custom-
made macro using ImageJ software (http://rsbweb.nih.gov/ij/).

Image analysis
Mixing a small percentage of red fluorescent cells in a population 
of green fluorescent cells allowed us to get the image of single cells 
as single red fluorescent dots (Figure 1). We also confirmed that 
the reciprocal mixing of a minority of GFP-expressing cells with a 
majority of RFP-expressing cells yields the same results. We opti-
mized the red to green cell ratios depending on plated cell density. For 
experiments with 1×105 and 5–7.5×105 cells/μL, 0.25–0.5% of RFP 
cells were mixed with 99.5–99.75% GFP cells. For 1×104 cells/μL 
1% of RFP cells were used and for 1×103 cells/μL 2% RFP cells 
were used. For pairwise mixtures the ratio was made as following: 
50% of strain A in GFP was mixed with 49.75% of strain B in GFP 
and 0.25% of strain B in RFP in order to monitor the behavior of 
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Figure 1. Upon starvation, a D. discoideum population partitions into aggregating and non-aggregating cells. AX3 cells were plated on 
nutrient free-agar and imaged before (A, B) and after (C, D) aggregation. A and C are phase contrast images, B and D are red fluorescence 
images. In B and D, 0.25% of AX3 RFP cells appear as single dots within a population of AX3 GFP cells. The percentage of non-aggregating 
cells was estimated as the ratio of dots counted outside aggregates after aggregation and dots counted before aggregation.

strain B in a A:B mixture. Images were acquired by time-lapse fluo-
rescence microscopy. All the images were analyzed using ImageJ 
software (http://rsbweb.nih.gov/ij/) using custom-made macros (see 
Data Set). The analysis consisted in counting fluorescent dots before 
and after aggregation. For each experiment 1000–10 000 dots/cells 
were monitored. Dead cells were excluded from counting by look-
ing at cell displacement as an indicator of cell viability. Two flu-
orescent images taken 1–2h apart were overlapped and cells that 
showed no displacement were counted and subtracted from the 
overall non-aggregating population.

The density of red dots (RFP-expressing cells) was used to esti-
mate cell density at the onset of starvation in all experiments. Cell 
density was comparable at the onset of starvation for all starvation 
protocols used.

Spore germination
Spore formation was induced by separately plating AX3 RFP and 
AX3 GFP cells on nutrient-free Phytagel plates. Once fruiting 
bodies had formed spores were picked using 1ml pipette tips and 
re-suspended at high density in 5m liquid HL5 with 70μL of dead 
bacteria culture. Presence of bacteria helped to induce spore germi-
nation. When the culture of germinated spores reached confluency 
(15–20h after plating) cells were washed of bacteria in ice cold 
KK2 and plated according to the Sudden starvation protocol.

Model
The model represents the D. discoideum life cycle with alternating 
growth and starvation periods of variable duration. During the growth 
phase the population grows according to a logistic Equation (1) 
with growth rate λ and carrying capacity K = N

max
,

λ  = −  
1

dN N
N

dt K               
(1)

We assume that the growth phase lasts sufficiently long for the pop-
ulation to have reached maximum density K when the food even-
tually runs out and a starvation period T sets in. The population 
then splits into an aggregating (N

agg
 = αN) and a non-aggregating 

(N
non-agg

 = (1–α) N) fraction according to the aggregation factor α. 
Aggregating cells subsequently differentiate into spore and stalk 
cells with the proportion of spore cells given by sporulation effi-
ciency s, so N

spores
 = sN

agg
. We assume the process of aggregation is 

very quick relative to the duration of the growth and starvation peri-
ods. During the starvation period spores are dormant; their growth 
and mortality rate are assumed to be zero. When conditions become 
favorable again, spores germinate with germination efficiency g and 
start dividing, but only after a fixed and non-negligible development 
time D. During the starvation period the non-aggregating cells do 
not divide and are subjected to mortality with instantaneous mortal-
ity rate μ, so that their dynamics are governed by

non-agg
non-agg

dN
N

dt
µ= − .

The advantage that non-aggregating cells have is a head start when 
conditions improve, as spores produced by aggregating cells need 
time to develop from the point they irreversibly commit to fruiting 
body formation (20h) and to subsequently germinate (3h–6h). By the 
time the latter start growing, the descendants of the non-aggregating 
cells may have the opportunity to use up a sizable portion of the 
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resources that have become available. Here, we assume that spore 
germination is limited by the remaining carrying capacity.

As a first step in understanding the relative benefits of aggregation 
and non-aggregation consider the fates of cells of either type at the 
moment starvation sets in. A non-aggregating cell stops reproduc-
ing but is subject to mortality so when conditions become favour-
able again, T time units later, it has a probability e-μT of surviving 
the starvation period. Working out the fate of aggregating cells is 
simple: it has a probability sg of becoming a germinating spore 
when conditions improve. An aggregating cell thus has a fitness 
equivalent of

W
agg

 = sg.

As discussed, germination involves a time cost: during a time D 
its surviving non-aggregating competitors can start reproducing, 
giving the latter an extra reproduction bonus (a period of logistic 
growth), giving a fitness equivalent of

λ
µ

λ

−
− =

+ −
non agg

01 ( 1)

D
T

D

e
W e

n
e

K

,

where n
0
 is the number of surviving non-aggregating cells.

The expected fitness (descendants by the time conditions improve) 
of a cell that has a propensity α to aggregate can thus be expressed as

W = αW
agg

 + (1–α)W
non–agg

.

This result suggests that (if the duration of the starvation period is 
fixed) it is either profitable to join an aggregation (if Wagg > Wnon-agg) 
or to stay solitary (if Wagg < Wnon-agg): a phenotype-switching strat-
egy is not favored. However, this result does not take into account 
the frequency dependence that acts on the fitness of non-aggregating 
cells. That is, if many cells aggregate the number of surviving non-
aggregating cells (n

0
) will be low, boosting the profitability of 

remaining solitary. If many cells remain solitary, on the other hand, 
n

0
 will be high, reducing the profitability of remaining solitary. 

Whether this frequency dependence results in population heteroge-
neity cannot be stated right away and other methods are necessary. 
The same is true when the environment, and in particular the starva-
tion period T, is variable and unpredictable.

In order to study potential benefits of producing both aggregating 
and non-aggregating cells, strains with different aggregation factors 
α were put in competition using a multistrain variant of the above-
described model. The population is made of i strains each with α=0 
(all cells aggregate), 0.1, 0.2, … 1 (none of the cells aggregate). All 
strains had the same growth rate λ = 0.38, mortality rate μ = 0.002 
for t ≤ 168h (7 days), after 7 days all cells die, μ = 0, sporulation 
efficiency s = 0.8 and germination efficiency g = 0.63. All values 
are based on experimental measurements (Materials and Methods in 
Supplementary materials). Two-step mortality function is an approx-
imation based on our unpublished results and previous studies20,21. 
The precise shape of this function had no significant effect on our 

main observations and conclusions. Competition was carried out in 
two types of conditions, either constant or varying starvation periods 
T. In the case of varying starvation periods, the duration of starvation 
was randomly chosen from a uniform distribution U(x,y) at the end 
of every growth period. Population size was taken as an estimate of 
strain fitness. At the end of every growth cycle, the number of alive 
and growing individuals N(t) is plotted. In the case of varying star-
vation periods, the geometric mean over 100 simulations is plotted.

Aggregation vs. nonaggregation strategies in Dictyostelium 
discoideum amoebae in response to starvation stress: raw data

17 Data Files 

http://dx.doi.org/10.6084/m9.figshare.1052997

Statistical analysis
Statistical analysis was performed in R. Significant difference 
between the samples was calculated using Welch two sample t 
test function in R (t.test(x,y)). To test among groups differences 
we used one-way ANOVA test in R, using oneway.test() function. 
When only p value is indicated it means that a t-test was performed, 
when p and F values are indicated ANOVA was performed. p<0.05 
was considered significant.

Results
When we plated a population of genetically identical axenic wild-
type AX3 cells of D. discoideum on nutrient-free substrates at a 
104–107 cells/cm2 density range22, we observed that some cells 
aggregate while others remain outside of aggregates (Figure 1, Sup-
plementary Figure S1). A possible explanation is that the cells that 
did not aggregate are simply dead cells. However, the observation 
that non-aggregating cells are actively moving live cells that are 
intermixed with aggregating cells at the onset of starvation (Movie 
S1 in the Data Set below) rules out this possibility. It could also 
be that these non-aggregating cells have acquired a mutation that 
prevents aggregation. As we will detail further, this possibility can 
be ruled out by showing that the progeny of spores are partially non-
aggregating and reciprocally that the progeny of non-aggregating 
cells aggregate upon starvation. Another explanation may be that 
partial aggregation is an artifact of a laboratory-adapted axenic 
strain that is not found in natural isolates, but in Supplementary 
Figure S2 we show that similar partitioning is found in natural 
isolates. Partitioning into aggregating and non-aggregating cells is 
therefore a process that occurs in both axenic strains and isolates 
of social amoebae from the wild. The non-aggregating cells we 
report here are clearly distinct from cells left in slug traces23 since 
the former never aggregate as we have shown in Movie S1. For the 
same reason, non-aggregating cells are also clearly distinct from 
the immune-like cells identified in a previous study24. The motility 
of the non-aggregating single cells we observe also rules out the 
possibility that these cells are sporulating without aggregating, as 
in single cell encystation that has been reported for other Dictyos-
telium species but not so far in D. discoideum10.

To quantitatively analyze this process, we have developed a tech-
nique to track single cell behavior at each time point of the life 
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cycle. Inspired by studies of cell motion within aggregates25, a small 
proportion (0.25%–2%) of RFP-expressing reporting cells was 
mixed with GFP-expressing cells, and RFP cells were tracked (see 
Materials and methods). In the red fluorescence image single RFP 
cells appear as single red dots surrounded by undistinguishable 
GFP cells (Figure 1B). Since cell division ceases during starvation, 
tracking RFP-expressing single cells allowed us to determine the 
relative numbers of aggregating vs. non-aggregating cells, and thus 
to quantitatively describe the population partitioning into aggre-
gating and non-aggregating cells. Previous techniques based on 
counting cells at the onset of starvation with a hemocytometer and 
germinating/colony-forming spores provide only indirect estimation 
of the numbers of stalk cells, non-aggregating cells, or non-germinating 
spores. In contrast, our strategy provides a direct estimation of the 
numbers of cells at the onset of starvation and aggregating vs. non-
aggregating cells. Our automated microscopy setup is similar to 
the one used in a previous study of large scale population spatial 
structure at the single cell resolution19. We scan and image by phase 
contrast and fluorescence microscopy an area of 5cm2 every 10min 
for 24h, allowing us to record the dynamics of the response of large 
populations (millions of cells) at the single cell resolution.

Phenotypic plasticity affects population partitioning
Using our set-up, we found that when cells of the AX3 wild-type 
axenic strain are grown in liquid rich medium (HL5) and subse-
quently plated on nutrient-free substrate, 2.51±0.6% of the popula-
tion does not aggregate. This standard starvation protocol involves 
the sudden transition from exponential growth in rich medium to 
starvation on nutrient-free agar. However, in natural conditions star-
vation is probably much more gradual. We analyzed how different 
starvation processes can affect population partitioning (Figure 2A) 
at the same cell density range at the onset of starvation. We compared 

(i) suddenly starved exponentially growing cells, (ii) starved sta-
tionary phase cells (1–2 days after confluency), and (iii) cells grown 
on bacterial plates that slowly deplete the food source, the latter 
being the most realistic starvation process with respect to natural 
conditions. While stationary phase cells show no significant differ-
ence compared to exponentially growing cells, cells feeding on a 
homogenous bacterial lawn (see Methods) and thus gradually starv-
ing showed a 3-fold increase in the proportion of non-aggregating 
cells, 6.3±3.17% (p=0.027).

Gradual starvation on bacterial plates most likely increases hetero-
geneities in comparison with standard starvation protocols. We sup-
posed that this was due to cell-to-cell differences in the timing of 
starvation. Some cells would start aggregating while others were 
not yet fully starved and therefore less sensitive (or not at all) to the 
aggregation signal. Increasing further heterogeneities during cell 
plating should thus increase further the non-aggregating cell frac-
tion. This is indeed the case when a heterogeneous bacterial lawn 
(see Methods) is used as a food source, where the fraction of non-
aggregating cells increases to 13%±1.79% (p=0.004). A possible 
explanation is that highly heterogeneous cell plating creates areas 
with different cell densities within a lawn of bacteria (Supplementary 
Figure S3C, D). Areas with high cell densities deplete bacteria 
faster and start starving and aggregating quicker, while cells in low 
cell density areas still have nutrients surrounding them and are not 
sensitive to the aggregation signal when the former sense starva-
tion. In homogenous bacterial lawns, cells and bacteria are evenly 
distributed favoring more homogenous and synchronous onset of 
starvation across the population (Supplementary Figure S3). We 
hypothesized that differences at the onset of starvation result in a 
cell fate bias towards one phenotype or the other (as previously pro-
posed in the case of stalk vs. spore differentiation in aggregates26). 

Figure 2. Starvation conditions, nutritional state and population partitioning. The percentage of non-aggregated cells (at initial density 
3×106 cells/cm2) was measured for different initial cell states. A) Effect of starvation conditions. AX3 RFP and GFP cells were starved suddenly 
at exponential phase or at stationary phase, or gradually on homogenous bacterial lawns or on heterogeneous bacterial lawns. Gradually 
starved cells aggregate less than cells submitted to standard but less realistic sudden starvation protocols. B) Effect of nutritional state. 
AX3 cells were grown on HL5 rich medium, FM minimal medium, NS with 85mM Glucose (NS Glu) or NS medium, and subsequently plated 
on nutrient-free agar. Cells in the lowest nutritional state (FM) aggregate significantly less than cells fed with rich medium. C) Interactions 
between cells in different nutritional states. AX3 cells grown on HL5 or FM were plated either on their own or in 1:1 mixtures on nutrient-free 
agar (HL5inFM = HL5 cells monitored in 1:1 mixtures, and FMinHL5 = FM cells monitored in 1:1 mixtures). In mixtures with HL5-grown cells, 
FM-grown cells aggregate even less than on their own, while HL5-grown cells aggregate equally well in the presence of FM-grown cells as 
on their own. Note that the non-aggregating cell fraction of the global mixed population is higher than that of either pure population. Error 
bars represent +/- standard deviation (5≤n≤11). * represents p<0.05. ** represents p<0.01 (horizontal bars indicate the corresponding pairs 
of statistical samples).

lawn lawn
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To analyze these effects in the most reproducible and controllable 
manner, all following experiments were performed following the 
standard sudden starvation protocol (plating on nutrient-free agar) 
applied to cells grown in various well-defined conditions, with 
known genetic backgrounds, mixed at precise ratios and plated at 
controlled cell densities.

Nutritional state is known to affect whether a cell will become a 
spore or a stalk27. Cells grown on rich medium (NS medium with 
85mM glucose) are enriched in spores while cells grown in poorer 
medium (NS medium lacking glucose) are enriched in the stalk 
(which we have also observed, see Supplementary Figure S5). We 
thus asked whether nutritional state is a main determinant of the 
aggregating and non-aggregating dichotomy. We grew AX3 cells 
in media differing in nutrient content and analyzed whether they 
are differentially enriched in the non-aggregating state (Figure 2B). 
Four different media that have extensively been used to culture 
Dictyostelium cells and manipulate their nutritional status were tested: 
on the one hand HL5 rich medium, FM minimal medium, on the 
other hand NS medium with 85mM glucose (NS Glu) and plain NS 
medium. AX3 cells grown on FM minimal medium showed a sig-
nificant two-fold increase in the fraction of non-aggregating cells, 
5.85±1.9% (p<0.01), with respect to HL5-grown cells (2.51±0.6%). 
In addition, cells grown on NS Glu showed a small but significant 
decrease in non-aggregating cells (1.47±0.31%, p<0.01) compared 
to HL5 grown cells (2.51±0.6%). However, we observed that cells 
grown in NS medium did not differ from cells grown in NS Glu in 
terms of non-aggregating cell fraction, making the role of glucose 
difficult to interpret. In this respect, it will be interesting to system-
atically modify a defined medium composition (such as that of FM 
medium) to point out particular types of nutrients, or ratios of nutri-
ent concentrations, that influence population partitioning.

Cells in different nutritional states have different aggregation rates 
on their own. We next examined how cells in different nutritional 
states interact in mixtures in order to analyze how introducing pop-
ulation nutritional state heterogeneity affects population partition-
ing. Pairwise mixtures of FM-grown cells with HL5-grown cells 
and NS-grown cells with NS Glu-grown cells were tested. Cells 
grown in NS or NS Glu that did not differ when alone showed no 
difference in behavior when in mixtures (Supplementary Figure S4) 
(F=1.54, p=0.27). On the other hand cells grown in FM were 
enriched 3 times more in the non-aggregating cell fraction when 
in mixture with HL5-grown cells, 15.4±7.12%, than on their own, 
5.85% (Figure 2C). HL5-grown cells aggregated equally well when 
in mixture with FM-grown cells or not. As a control we monitored 
contribution to spores for both mixtures. As previously shown, cells 
grown in rich medium were enriched in spores in both NS Glu:NS 
and HL5:FM mixtures (Supplementary Figure S5).

We conclude that nutritional state distinguishes non-aggregating 
cells from aggregating cells, with better fed cells aggregating more 
efficiently, and that interactions between cells according to their 
nutritional state biases further partitioning between aggregating 
and non-aggregating cell fates. Moreover, the 1:1 mixed popula-
tion of cells having different nutritional status showed a higher frac-
tion of non-aggregating cells than the average of both populations. 
This is consistent with our data obtained with populations grown 

on heterogeneous food source showing a higher proportion of non-
aggregating cells. Cells grown on low nutrient medium have higher 
chances of becoming non-aggregated cells than cells grown on rich 
medium. The fact that NS-grown cells displayed the same behavior 
as NS Glu-grown and HL5-grown cells is probably because cells 
were relatively well fed in all three cases and not much affected 
by the absence of glucose16. On the other hand FM-grown cells 
showed smaller cell size, slower growth and lower inner cell density 
indicating that they were affected by growth in poor medium (our 
unpublished observation). We can speculate that poorly fed FM-
grown cells have low energy reserves, and that they consequently 
invest less into energetically costly multicellular development and 
thus aggregate less. The fact that, in mixtures with HL5-grown 
cells, FM-grown cells showed an even lower rate of aggregation 
indicates the effect of cell-cell interactions during aggregation. No 
difference in the timing of aggregation was seen between FM- and 
HL5-grown cells. Therefore, cell nutritional state rather than aggre-
gation timing was the cause of the differences in the fraction of 
non-aggregating cells.

Genetic factors affect population partitioning
After exploring nutritional state effects, we tested whether different 
genetic backgrounds can lead to different population partitioning. In 
Figure 3A we show that two axenic strains, DH1 and AX3, signifi-
cantly differ in the fraction of non-aggregating cells (p=0.0008). The 
DH1 strain showed 13.4%±2.8% of non-aggregating cells, which is 
five times higher than for the AX3 strain (2.5%±0.6%). This shows 
that the non-aggregating cell fraction depends on the genetic back-
ground and varies significantly between axenic wild-type strains.

Following these results, we explored which genetic factors may 
affect the cell propensity for aggregating or non-aggregating fates. 
For this, we first tested strains with single gene mutations in aggre-
gation pathways. We used two mutants defective in signal sens-
ing: 1) carA, a mutant in cAMP receptor protein cAR1, which is 
essential for binding the chemo-attractant cAMP and 2) pdsA, a 
mutant in cAMP-phosphodiesterase (PDE), which removes cAMP 
from its cAR1 receptor making it sensitive again to the aggregation 
signal10. Our results confirmed the previously reported result that 
when plated on nutrient-free agar, both strains showed no aggrega-
tion at all (Figure 3A)28,29. This shows how single gene mutations 
may have a drastic effect on population partitioning. It is known 
that the presence of wild-type cells can rescue the non-aggregating 
pdsA phenotype (non-cell autonomous)30. Our technique allows the 
quantification of aggregation efficiency of mutant and wild-type 
cells in mixtures. We thus varied the ratio of wild-type cells (AX3 
or DH1) in mixtures with mutant pdsA cells from 10% to 90% and 
quantified how it affects aggregation of pdsA mutant and wild type 
strains. For both DH1: pdsA and AX3: pdsA mixtures, increasing 
the ratio of wild type cells decreased the proportion of pdsA non-
aggregating cells (Figure 3B–D). Aggregation rescue of mutant 
cells came at a cost for the DH1 strain; the fraction of non-aggregating 
cells for DH1 increased in mixtures with pdsA (Figure 3C, D). In 
AX3: pdsA mixtures, AX3 cells aggregated as much as when on 
their own and pdsA cells aggregated more than when on their own 
(Figure 3B, D), suggesting that AX3 produces more PDE protein than 
DH1. More generally, we propose that expression levels of cAMP-
phosphodiesterase may tune the non-aggregated cell fraction. Low 
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Figure 3. Genetic factors affect population partitioning. The percentage of non-aggregated cells (at initial density 3×106 cells/cm2) was 
measured for genetically different wild-type strains (AX3 and DH1) and single-gene mutants (phg2, pdsA, carA) alone (A), and in mixtures 
between wild-type and single-gene mutant strains: mixtures of pdsA with AX3 (B) or DH1 (C), and mixtures of phg2 with AX3 (E) or DH1 
(F)., varying the percentage of mutant cells in mixtures. Wild-type DH1 cells aggregate less than wild-type AX3 cells (A). phg2 mutant cells 
aggregate as well as their parent DH1 strain cells, while pdsA and carA cells do not aggregate on their own (A). The presence of AX3 or DH1 
cells rescues pdsA cell aggregation (B–D). In turn, DH1 cells aggregate less than on their own when increasing the percentage of pdsA cells 
in DH1: pdsA mixtures, while AX3 cells aggregate as well as on their own in the presence of pdsA cells (B–D). phg2 cells aggregate less 
than on their own in the presence of AX3 or DH1 cells. DH1 cells aggregate less than on their own in DH1: phg2 mixtures, while AX3 cells 
aggregate as well as on their own in the presence of phg2 cells (E–G). The non-aggregating cell fraction of the global mixed DH1: phg2 or 
AX3: phg2 population is higher than that of either pure populations, respectively DH1 and phg2, or AX3 and phg2. Overall, cell genotype 
determines the fraction of aggregating cells, and cells of different genotypes affect each other’s non-aggregating cell fraction in mixtures. 
Error bars represent +/- standard deviation. * represents p<0.05 (2≤n≤9). *** represents p<0.001 (horizontal bars indicate the corresponding 
pairs of statistical samples).

concentration of cAMP-phosphodiesterase would increase the frac-
tion of non-aggregating cells.

We found that differences in starvation sensing affect the partitioning 
between aggregating and non-aggregating fractions (Figure 2A). 
The phg2 mutant strain has been shown to have early onset of star-
vation compared to its parental strain DH1 due to a higher nutrient 
starvation sensing threshold31. We used this single gene mutant to 
test the effect of the nutrition starvation sensing threshold on par-
titioning. In addition, the phg2 gene codes for a serine/threonine 
kinase regulating cell substrate adhesion, actin cytoskeleton organi-
zation and motility32. When tested alone, phg2 produced a simi-
lar fraction of non-aggregated cells when compared to its parental 
strain DH1, 12.6%±4.3% (p=0.7). We further tested the behavior 
of phg2 in 1:1 mixtures with wild-type strains DH1 and AX3. Mix-
ing at 1:1 led to an increase of the non-aggregating cell fraction 
for phg2 and its DH1 parent (Figure 3F, G), while AX3 aggregated 
equally well as when on its own (Figure 3E, G). This once more 
demonstrates that in mixtures, strains mutually affect each other’s 
non-aggregating cell fractions. Indeed, the phg2 mutant aggregates 
less in 1:1 mixtures with wild-type cells than on its own, even in 
mixtures with its parent DH1 wild-type strain that has a similar 
aggregation fraction on its own. Moreover, in 1:1 mixtures of phg2 
with DH1 or AX3, the global mixed population shows a significant 
increase in the fraction of non-aggregating cells with respect to both 
pure populations. This is again reminiscent of our previous results 
that population heterogeneities in terms of nutritional state (cells 

grown on heterogeneous bacterial lawns, or on mixtures of cells 
grown on HL5 vs. FM) increase the non-aggregation fraction of 
the global population. In addition to starvation sensing, the dys-
functional cytoskeleton organization and motility of the phg2 strain 
could explain the lower propensity of phg2 cells for aggregation.

Overall, genotypes determine the non-aggregating cell fraction in 
isogenic populations, and different genotypes affect each other’s 
non-aggregating cell fraction in non-isogenic populations, with an 
apparent increase in the global non-aggregating cell fraction with 
respect to the corresponding isogenic populations.

Cell history and cell fate
We further tested whether non-aggregation is due to a stable muta-
tion or a stochastic switch affecting aggregation vs non-aggregation. 
Can the same population partitioning be reproduced by starting 
from only aggregating or only non-aggregating cells? Answering 
this question allows us to: i) rule out any stable genetic differences 
between aggregating and non-aggregating cells (while a genetic 
switch remains a possibility) and ii) examine the inheritance of 
cell fate. When non-aggregating cells are de novo fed with bac-
teria, they resume growth on new nutrients (see below) until they 
are exhausted and finally aggregate upon starvation (Figure 4A–C 
and Movie S2). This shows that non-aggregating cells are not mutant 
cells that cannot aggregate, but rather cells that are not respond-
ing to the aggregation signal at a given time point. Further on in 
Figure 4D we show that a population of germinated spore cells dividing 
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Figure 4. Cells switch between aggregating and non-aggregating fates. A–C Non-aggregating cells have not stably lost the ability to 
aggregate. A) After the completion of aggregation and formation of fruiting bodies (white arrows), bacteria were added to areas with non-
aggregating cells (black arrows). Non-aggregating cells grow and divide on fresh nutrients (see Figure	5).	Once bacteria are consumed, the 
descendants of non-aggregating cells aggregate (B) and develop into a fruiting body (C). D) A population of germinated spores re-partitions 
into aggregating and non-aggregating cells upon starvation. A population of spores was germinated and grown on bacteria for 3–5 cell 
divisions. When this population is plated on a nutrient-free substrate it partitions into aggregating and non-aggregating cells with the same 
proportions as populations of exponentially growing cells submitted to starvation. Error bars represent +/- standard deviation (4≤n≤7).

3 to 5 times upon germination partitions into aggregating and 
non-aggregating cells with the same fractions as a population of 
exponentially growing cells. This demonstrates the strong persist-
ence of population partitioning and the fast loss of cell fate memory. 
Molecular mechanisms involved in this process may be either an 
epigenetic or a genetic switch.

Individual-level costs and benefits of the non-aggregating 
cell fraction
We have shown that upon starvation D. discoideum cell popula-
tions partition into cells that aggregate and cells that do not aggre-
gate, and that non-genetic and genetic cell characteristics affect cell 
fates. We next analyze evolutionary consequences of this population 

partitioning. To do this we analyzed fitness costs and benefits of 
both phenotypes on individual and population levels.

Once in an aggregate a cell is irreversibly committed to the multi-
cellular development program14. During the 24h duration of devel-
opment, cells cannot divide even if nutrients become available. 
Therefore, if food becomes available during the developmental 
period, non-aggregating cells may have an advantage over aggregat-
ing cells by immediately resuming growth. We tested this by add-
ing a bacterial suspension to a starving D. discoideum population 
during the course of development. At this point aggregates were at 
the slug stage and non-aggregating cells in their vicinity had direct 
access to food (Figure 5A). In Figure 5B and Movie S3 we show that 

Figure 5. Non-aggregating cells grow on new incoming nutrients. 18h after plating cells on nutrient-free agar, aggregating cells have 
formed slugs while non-aggregating cells are starving. Fresh nutrients (dead bacteria) were added at this point. A) Red fluorescence image 
of slugs and non-aggregating cells at the time of new nutrient supply. B) Inset from A showing a non-aggregating cell that resumes dividing 
over time upon addition of new nutrients (the number of red dots increases over time as non-aggregating cells divide). Non-aggregating cells 
are capable of resuming growth immediately upon food arrival while aggregating cells are embedded in development.
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non-aggregating cells are capable of resuming cell division directly 
after arrival of nutrients, while slugs (formed of non-dividing 
aggregated cells) continue moving through the bacterial lawn and 
form fruiting bodies. Our observation is clearly distinct from previ-
ous reports describing the dedifferentiation and re-growth of cells 
from artificially disaggregated slugs put in contact with fresh nutri-
ents33 since non-aggregating cells do not originate from slugs and 
are therefore not differentiated into prespore or prestalk. We also 
observed that by the time fruiting bodies are formed, non-aggregat-
ing cells have already consumed a high amount of nutrients, which 
will probably affect spore fitness by limiting the resources available 
for spore germination and proliferation (Movie S3).

Non-aggregating cells are motile and do not seem to enter a dor-
mant state like spores do, making them likely to be much less fit 
than spores during prolonged starvation. Previous studies have 
reported starvation-induced mortality curves showing that most 
cells survive for 4 to 7 days20 (corroborated by our unpublished 
results). These studies demonstrated that, in the absence of food, 
cells survive through autophagy, degrading their own cytoplasmic 
components and organelles. Once cells have degraded most of the 
inner cell components and autophagy can no longer serve as a mode 
of survival, mortality rate increases and cells die within a day. Non-
aggregating cells are expected to pay the same survival costs during 
long starvation periods.

Model: evolutionary framework
To test how phenotypic partitioning affects population fitness, we 
developed a mathematical model that mimics the D. discoideum 
life cycle. We asked whether particular non-aggregation rates are 
selected in fluctuating environments having different, constant or 
variable, starvation duration and frequency. The model was defined 
as follows. Not all cells aggregate (Figure 1), cells that do not aggre-
gate die at a defined mortality rate20 (and our unpublished results), 
non-aggregating cells are capable of resuming growth upon arrival 
of bacteria (Figure 5A and B, Movie S3); once in an aggregate cells 
do not divide and are committed to multicellular development until 
the end14. All the parameters used in the model, such as growth rate, 
sporulation efficiency and germination efficiency were measured 
experimentally (see Supplementary materials). Since aggregation 
is an adaptation to starvation and since the duration of starvation 
affects costs and benefits of each phenotype (mortality, growth), we 
tested how the duration of starvation determines the optimal non-
aggregating rate.

We defined 11 strains differing in their non-aggregating cell frac-
tions and calculated their geometric growth rate as a fitness meas-
ure. Investment into non-aggregating cells ranged from all cells 
aggregate (value 1) to none of the cells aggregate (value 0) and was 
fixed for each strain during the whole competition. For the sake of 
simplicity, we did not take into account interactions between strains 
that may increase or decrease aggregation rates, even though our 
experimental results demonstrated that such interactions do occur 
and that heterogeneities play a role. In Figure 6A and B we show 
that under constant starvation periods there are two stable strate-
gies: no aggregation for starvation periods under seven days (168h), 
and complete aggregation for longer starvation periods. The switch 
point at 168h is due to the 100% mortality rate after this period. 

Use of different mortality rates and functions did not significantly 
change the results (the time period for each optimal strategy just 
shifted). Since natural environments are rarely constant, with only 
long or only short starvation periods, we tested competition in environ-
ments with fluctuating, long (>168h) and short (<168h) starvation 
periods. We find that population partitioning into both aggregat-
ing and non-aggregating cells gives the highest (geometric) fitness 
benefits in these fluctuating conditions (Figure 6C and 6D). The 
results also show that different fluctuations in starvation duration 
select for different non-aggregating rates. This is in agreement with 
other models and experiments that showed that optimal population 
response depends on the rate of environmental fluctuations2,3,34.

Discussion
We report that upon starvation stress a population of D. discoideum 
amoebae partitions into the widely studied multicellular structures 
(consisting of live but dormant spores and dead stalk cells) and a 
fraction that remains unicellular (non-aggregating cells). We have 
measured the fraction of non-aggregating cells and found that it can 
amount to up to 15% of the total population in realistic starvation 
conditions. This is much higher than the 2–3% of non-aggregating 
cells that result in the standard sudden starvation protocols, and shows 
that it is important to mimic natural conditions. Non-aggregating 
cells are live (Supplementary Movie S1), non-stably mutated cells 
(Figure 4) that occur in both axenic strain and natural isolates 
(Supplementary Figure S2). We have thus demonstrated that the 
non-aggregating cell fraction in natural starvation conditions con-
stitutes a significant component of the population-level starvation 
response, at least of the order of the stalk cell subpopulation. For 
our detailed analysis of genetic and non-genetic contributions, we 
have nevertheless employed the standard sudden starvation pro-
tocol to ensure full control over cell population composition and 
nutritional state, even though this protocol tends to minimize the 
non-aggregating cell fraction.

In isogenic populations, we show that partitioning depends on 
phenotypic heterogeneities linked to cell nutritional state. This is 
a previously reported determinant of the differentiation between 
spore and stalk cell fate in aggregates27, together with intracellular 
Ca2+ levels35 and cell cycle phase36. Decreased aggregation in cells 
with low nutritional status correlates with lower investment into 
energetically costly aggregation. The nutritional state-dependent 
partitioning of the social amoebae population is reminiscent of pre-
vious studies reporting non-genetic population heterogeneities in 
Escherichia coli persistor strains37, Pseudomonas fluorescens col-
ony morphology38, Bacillus subtilis sporulation9 and many others.

Different genetic backgrounds can give rise to different levels of 
heterogeneity9,15,26,39, giving insights into the underlying molecular 
mechanisms. We demonstrate that genetically different wild-type 
strains show different non-aggregating cell fractions. This has impor-
tant implications when drawing a parallel with natural conditions. 
Distinct genetic strains in nature may show different aggregation 
fractions leading to competition between different aggregation 
strategies, as we explore in our model in Figure 6. Further, our 
results on single-gene mutants underlie possible mechanistic dif-
ferences between aggregated and non-aggregated cells. We propose 
that genetic factors that regulate the timing of starvation, signal 
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Figure 6. Population partitioning is advantageous in fluctuating environments. Our numerical model involves eleven strains with different 
fixed investments into non-aggregating cells that were competed under different starvation conditions. Strain investment into non-aggregating 
cells varies from 0 to 1, with 1 corresponding to complete aggregation and 0 to no aggregation. The duration of the starvation period was 
varied from <168h (A), >168h (B), randomly taken between 10h and 200h (C), randomly taken between 10h and 300h (D). For systematically 
long (>168h, B) and short (<168h, A) durations of starvation, strains with 100% aggregation and 0% aggregation take over respectively. For 
random starvation duration, a particular aggregation rate is selected, for instance 0.4 for 10h<T<200h (C) and 0.9 for 10h<T<300h (D), and 
thus the superimposition of both strategies is the optimal response.

sensing efficiency and aggregation efficiency largely determine 
whether a cell adopts the aggregating or non-aggregating pheno-
type. We confirm that cAR1 and pdsA mutants (Figure 3A and 3B), 
which are deficient in signal sensing, clearly display non-aggregating 
cell fractions that differ from their parent strain. Differences in 
gene expression levels are a known source of phenotypic hetero-
geneities; comK in B. subtilis cell competence40, spoA in B. subtilis 
sporulation9, Saccharomyces cerevisiae FLO-dependent phenotype41. 
It would be very interesting to monitor the same for early develop-
mental genes, expressed at the beginning of aggregation, to see if 
distinct expression levels correlate with aggregating and non-aggre-
gating cell fates. Genes that control the efficiency of aggregation 
such as cAR1 and pdsA are potential candidates.

Our results on interactions between mutant and wild type cells in 
mixtures show that partitioning of social amoebae populations is 
a complex process, and that competition between genotypes with 
different aggregation rates is non-linear. In other words, the behav-
ior of strains in mixtures is not the mere linear superposition of 
their behaviors when on their own, which is reminiscent of the 
well-documented behavior of strains in mixtures during sporulation 

experiments42–44. Importantly, even if certain mutants such as phg2 
(starvation sensing and motility mutant) do not display a fraction 
of non-aggregating cells that differs from their parent strain, the 
non-aggregating cell fraction of the global population may increase 
(Figure 3) as a result of heterogeneities as is the case of cells grown 
in heterogeneous conditions (Figure 2, Supplementary Figure S3). 
We propose that population heterogeneities, due to both genetic and 
phenotypic causes, play a key quantitative role in population parti-
tioning between unicellular and multicellular cell fates. The effects 
of nutrition status heterogeneities we report are reminiscent of the 
previously reported link between nutrition status, cell cycle or Ca2+ 
content heterogeneities and prespore vs. prestalk differentiation. 
In nature, social amoebae gradually deplete their food source and 
spatial distributions of genetic clones largely overlap, thus making 
both phenotypic and genetic heterogeneities realistic features of the 
unicellular vs. multicellular starvation response we describe, and 
hence reinforcing the ecological significance of our findings.

Different phenotypes are often associated with different fitness 
costs and benefits. In our case, dormant spores survive for months 
without nutrients but take advantage of incoming food with a delay 
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in comparison to non-aggregating cells. This lag corresponds to the 
duration of multicellular development and germination, up to 30h 
or 8 times the single cell division time. Therefore, non-aggregating 
cells may divide up to 8 times when nutrients are present soon 
after the beginning of multicellular development, while aggregat-
ing sporulating cells do not divide until the end of germination 
(Figure 5). This confers a considerable evolutionary advantage to 
non-aggregating cells in such situations (28=256-fold). Our model 
explores the long term, evolutionary consequences of these effects 
on the competition between clones with different aggregation rates 
in fluctuating environments. We find that the aggregation rate is 
under selection in fluctuating environments and that the optimal 
rate depends on fluctuations in starvation duration and frequency.

Strategies in which different phenotypes may show differential 
fitness advantages in different environments are often called bet 
hedging, and have been shown to be adaptive in fluctuating environ-
ments2–6,38. In plants, the success of germination often depends on 
precipitation. Since rainfall is unpredictable and variable, the diver-
sification of germination timings within season was predicted and 
demonstrated7. Similar examples include mosquito egg hatching45, 
copepod egg diapause46, phenotypic switching in S. cerevisiae3, per-
sistor phenotype in E. coli34 and many others7. B. subtilis behavior 
has the greatest resemblance to what we report in D. discoideum. 
Upon starvation the population of B. subtilis partitions into sporu-
lating and non-sporulating cells. Non-sporulating vegetative cells 
postpone their sporulation by consuming secondary metabolites 
and cannibalizing each other, and have the advantage of immediate 
growth upon arrival of nutrients9,47. In D. discoideum aggregation 
is required for sporulation. Since sporulation is beneficial only if 
the duration of starvation is long enough (Figure 6), and since cells 
cannot a priori sense the duration of starvation, population diversi-
fication should be the optimal response. This is exactly what we get 
with our model in Figure 6. We therefore propose the hypothesis 
that partitioning between non-aggregating and aggregating cells is a 
form of bet hedging in environments with unpredictable durations of 
starvation. Bet hedging behaviors result from switching between dif-
ferent phenotypes. Consistently with our hypothesis, we show that 
a population of only aggregating (spores) or only non-aggregating 
cells re-partitions into aggregating and non-aggregating cell fates 
upon starvation following re-growth for a couple of cell divisions.

Consequently, our results have implications for studies of coopera-
tion that use social amoebae as a model system. Studies on mixtures 
of non-isogenic cells show that some genetic clones bias their ratio 
into spores48,49. However, the behavior of a mixture of more than 
two clones going through a series of growth and sporulation cycles 
cannot be entirely explained based on biases observed in pairwise 
mixtures during one round of sporulation50. The whole life cycle 
needs to be taken into account, as competition occurs between 
strains not only during sporulation within aggregates but also at 
other steps such as unicellular growth, with complex trade-offs51,52. 
Here we characterize, in this respect, the aggregation step of the life 
cycle, and show that the previously neglected non-aggregating cell 
fraction constitutes a significant component of the population-level 
starvation response. This fraction is different for different genetic 
clones, it is at least of the order of the stalk cell subpopulation and 
interactions between clones do affect this fraction. Therefore, this 
additional unicellular cell fate needs to be taken into account when 

defining a clone’s behavior when alone and in mixtures. We propose 
to characterize amoebae behavior not only with respect to spore vs. 
stalk investment in aggregates but also with respect to aggregation 
vs. non-aggregation investment. This means that instead of clas-
sifying phenotypes as just stalk-biased and spore-biased we may 
find a much richer repertoire, involving high aggregation efficiency 
but low investment into stalk, low aggregation efficiency and high 
investment into stalk, and so forth.

Population partitioning can also be interpreted as probabilistic 
expression of ‘social behavior’ (here, aggregation). Genetic and 
non-genetic mechanisms may regulate the probability of a cell 
acquiring a social/aggregating phenotype. It has been shown that 
such probabilistic expressions of social phenotype may be strate-
gies that play an important role in stabilizing ‘cooperation’53,54. The 
results presented here reinforce the notion that one should allow 
individuals to ‘opt out’ of a social interaction to gain a more com-
plete understanding, as has been argued for some time by game 
theoreticians55. For instance, allowing individuals to opt out of a 
social interaction may lead to evolutionary cycles53,56,57. Our results 
show that environmental stochasticity affecting relative fitness of 
social and asocial individuals may also favor opting out of at least 
a part of the population. It will be important to investigate further 
the role of population partitioning into aggregating/social and non-
aggregating/asocial phenotypes on the stabilization of cooperation.

Overall, we have demonstrated that the nutritional stress response 
of the social amoebae Dictyostelium consists of the coexistence of a 
unicellular non-sporulating strategy and a multicellular sporulating 
strategy. We provide evidence that cell fate is determined by four 
types of factors: (i) autonomous, linked to cell genotype, (ii) envi-
ronmental, (iii) dependent on gene × environment interactions, and 
(iv) dependent on cell-cell interactions. We propose the hypothesis 
that social amoebae thus lie at the intersection of two key concepts 
in evolutionary microbiology, namely cooperation and bet hedging, 
and define a unique model system to explore this new frontier.
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Figure S1. Effect of cell density on the non-aggregating cell fraction. AX3 cells were plated at initial densities 3×104, 3×105, 3×106 and 
1.5×107 cells/cm2 according to the sudden starvation protocol. Standard plating protocols mainly use 3×106 cells/cm2, which gave the lowest 
non-aggregating cell fraction. We plated cells at 3×106 cells/cm2 density in all further experiments. Error bars represent +/- standard deviation 
(4≤n≤10). * represents p<0.05. ** represents p<0.01. *** represents p<0.001 (horizontal bars indicate the corresponding pairs of statistical 
samples).

Supplementary materials

Supplemental experimental protocols
Germination efficiency
Spores were plated on 9cm SM/5 plates with 200μl of overnight 
K. aerogenes culture. Spores germinated, cells divided, consumed 
bacterial food and when starved formed new spores. Fresh spores 
were re-suspended in ice-cold KK2 buffer with 0.1% Tween20 
(SIGMA and vortexed. 100 spores were plated with 500μl of over-
night K. aerogenes culture and plated on 14cm petri dish with SM/5 
agar. After 3 days we counted number of formed plaques. Germination 
efficiency was counted as N

spores
/N

plaques
. Experiment was done for 

6 wild type strains; 34.1, 28.1, 105.1, 63.2, 85.2 and 98.1 isolated 
from North Carolina59. Experiment was repeated 7–9 times with 
3 replicas per measurement. The mean of the 6 strains was taken as 
the value for germination efficiency in the model.

Growth rate on bacterial plates
Spores were plated on SM/5 plates with 200μL of overnight K. aero-
genes culture. Spores germinated into cells and cells started dividing. 

15–20h after plating spores cells were removed from the plates by 
washing the plates in ice-cold KK2 buffer. The cell suspension was 
centrifuged 3 times in ice-cold KK2 for 5min, 300 g to remove 
bacteria so we could measure the cell concentration. 1×105 cells 
were re-suspended in 500μL of overnight K. aerogenes and plated 
on 15cm petri dish with SM/5 agar. 16–20h after plating we started 
to measure cell growth. Growth was measured for 3 independent 
plates/time point every 2h during 8h. For each measurement cells 
were removed by scraping the cells from the plate in ice-cold KK2 
buffer to prevent cell division. The cell suspension was centrifuged 
3 times for 5min, 300 g on 4°C to remove bacteria. Cells were 
counted using a haemocytometer. The growth curve was repre-
sented as log2 of the cell number over time. The growth rate was 
calculated as the slope of the linear regression of the log2 growth 
curve. The experiment was done for 6 wild type strains; 34.1, 28.1, 
105.1, 63.2, 85.2 and 98.1 isolated from North Carolina58. The 
mean of the 6 strains was taken as the value of growth rate in the 
model.
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Figure S3. Cell aggregation on homogenous or heterogeneous bacterial lawns. AX3 cells were plated mixed with bacterial suspensions 
and plated on nutrient-free agar either homogenously (A) or heterogeneously (C). Homogenous plating yields a synchronous timing of 
starvation and aggregation over the whole plate (B). Heterogeneous plating yields a non-uniform timing of starvation and aggregation, with 
aggregates forming in some areas while cells are growing in other areas (D) of the same plate.

Figure S2. Non-aggregating cells of the NC 28.1 wild isolate. Cells were grown on bacteria and plated on nutrient-free agar according to 
the standard “sudden” starvation protocol. Wild isolate populations partition into aggregating and non-aggregating cells as laboratory strains do.
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Figure S4. Effect of NS and NS Glu medium on non-aggregating cell fractions. Cells were grown either on NS and NS with 85mM glucose 
(NS Glu) medium. Cells grown on either medium show no differences with respect to the non-aggregating cell fraction when alone compared 
to when NS-grown and NSGlu-grown cells are mixed together. Error bars represent +/- standard deviation (6≤n≤8). A one-way ANOVA test 
yielded F=1.54, p=0.27.
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Figure S5. Nutritional state of the cells biases spore/stalk differentiation in aggregates. RFP-expressing AX3 and GFP-expressing 
AX3 cells were grown on one of 4 different media: HL5 (rich medium), FM (minimal medium), NS Glu (rich medium with glucose) and NS 
(rich medium without glucose). Cells grown on these media were mixed at 1:1 ratio for HL5:FM and NSGlu:NS mixtures. The ratio of spore 
percentage over plated cell percentage of each cell population in the 1:1 mixture indicates if one population is getting enriched into spores 
with respect to the other one. For spore/cells ratios = 1 both populations contribute equally to spores. If spore/cells ratio > 1, the population 
is enriched in spores, and if spore/cells ratio < 1, the population is underrepresented in the spores. We find that HL5-grown cells are over-
represented in the spores in mixture with FM-grown-cells, FM-grown cells are underrepresented in the spores in mixture with HL5-grown cells. 
We confirm previously published data showing that NSGlu-grown cells are over-represented in mixture with NS-grown-cells, NS-grown cells 
are underrepresented in the spores in mixture with NSGlu-grown cells. Error bars represent +/- standard deviation (11≤n≤18). *** represents 
p<0.001 (horizontal bars indicate the corresponding pairs of statistical samples).
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Figure S6. Flow cytometry analysis of fluorescent reporter cell lines. RFP and GFP expressing DH1 cell lines were analyzed by flow 
cytometry to confirm that cell lines are homogenously fluorescent, which confirms the validity of our approach. 106 exponentially growing 
cells of each cell line were analyzed via excitation by an Argon laser at 488nm and detection with emission filter sets specific to RFP and 
GFP. Excitation and emission settings were kept constant throughout analysis. A) RFP-expressing cells display a unimodal fluorescence in 
the RFP channel (bottom right plot), and background-level fluorescence in the GFP channel (upper right plot). The GFP vs RFP plot (left) 
displays a fluorescently homogeneous population in the RFP-specific analysis gate. B) GFP-expressing cells display the reciprocal features. 
Importantly, less than 1% of cells were not fluorescent, ruling out artifacts in our cell counting approach.
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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 Paul Rainey
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This is an important paper that draws attention to non-aggregating cells of Dictyostelium and shows that
under nutrient deprived conditions such cells arise by a stochastic mechanism and when considered
alongside cells that commit to slug – and ultimately spore – formation appear to represent a bet-hedging
strategy. Such a strategy may be adaptive in the face of uncertainty surrounding unpredictable
fluctuations in resource availability. This little considered aspect of the biology of Dicty has significant
implications for how we think about the function of this amoeba in its natural environment.

The article content is of good quality and the experiments are well conducted. However, I suggest
re-writing the section entitled “ …” to bring greater clarity. Genetics of population partitioning

Experiments showing that loners can switch back to spore-formers do not demonstrate that the switch is
epigenetic (the switch could be mutational (a genetic switch)). Similarly, the hypothesis of bet hedging is
not tested: it is an entirely reasonable hypothesis, but not proven.

There is need to provide experimental details in the figure captions concerning number of replicates,
nature of error and statistical analyses (where appropriate).
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Specific suggestions

Abstract
“...studies of microbial cooperation...”

I recommend deleting this.
 
“Non-aggregating cells have an advantage over cells in aggregates since they resume growth
earlier upon arrival of new nutrients, but have a shorter lifespan under prolonged starvation.”

Compared to what? Compared to spores?
 
“We find that phenotypic heterogeneities linked to cell nutritional state bias the representation of
cells in the aggregating vs. non-aggregating fractions, and thus regulate population partitioning.”

I probably wouldn't use the word regulate. Maybe just 'affect'
 
“D.discoideum thus constitutes a model system lying at the intersection of microbial cooperation
and bet hedging, defining a new frontier in microbiology  and evolution studies”

This is not such a great sentence. Rather than try and sell it in this way, I would recommend that
the authors either delete the sentence, or emphasize that they have drawn attention to an
overlooked aspect of the biology of Dicty that may have ecological relevance. 

 
Introduction

“Yet, living environments typically deviate from these conditions.”

Remove “ ”living
 
“Our main motivation was to study a previously known but neglected fact that not all cells
aggregate upon starvation.”

Add reference
 
Remove “ ”While often considered an experimental error or just insignificant
 
“We asked whether the fraction of non-aggregating cells constitutes an important component of the
adaptive response to stress.”

I thought the main idea you are testing is the possibility that solitary cells constitute a bet hedging
strategy that may have adaptive significance in the face of unpredictable changes in the nutritional
status of the environment?

 
Materials and methods
Model

“The advantage that non-aggregating cells have is a head start when conditions improve, as
spores produced by aggregating cells need time to develop.”

The advantage may come even earlier than spore formation. Is the commitment to form fruit bodies
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The advantage may come even earlier than spore formation. Is the commitment to form fruit bodies
terminal? If so, then right from the outset, there is likely to be an advantage for spreading risk. In
many ways this is very similar to what has been worked out for  and the idea that theBacillus
commitment to sporulation is delayed as long as possible (see work from Losick's group).

Results
“...the observation that non-aggregating cells are actively moving, live cells that are intermixed with
aggregating cells at the onset of starvation”

Remove the comma
 

Phenotypic plasticity affects population partitioning
“While stationary phase cells show no significant difference compared to exponentially growing
cells, cells feeding on a homogenous bacterial lawn and thus gradually starving showed a 3-fold
increase in the proportion of non-aggregating cells,6.3±3.17% (p=0.027).”

Perhaps mention in the results what a homogeneous vs. heterogeneous lawn of bacteria means.
 
“Four different media were tested: HL5 rich medium, FM minimal medium, NS with 85mM glucose
(NS Glu) and NS medium.”

Without going to the M&M I don't know how to read the differences between the media. Why did
you not systematically change C / N and the ratio of C:N?
 
“We conclude that nutritional state distinguishes non-aggregating cells from aggregating cells, and
that interactions between cells according to their nutritional state biases further partitioning
between aggregating and non-aggregation cell fates.”

But what is it about the nutritional status of the media?
Figure 2

Axes – should Homog. and Heterog. lawn instead of loan.
 
Legend - Mean and standard deviation of  replicates (state number of replicates).  State thex
meaning of the lines.  Also, was a posteriori test was applied (assuming the lines are indicating the
result of this analysis).  If this was ANOVA first and then a posteriori test, then state the ANOVA
result as well (without this I don't know what the p levels mean).

Figure 3
Legend - See comments above regarding representation of statistical results.

Genetics of population partitioning into aggregating and non-aggregating fractions
 

This section is unclear to me. It is not what I would call "genetics". I am not sure to what extent this
is an '. I understand'exploration of the genetic mechanisms affecting aggregating / non-agg fates
that the authors have taken two mutants that can be rescued when grown with wild type. I really
don't understand what these experiments tell us. This should be clarified and made more explicit.

 
Cell history and cell fate

Change to “...bet hedging-like strategy between...” “stochastic switch affecting”
 
“Answering this question allows us to: i) rule out any genetic differences between aggregating and
non-aggregating cells and ii) examine the effect of epigenetic inheritance of cell fate.”
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This does not rule out the possibility of a genetic mechanism. For example, a genetic switch could
be responsible.
 
“This demonstrates the strong persistence of population partitioning and the fast loss of cell
epigenetic memory.”

Or a genetic switch. I think this shows that the solitary types are not mutants. I do not think this
shows evidence for an epigenetic switch.
 

Figure 4
Legend - No. of replicates? Nature of error bar? etc.

Model
The model is useful and shows nicely that solitary cells and slug / spore forming cells have likely
ecological relevance. One thing missing is any parameter to describe interactions among cells in
the slugs / fruit body (and between different genotypes) that are likely to be important components
of fitness, but perhaps at this stage there is insufficient empirical data for this to be usefully
attempted. 

Figure 6
I think you should make clear in the caption that these are results from a mathematical model.

Discussion
“We report that upon starvation stress a population of D. discoideum amoebae partitions...”

I think you should avoid the term . It is meaningless.“stress”
 
“For our detailed analysis of genetic and non-genetic contributions...”

The analyses are not particularly . I suggest removing this.“detailed”
 
“Bet hedging behaviors result from epigenetic switching between different phenotypes.”

Not necessarily epigenetic. Take contingency loci in pathogenic bacteria for example.
 
“This demonstrates the epigenetic bet hedging-like nature of population partitioning in D.
discoideum.”

No. It demonstrates neither epigenetic, nor that the strategy is a bet hedging one. The behaviour is
consistent with a bet hedging strategy. 
 
“This means that instead of classifying phenotypes as just altruistic and cheaters we may find a
much richer repertoire, involving social cheaters (high aggregation efficiency but low investment
into stalk), asocial altruists (low aggregation efficiency and high investment into stalk), asocial
cheaters (low aggregation efficiency and low investment in the stalk) and so forth.”

I would suggest you could also put aside the anthropomorphic language and refer to solitary cells
and slug / spore forming cells and their interactions.
 

“Population partitioning can also be interpreted as probabilistic expression of social behavior.”

Page 23 of 24

F1000Research 2014, 3:133 Last updated: 01 APR 2015



F1000Research

“Population partitioning can also be interpreted as probabilistic expression of social behavior.”

See previous comment. 

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 04 July 2014Referee Report

doi:10.5256/f1000research.4516.r5221

 Richard Gomer
Department of Biology, Texas A&M University, College Station, TX, USA

This is a very nice explanation of why some Dictyostelium cells do not join into aggregates when the
population of cells starves. Many of us have observed this phenomenon, and wondered why this
happens. The explanation is that if nutrients suddenly appear while aggregated cells are undergoing
development, the non-aggregating cells can immediately begin growth and proliferation, while the
aggregated cells have to plod through development and then spore germination before they can start
dividing. The authors show both data as well as nice mathematical models of this bet-hedging strategy.

One minor correction - in Figure 1A 'loan' should be 'lawn'. 

In the future, finding the mechanism that causes a small percentage of cells to not aggregate may shed
light into new mechanisms of cell population symmetry-breaking and differentiation.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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