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Abstract

The current study characterized subcortical speech sound processing among monolinguals

and bilinguals in quiet and challenging listening conditions and examined the relation

between subcortical neural processing and perceptual performance. A total of 59 normal-

hearing adults, ages 19–35 years, participated in the study: 29 native Hebrew-speaking

monolinguals and 30 Arabic-Hebrew-speaking bilinguals. Auditory brainstem responses to

speech sounds were collected in a quiet condition and with background noise. The percep-

tion of words and sentences in quiet and background noise conditions was also examined to

assess perceptual performance and to evaluate the perceptual-physiological relationship.

Perceptual performance was tested among bilinguals in both languages (first language (L1-

Arabic) and second language (L2-Hebrew)). The outcomes were similar between monolin-

gual and bilingual groups in quiet. Noise, as expected, resulted in deterioration in perceptual

and neural responses, which was reflected in lower accuracy in perceptual tasks compared

to quiet, and in more prolonged latencies and diminished neural responses. However, a

mixed picture was observed among bilinguals in perceptual and physiological outcomes in

noise. In the perceptual measures, bilinguals were significantly less accurate than their

monolingual counterparts. However, in neural responses, bilinguals demonstrated earlier

peak latencies compared to monolinguals. Our results also showed that perceptual perfor-

mance in noise was related to subcortical resilience to the disruption caused by background

noise. Specifically, in noise, increased brainstem resistance (i.e., fewer changes in the fun-

damental frequency (F0) representations or fewer shifts in the neural timing) was related to

better speech perception among bilinguals. Better perception in L1 in noise was correlated

with fewer changes in F0 representations, and more accurate perception in L2 was related

to minor shifts in auditory neural timing. This study delves into the importance of using neural

brainstem responses to speech sounds to differentiate individuals with different language

histories and to explain inter-subject variability in bilinguals’ perceptual abilities in daily life

situations.
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Introduction

Daily interactions frequently occur in acoustically challenging environments, which often pose

challenges to listeners. One challenging listening condition that deteriorates speech perception

is background noise [1–3]. It is well-known that speech perception in the presence of back-

ground noise can be more challenging for bilinguals compared to monolinguals [4–16] and that

this disadvantage is present even when bilinguals have early exposure and strong proficiency in

both languages [7, 16, 17]. At the same time, the literature notes the advantages of bilingualism

for brain structure and function (e.g., [18, 19]). Specifically, electrophysiological tests that exam-

ine subcortical processes show enhanced auditory processes in bilinguals (e.g., [20–28]). To

date, the puzzling question of how the perceptual disadvantage of bilinguals aligns with the

advantage seen in subcortical processes remains. In an attempt to answer this question, the cur-

rent study examined the association between perceptual and physiological outcomes.

The auditory brainstem response evoked by speech stimuli is used to examine how subcor-

tical structures of the auditory pathway encode temporal and spectral aspects of speech sounds

(e.g., [29–31]). The frequency-following response (FFR) evoked by these speech stimuli can

closely mimic the waveform of the acoustic stimulus [32]. The FFR has been studied in bilin-

gual populations to examine whether lifelong language experience can affect subcortical audi-

tory processing. Enhancements in FFRs because of bilingualism were reflected in different

aspects of the neural response. For example, some studies showed greater consistency and sta-

bility of FFRs among bilinguals compared to monolinguals [25, 28, 33] and among bilinguals

who are more proficient in the language [25] and have more years of bilingual experience [27].

Other studies showed that exposure to a second language induces earlier neural latencies [20],

more pronounced and robust FFRs [22, 23], and a larger representation of the fundamental

frequency (F0) component [24, 26, 27], which is used to recognize and track speech, and serves

as an important cue for speech perception in challenging listening conditions [26, 34–38].

Notably, differences between monolinguals and bilinguals in FFRs were observed mainly

when the speech stimulus was presented in background noise compared to quiet conditions

[e.g., 20, 24]. Further, better representation of F0 among bilinguals was associated with better

attentional and cognitive abilities, mainly when individuals were tested in noise (e.g., [24, 25]).

To the best of our knowledge, this study is the first to combine perceptual and brain mea-

sures in bilingual populations. This combination is important for translating knowledge

regarding physiological outcomes into practice and for examining how the advantage in sub-

cortical responses interacts with a disadvantage in perception. Further, in the current study,

we examined how the perceptual-physiological correlation varies across the two languages of

bilinguals. For this purpose, in addition to comparing the perceptual performance of bilinguals

and monolinguals, bilinguals were examined in both languages: (first language—L1 (Arabic)

and second language—L2 (Hebrew)). This was done to determine whether the subcortical

physiological mechanism can predict bilinguals’ perceptual performance in general or related

to the language of the processed stimuli.

In summary, the current study was designed to answer the primary research questions:

Does subcortical processing predict perceptual performance? And how do L1 and L2 modify

the perceptual-physiological correlation?

Materials and methods

Participants

Sixty, right-handed, first-year college students (41 females, mean age = 24.6 ± 3.7) were

recruited to participate in the study. All had obtained a similar level of formal education
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(mean ± standard deviation = 13.3 ± 2.6 years) and had normal cognitive function (based on

Wechsler Intelligence Test [39]). In addition, all participants exhibited normal hearing thresh-

olds in both ears (� 20 dB HL pure-tone air conduction thresholds for octave frequencies 250

through 8000 Hz [40]) and absolute peak and interpeak latencies within normal limits [41] to

100-μs clicks presented at 80 dB nHL at a rate of 13.3/s, with a 10.66 ms recording window. To

control for knowledge of music, a factor known to affect subcortical processing (e.g., [42–50]),

only participants with no- to minimal- musical knowledge (less than one year of experience in

elementary school) were included. Professional musicians were excluded from the study. Par-

ticipants provided written informed consent before participating and were compensated with

either a coffee coupon or course credit for participating. The Ethics Committee of the Univer-

sity of Haifa approved the study protocol.

Participants were divided into two groups based on their language history and knowledge:

Arabic-Hebrew bilinguals and Hebrew monolinguals. All participants were asked to fill out a

questionnaire about their demographic information and language profile [adapted from 12,

51]. The information reported below is based on self-reports. The means and percentages

reported are based on group averages.

The bilingual group consisted of 30 Arabic-Hebrew speakers. Bilinguals were exposed to

Arabic (L1) from birth and to Hebrew (L2) from age three. All bilinguals considered them-

selves dominant in L1 and reported intensive exposure to this language. Bilinguals received

more than 10 years of formal academic education in Hebrew (12.3 ± 3.9 years), passed the

high school matriculation exams with Hebrew as their L2, and used Hebrew extensively in

their academic studies (about 45% of the time). The monolingual group consisted of 30 partici-

pants who reported only knowledge of Hebrew and had no substantial learning or proficiency

in Arabic.

Data of one monolingual participant were excluded because of excessive noise in the

electrophysiological recordings caused by high levels of myogenic activity. Consequently, data

from 59 participants (30 bilinguals and 29 monolinguals) were included in the final analysis.

Except for language history and knowledge, the two groups were similar in chronological age

(t (57) = -1.857, p = 0.07), gender (t (57) = -0.085, p = 0.933) and years of formal education (t
(57) = 1.529, p = 0.132). All participants underwent an electrophysiological recording and per-

formed perceptual tasks in the hearing lab at the University of Haifa.

Electrophysiology

During the electrophysiological session, participants sat in a comfortable reclining chair in a

sound-treated, electrically shielded booth and were asked to stay calm during passive exposure

to the stimuli. Lights inside the audiological booth were dimmed during recording. Brainstem

responses were collected using the Biologic Navigator Pro System (Natus Medical Inc., Mun-

delein, USA). Vertical montage for Ag-AgCl electrode placement was applied. The non-invert-

ing electrode was at the midline (Cz), the negative inverting electrode on the right earlobe

(A2), and the ground electrode was put on the left earlobe (A1). The maximum permissible

impedance level for each electrode was less than 5 kO, and the inter-electrode impedance was

less than 3 kO.

Stimuli and conditions. A 40-ms synthesized /da/ syllable was used. This universal sylla-

ble was chosen since it is shared across many languages [52], including Arabic and Hebrew,

and was previously used in Karawani and Banai [53] with Arabic and Hebrew speakers. This

five-formant synthesized speech syllable is comprised of an initial noise burst, followed by a

formant transition between the consonant [d] and the vowel [a]. The syllable contains the fun-

damental frequency [F0] that linearly rises from 103 to 125 Hz and five additional formant
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frequencies [refer to 53, 54 for a detailed description regarding the stimulus characteristics and

formants]. This syllable was presented at 80 dB SPL at a rate of 10.9 Hz, with an alternating

polarity to minimize cochlear microphonics and stimulus artifacts [55]. The recording window

was 85.33 ms, including a pre-stimulus period of 15 ms. Brainstem responses were elicited in

response to the speech syllable in quiet and in noise conditions. In noise, the syllable was pre-

sented with 80 dB SPL continuous, white noise with a signal-to-noise ratio (SNR) of 0 dB. The

stimuli in the two listening conditions were presented monaurally to the right ear via electro-

magnetically shielded biologic insert earphones (580-SINSER) while leaving the left ear unoc-

cluded. Similar to the protocol used in Krizman et al. [54], all participants in the current study

heard a movie soundtrack played at< 40 dB SPL (an insufficient intensity to mask the stimu-

lus in the right ear) with the unoccluded ear. This was done to promote stillness and rule out

differences in state as a potential confound.

Recording. Two blocks of 3000 artifact-free sweeps were collected in each of the two lis-

tening conditions. Trials with activity exceeding ± 25 μV were rejected. Responses were online

band-pass filtered from 100 to 2000 Hz, which captures the limits of the brainstem and the

inferior colliculus phase-locking and minimizes collecting myogenic noise and cortical activi-

ties [29, 55, 56]. The total recording time was 20 minutes.

Data averaging and analysis. A final waveform was created for each listening condition

by averaging the two blocks collected. The final waveform comprised 6000 artifact-free

sweeps. In total, two final averaged waveforms were analyzed for each participant, one for

the quiet condition and the other for the noise condition. Transient peaks and those reflect-

ing the harmonic portion of the stimulus were visually identified and manually marked.

Detailed information regarding the FFR components is described in previous reports (e.g.,

[31, 32, 57]). In this study, all components (V, A, C, D, E, F, and O peaks) were detected in

the quiet condition. However, we considered analysis of the V, A, and O peaks reflecting the

initiation and the offset of the response, and peak F corresponding to the voicing of the

speech sound. We focused solely on these peaks because the detectability of the remaining

peaks (C, D, and E) was relatively poor in the noise condition (64.4%, 66.1%, and 76.2%,

respectively). A peak was considered reliable if it was present in >85% of participants [58].

Peaks of interest (V, A, F, and O) were identified by the two authors. The second author

marked the waveforms separately to verify uniform marking and was also blinded to partici-

pants’ identities and group. In addition, to avoid bias, the second author was blinded to the

condition under which the recording was conducted. Measures of both timing (latency) and

magnitude (amplitude) were applied for peaks V, A, F, and O. Also, a fast Fourier transform

(FFT) in Matlab (The Mathworks) using the Brainstem Toolbox [31] was performed to cal-

culate F0 amplitude.

Perception

In this part, bilinguals were tested with Arabic (L1) and Hebrew (L2) speech stimuli, with lan-

guage order counterbalanced, while monolinguals were examined only in Hebrew. Bilinguals

were given a 10-minute break between Arabic and Hebrew perceptual tasks. Here, we exam-

ined the ability of participants to perceive wordlists and sentences presented in quiet and with

background noise (detailed below). Participants performed the perception part individually

while sitting in front of a laptop. Participants were asked to listen to a given stimulus and

repeat it. This procedure continued until all stimuli had been presented. Each participant

heard each stimulus only once, no stimulus was used twice, and no feedback was provided.

The presentation order of the speech stimuli (wordlists and sentences) and listening condi-

tions (quiet and noise) was randomized across participants.
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Stimuli and conditions. Participants were presented with two types of speech stimuli

(wordlists and sentences), which differed in the contextual cues included. At the wordlists

level, words from audiological speech and hearing tests were used to compose each wordlist

[59]. Seven bi-syllabic words from unrelated semantic categories were used in each wordlist.

At the level of the sentences, plausible, syntactically correct sentences from Arabic and Hebrew

versions of the Hagerman test [60] were adapted and used. Each sentence consisted of seven

words with semantic and syntactic redundancies.

Instead of relying on one type of speech stimulus, we included two types to reflect the per-

ception of the individual. This was done because previous studies have shown that bilinguals

show more difficulty in noise as the linguistic complexity of the task increases [7, 17, 61–67].

Here, to evaluate the relation between physiology and perceptual measures, we combined the

perceptual accuracy of the individual in both wordlists and sentences to reflect the perceptual

performance in general, regardless of the effect of task complexity on performance.

Wordlists and sentences in Arabic and Hebrew were created. The average number of sylla-

bles across Arabic and Hebrew stimuli was similar (p> 0.19), as were the root-mean-square

(RMS) amplitudes (p> 0.7). Stimuli across the two languages were also similar in terms of fre-

quency (tested in a pilot study). Uncommon words, cognates and false cognates were not

included in the data set. An Arabic speaker recorded stimuli in Arabic, and a Hebrew speaker

recorded Hebrew stimuli to avoid bias resulting from pronunciation problems.

Stimuli were presented binaurally to participants at 80 dB SPL in two listening conditions:

quiet and a 4-talker, babble noise at a fixed level of SNR = 0 dB. For the noise condition, the

babble used for Arabic stimuli was in Arabic, and the babble used for Hebrew stimuli was in

Hebrew. The babble noise was selected because it closely resembles a natural situation where

individuals need to extract a target speech from a background of competing voices. We

assessed and normalized the amplitudes of the Arabic and Hebrew babbles to ensure equal

intensity and analyzed a set of acoustic parameters to reveal similar babble characteristics

across languages [68]. Stimuli were presented to participants through software developed and

used previously [69].

Scoring. Participants’ perceptual responses were digitally audio-recorded using a Mini

USB recorder. Two trained coders who were blind to the study goals coded each participant’s

responses. One point was given for each word that the participant could repeat. The perceptual

accuracy for each condition was examined. This was done by calculating the percentage of cor-

rect responses accomplished over all wordlists and sentences given in each listening condition.

Statistical analysis

Data from 59 participants (30 bilinguals and 29 monolinguals) are reported below and were

included in the final analysis. We focused on condition (quiet vs. noise) and group (monolin-

guals vs. bilinguals) differences in the electrophysiological analysis. Dependent variables

included the latencies and amplitudes of V, A, F, and O peaks and F0 amplitude. In the percep-

tual analysis, within participant comparisons were also conducted (bilingual L1 vs. L2) as a

main effect of language. All statistical analyses were completed using IBM SPSS Statistics V25.

Repeated measures analyses of variance (ANOVA) were performed. Pairwise comparisons

were used when required. All statistical analyses were adjusted for multiple comparisons using

Bonferroni corrections [70], and effect sizes were indicated using η2p. Shapiro-Wilk tests were

used to test for normal distribution within each group. Levene’s tests were conducted to test

the homogeneity of variance for all measures. Finally, Pearson r correlations coefficient were

calculated to study the perceptual-physiological association. Detailed analyses are presented in

the Results subsections below.
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Results

Electrophysiology

Repeated measures ANOVA with condition (quiet, noise) as the within participant factor and

group (monolingual, bilingual) as a between participant factor was used.

Latency. Main effects of condition and group were observed for peaks V, A, F, and O (see

Table 1). Bonferroni pairwise comparisons revealed that latencies were significantly prolonged

in noise compared to quiet (p values< 0.001), and significantly earlier latencies were observed

in the bilingual group compared to the monolingual group (p� 0.005). Significant

condition × group interactions were observed for all peak latencies (p� 0.01). These signifi-

cant interactions indicate that the presence of noise prolonged the peak latencies in one group

to a greater extent than in the other. Specifically, post hoc t tests showed that whereas the laten-

cies of the peaks were comparable in quiet (see Fig 1A, p� 0.133), earlier latencies were

observed in the bilingual group compared to the monolingual group in noise. The prolonged

latencies of bilinguals compared to monolinguals in noise are illustrated in Fig 1B (p� 0.01).

Amplitude. A main effect of condition was observed for peaks V, A, F, and O, and F0

amplitude (Table 1, p< 0.001). Background noise diminished the amplitudes of all peaks (see

Fig 1) and F0 amplitude in both groups. No significant main effect of group was observed

(Table 1, p� 0.1). Condition x group interactions were also not significant (Table 1,

p� 0.168). Monolinguals and bilinguals demonstrated similar V, A, F, and O peak amplitudes

in the two listening conditions, and F0 amplitudes were comparable in quiet (monolingual

mean amplitude (μV) = 7.495 ± 3.422, bilingual mean amplitude (μV) = 7.936 ± 2.730) and

noise (monolingual mean amplitude (μV) = 3.729 ± 2.957, bilingual mean amplitude (μV) =

3.908 ± 2.247) across the two groups.

Table 1. Effects of condition and group.

Latency Amplitude

Peak/Component F P η2p F p η2p
Condition V 304.944 <0.001��� 0.843 28.670 <0.001��� 0.335

A 354.953 <0.001��� 0.862 191.241 <0.001��� 0.770

F 537.149 <0.001��� 0.904 34.266 <0.001��� 0.375

O 1108.214 <0.001��� 0.951 70.557 <0.001��� 0.553

F0 amplitude ---- 67.079 <0.001��� 0.541

Group V 31.041 <0.001��� 0.353 2.078 0.155 0.035

A 28.397 <0.001��� 0.333 1.045 0.311 0.018

F 25.479 <0.001��� 0.309 2.839 0.1 0.047

O 8.447 0.005�� 0.129 2.753 0.103 0.046

F0 amplitude ---- 0.291 0.591 0.005

Condition x Group V 24.566 <0.001��� 0.301 1.454 0.233 0.025

A 26.944 <0.001��� 0.321 1.947 0.168 0.033

F 13.341 0.001��� 0.190 0.111 0.740 0.002

O 3.366 0.01�� 0.056 0.174 0.678 0.003

F0 amplitude ---- 0.075 0.785 0.001

Values of repeated measures ANOVA as a function of condition (quiet and noise) and group (monolingual, bilingual) for the mean latencies and amplitudes of FFR

components. Degrees of freedom (between groups) = 57; (within group) = 1, partial eta square (η2p),

� p � 0.05

�� p � 0.01;

��� p� 0.001.

https://doi.org/10.1371/journal.pone.0264282.t001
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Perception

The perception was compared between groups (monolinguals vs. bilinguals, both operating in

Hebrew) and within the bilingual group (bilinguals in L1 vs. L2).

Between groups. Monolinguals vs. bilinguals. Repeated measures ANOVA with condition

(quiet, noise) as within participant factor and group (monolingual, bilingual (in Hebrew)) as a

between participant factor was used. Main effect of condition (F (1, 57) = 643.226, p< 0.001,

η2p = 0.919) was observed. Accuracy levels were higher in quiet compared to noise (Fig 2).

Main effect of group (F (1, 57) = 59.525, p< 0.001, η2p = 0.511) and a condition x group inter-

action (F (1, 57) = 108.844, p< 0.001, η2p = 0.656) were significant. As shown in Fig 2, no dif-

ferences were observed between groups in quiet (monolingual mean in quiet = 89.334 ± 5.217,

bilingual L2 mean in quiet = 80.142 ± 7.703, t (57) = -5.382, p = 0.7), while in noise bilinguals’

perceptual performance (in L2) was lower than that of monolinguals (monolingual mean in

noise = 83.386 ± 6.313, bilingual L2 mean in noise = 65.880 ± 7.656, t (57) = -9.595, p< 0.001).

Within the bilingual group. Repeated measures ANOVA was used with two within par-

ticipant factors (condition: quiet, noise; language: L1, L2). Main effects of condition (F (1, 29)

= 308.341, p< 0.001, η2p = 0.914) and language (F (1, 29) = 44.252, p< 0.001, η2p = 0.604)

and a condition x language interaction (F (1, 29) = 5.512, p = 0.026, η2p = 0.160) were

observed. Bilinguals had better perception in quiet than in noise. As illustrated in Fig 2, bilin-

guals achieved similar accuracy in L1 and L2 in quiet (mean L1 in quiet = 87.833 ± 5.210,

mean L2 in quiet = 80.142 ± 7.703, t (29) = 7.298, p = 0.09) but noise had a greater effect on L2

performance, leading bilingual individuals to perform significantly poorer (t (29) = 3.855,

p = 0.001) in L2 (mean = 65.880 ± 7.656) compared to L1 (mean = 70.523 ± 8.331).

Perceptual-physiological association

To examine the perceptual-physiological association, we first calculated the delta (difference)

between quiet and noise conditions in physiological and perceptual measures. The degree of

Fig 1. Grand average subcortical responses to speech stimuli obtained from bilinguals (green) and monolinguals (red) recorded in quiet (A) and noise (B). ��

p� 0.01; ��� p� 0.001. Significant group differences between peak latencies (as revealed in t tests for independent samples) were found in noise. The tables below

represent means ± SD (ms) for peak latencies in quiet (right) and noise (left), and the p value for the group differences.

https://doi.org/10.1371/journal.pone.0264282.g001

PLOS ONE Perceptual and neural associations in bilinguals

PLOS ONE | https://doi.org/10.1371/journal.pone.0264282 February 23, 2022 7 / 21

https://doi.org/10.1371/journal.pone.0264282.g001
https://doi.org/10.1371/journal.pone.0264282


change in F0 amplitude from quiet to noise (delta F0 = F0 amplitude in quiet minus F0 ampli-

tude in noise, [larger values indicate more deterioration]) and the shifts in V latency across the

two listening conditions (V latency shift = V latency in noise minus V latency in quiet, [larger

values indicate more shifts]) were calculated from the physiological aspect. We chose, in par-

ticular, these physiological measures based on previous literature showing robust correlations

between F0 and perceptual accuracy (e.g., [34, 35, 47, 71–73]) and between neural timing and

perceptual abilities [74, 75]. We chose the onset of the response specifically because of its sensi-

tivity to the effects of adverse listening conditions [76, 77]. In perception, the deterioration in

accuracy due to noise was calculated (delta perception = accuracy in quiet minus accuracy in

noise [larger values reflect more deterioration in accuracy]).

Correlation between delta F0 and delta perception. This correlation was conducted to

test whether larger effects of noise in the neural representation (i.e., larger F0 deltas) correlated

to greater susceptibility to the degradative effects of noise on the perception task (i.e., larger

perception deltas). As shown in Fig 3A, this correlation was significant and positive among

bilinguals in L1 (r = 0.4, p = 0.04), indicating that bilingual listeners who were more susceptible

to the effect of noise and showed more significant perceptual deterioration in their dominant

language, demonstrated greater susceptibility with the neural encoding of F0. This correlation

was not significant among monolinguals (r = 0.102, p = 0.597) or bilinguals when tested in

their L2 (r = -0.069, p = 0.717).

Correlation between V latency shift and delta perception. This correlation was con-

ducted to examine whether greater changes in the latency of the physiological response due to

the addition of noise are related to greater deterioration in perception. As demonstrated in Fig

3B, a significant positive correlation was found among bilinguals when tested in L2 (r = 0.429,

Fig 2. Perceptual accuracy among the bilingual group in L1 (Arabic; dark green columns), L2 (Hebrew; light green columns), and the monolingual

group (Hebrew; red columns) in quiet and noise. Error bars represent the standard deviations of the mean. Asterisks denote significant differences

between groups or languages. ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0264282.g002
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p = 0.01), indicating that larger shifts in V latency were associated with more deterioration in

accuracy. However, this correlation was not found for monolinguals (r = -0.318, p = 0.1) and

was marginally significant for bilinguals when tested in their L1 (r = 0.349, p = 0.059).

Discussion

The current study characterized the subcortical neural processing of speech sounds and the

perceptual performance of normal-hearing bilinguals and monolinguals in quiet and noisy

conditions. We also examined how this subcortical neural processing is related to perceptual

performance. Our results demonstrated that the effect of lifelong experience with two lan-

guages–bilingualism–was reflected mainly in perceptual and neural measures in challenging

listening conditions. Specifically, perceptual performance was worse for bilinguals than mono-

linguals in noise, but neural timing was earlier. Further, the current study showed brain-

behavior associations. Among bilingual individuals, perceptual performance in noise was asso-

ciated with the extent of subcortical resistance to the disruption caused by background noise.

These findings are discussed in the following subsections.

The effect of noise on perceptual accuracy and neural response

Our results indicated a considerable decline in perceptual accuracy in the presence of back-

ground noise and substantial changes in the morphology of the auditory brainstem responses.

Overall, monolinguals and bilinguals (in both languages) achieved significantly lower accuracy

in the noisy condition than the quiet condition, and the neural responses elicited from both

groups were observed with longer latencies and smaller amplitudes in the noisy condition

(Figs 1B and 2B). The poorer perceptual performance of bilinguals in L2 compared to L1 or

relative to the performance of monolingual listeners is consistent with previous findings [8,

11–14, 16, 78–85] and can be attributed to multiple factors that may independently or

Fig 3. Physiological and behavioral relations. Deterioration in perceptual accuracy (delta perceptual = accuracy in quiet minus accuracy in noise; y-axis) as a function

of changes in F0 amplitude (delta F0 = F0 amplitude in quiet minus F0 amplitude in noise; x-axis in (3A)) and shifts in V latency (V latency shift = V latency in noise

minus V latency in quiet; x-axis in (3B)). Pearson r coefficient values and p values for bilingual L1 (dark green), bilingual L2 (light green), and for the monolingual

group (red) are shown.

https://doi.org/10.1371/journal.pone.0264282.g003
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interactively affect bilinguals’ performance, such as late age of language acquisition [7, 86, 87],

lower proficiency in L2 [11, 79, 86, 88], limited exposure to the languages [16, 89–91] and co-

activation between languages [92–96]. Specifically, previous studies have suggested that bilin-

guals tend to show perceptual difficulties in their L2 because they acquire the language at a

later stage of life and exhibit low proficiency on it (e.g., [7, 11, 79, 86–88]). In addition, studies

have proposed that because bilinguals split their resources across different languages, they are

less exposed to each one. This limited exposure to each language may lead to less precise auto-

matic processing and consequently pose more challenges to the listener [16, 89–91]. In addi-

tion, as bilinguals’ two languages are co-activated even when only one language is needed for

the task [92–96], bilingual listeners need to manage more competing distractors during lan-

guage processing. This co-activation may result in fewer resources available during speech pro-

cessing and increase listening effort and perceptual difficulty [6, 16]. To note, in the current

study, bilinguals showed a significant decrease in their perceptual accuracy in background

noise, even when tested in their L1. The limited exposure to languages and co-activation may

explain the speech perception in noise disadvantage seen in bilinguals even when operating in

their dominant language [16].

From the physiological aspect, the responses elicited in noise were diminished and

degraded, consistent with previous findings [30, 47, 76, 77, 97–99]. This reduction can reflect

neural desynchronization [98, 100] and less efficient efferent processing [20]. Neural group

differences were reflected in noise, where earlier neural latencies were observed in bilinguals

compared to their monolingual peers. However, since the participants were normal-hearing,

young adults with no clinical condition, it is likely that the prolonged responses observed

among monolinguals do not reflect deficiencies. Instead, they indicate that the neural encod-

ing of speech became more resistant to the detrimental effects of background noise in bilin-

guals. Considering differences in the linguistic experience between bilinguals and

monolinguals and consistent with the evidence that FFRs are dynamic and malleable to the

effects of immediate or long-term auditory experiences (e.g., [20, 24–27, 42, 44–50, 58, 101–

108]), we suggest that the language experience likely underlies the group differences observed

in the neural responses in the noise condition. The enriched language environment of bilin-

guals and their need to manage two linguistic systems may explain the early latencies observed,

as these listeners become faster in detecting the characteristics of speech stimuli. Further, since

bilinguals manage two linguistic systems that can compete with each other (e.g., [93, 95, 96]),

these listeners are required to enhance their attention to focus on the target signals and to pre-

vent interference from those that are irrelevant [24, 25, 109–115]. Therefore, the earlier FFR

neural latencies observed in bilinguals may reflect their advantage in attentional control,

mainly as FFRs are known to be sensitive to the effects of these skills [24, 25, 116–119].

In the current study, no group differences were found in the amplitudes of the neural

response peaks or in the magnitude of the fundamental frequency. These findings are consis-

tent with a recent study [20] suggesting that the effects of bilingualism are not detectable by

measuring amplitude. However, in contrast to our results, other previous studies showed dif-

ferences between monolinguals and bilinguals in the magnitudes of F0 and suggested that

bilinguals encode F0 more robustly than monolinguals do (e.g., [24–26]). Several factors may

explain the inconsistent findings. Some can be related to methodological differences. Specifi-

cally, a longer syllable was used in previous studies than the one used in the current study (170

ms vs. 40 ms). Consequently, the characteristics of the stimulus differ. For example, in previous

studies, the 170 ms syllable consisted of a 50 ms formant transition and a 120 ms steady-state

portion. Consequently, the sustained vowel period in the 170 ms stimulus is likely to capture

subtle enhancements in the FFR. However, the shorter stimulus used in the current study may

have theoretically restricted us from obtaining group differences in the amplitudes of F0.
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Furthermore, it is possible that since noise diminished the entire response dramatically (Fig

1A versus 1B), subtle differences in amplitude measures, which are known to be more variable

and less stable compared to the latency measure [120], were not observed in the current analy-

sis. Taken together, our results do not rule out the possibility that bilinguals and monolinguals

differ in the amplitude aspect. Rather, they suggest that in this specific design, differences

might be confined to specific factors that should be examined in more detail.

Perceptual-physiological associations

Regarding perceptual-physiological associations, our results demonstrated that subcortical

processing played a role in the perceptual abilities of bilinguals. Our findings indicate that per-

ception is related to the degree of subcortical resilience to the disruption caused by background

noise. Specifically, in noise, increased brainstem resistance (i.e., fewer changes in F0 represen-

tation or fewer shifts in V latency) were related to better speech perception abilities among

bilinguals, as indicated by less deterioration in perception (Fig 3). Alternatively stated, bilin-

guals who exhibited more disruption of brainstem processing in noise had more perceptual

difficulties. These correlations further the understanding of the neural processes underlying

perception of speech among bilinguals (especially given that these correlations were not signif-

icant in the monolingual group) and suggest that subcortical processes could be one source

that explains inter-subject variability in daily challenging listening conditions.

The significant correlations observed among the bilingual listeners, who were more affected

perceptually by the detrimental effect of noise than their monolingual peers, suggest that the

brainstem processing (low-level information) may be exploited in conditions that are more

challenging for the individual. This suggestion corresponds with the Reverse Hierarchal The-

ory (RHT), which states that processing starts at high-level areas; however, when the task

demands increase, more reliance on lower levels is needed to search for more optimal repre-

sentation [121]. Also, the correlations found mainly among bilinguals suggest greater recruit-

ment of subcortical perceptual areas by these individuals, which aligns with the anterior-to-

posterior and subcortical shift (BAPSS) model [18, 122]. The BAPSS model posits that with

experience, bilinguals do not rely only on the typical regions during processing. Instead, they

may recruit other areas, such as automatic subcortical or posterior regions to manage the co-

activation and competition between languages.

The current correlations may be evidence of the interplay between central and peripheral

processes [123]. The literature has shown that FFRs are determined by peripheral processes

and affected by central processes [45, 124–127]. In the ascending track, better brainstem pro-

cessing–reflected in the current study as less susceptibility to the effects of noise–may provide

a good platform for higher cortical processing, which can improve perceptual performance in

noise [128–130]. In the opposite view of the descending path, the associations found in the

current study can also be explained by the corticofugal (top-down) system [43, 44, 46, 108,

121, 131–136] by which cortical processes that are critical for understanding distorted signals

[137–143] project backward to tune structures in the auditory periphery [131, 136, 144, 145],

which might enhance or modify features of the target speech subcortically. Consequently, asso-

ciations between perceptual performance and subcortical neural responses can also indirectly

reflect the effect of the auditory cortex. In this regard, previous studies have shown that bilin-

gual experience increases grey matter density in various cortex regions, including executive

control regions [146–149], which are essential in challenging listening conditions [150, 151].

Thus, it can be argued that bilinguals who tend to use more cortical resources in background

noise may have more efficient backward processes, and consequently, their brainstem

responses were found to be less susceptible to the effect of noise. Future studies that examine
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brainstem and cortical event-related potentials (simultaneously) and their relationship with

perceptual abilities could investigate the above assumptions and shed light on the interplay

between central and peripheral processes.

Within the bilingual group, the correlations found yielded interesting results. The latencies

of the subcortical neural response were linked more to bilinguals’ perceptual performance in

L2 and marginally in L1. At the same time, the encoding of the fundamental frequency was

correlated to their perceptual performance in L1. To the best of our knowledge, these correla-

tions are innovative and have not been reported to date. Still, they can be partially explained by

the results of Tremblay, Namjoshi [152], who demonstrated that language experience affects

listeners’ use of F0, a cue that is important for word segmentation and comprehension of sig-

nals masked by other interferences (e.g., [36, 37, 153]); in this case, the perception of speech

embedded in noise. Also, it can be argued that since bilinguals demonstrate differences in

high-level (i.e., cortical) processes in their two languages [7, 17, 61, 65, 66, 154–156], the back-

ward pathway that may modify features subcortically (consistent with the explanation of the

corticofugal effect discussed above) might also differ, leading to different perceptual-neural

correlations in bilinguals’ two languages. However, future studies should examine perceptual-

neural associations in other groups of bilinguals to shed light on the mechanism underlying

the current findings and better understand the variability in bilinguals’ L1 and L2 associations.

No correlations were found between subcortical processing and perceptual abilities in noise

among monolingual listeners in the current study. The changes in F0 amplitudes and the shifts

in the latency of V peak did not predict accuracy among monolingual listeners. These results

align with those of Yellamsetty and Bidelman [98], who showed that F0 amplitudes failed to

predict the accuracy of listeners’ identification, but contradict with others (e.g., [34, 76, 128])

who found a relationship between subcortical neural processing and perceptual performance

in noise among monolingual speakers. We suggest that the main reason for not finding a sig-

nificant perceptual-neural correlation among monolinguals in the current study is that noise

deteriorated their perception to a lesser extent compared to bilinguals. Consequently, it is

likely that the lexical access and perception occurred rapidly and automatically [157, 158], and

no reliance on lower levels was needed [113]. We hypothesize that a correlation would likely

be found when testing monolinguals with a more challenging noise condition that could pose

a more significant perceptual challenge, and consequently, more need for reliance on lower

levels. Accordingly, Song and colleagues [35] found a significant perceptual-neural correlation

in their monolingual sample. Their participants were much adversely affected by the addition

of noise (the highest accuracy obtained was 75%, and the averaged accuracy was 40.56%, both

lower than these of the current study). Nevertheless, this assumption needs to be tested in

future studies because additional methodological factors may explain the inconsistency

between the different studies. Among others, studies that found a significant correlation [34,

76, 128] used a 170 ms syllable, which differs from the one used in the current study.

Future directions, implications, and limitations

Our results demonstrate differences between monolinguals and bilinguals in auditory brain-

stem responses elicited by speech in noise, even in the selected sample of normal-hearing

young adults. This finding highlights the importance of considering an individual’s language

background when assessing brain processing and listening skills. Following the current find-

ings, we expect more pronounced differences in bilingual clinical populations with more defi-

cient perceptual abilities (for example, hearing-impaired individuals or older adults). Future

studies are needed to evaluate this issue. Further, by establishing relationships between brain-

stem processing and perception of speech in noise among bilinguals, the current study
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provides new insights into how bilingualism shapes the brain and the impact this has on every-

day listening situations. Our results can help determine which individuals may have a biologi-

cal signature for excessive difficulty in challenging listening conditions. These findings can aid

in the development of programs to help individuals predicted to encounter more difficulties in

challenging listening conditions. Perhaps bilinguals with a brainstem system that is more sus-

ceptible to noise effects could benefit from speech-in-noise training or from using assistive lis-

tening devices that enhance the signal-to-noise ratio in academic settings.

Future studies are needed to determine the generalizability of the findings while consider-

ing the current study’s limitations. In this study, perceptual and physiological stimuli were

administered differently (binaurally versus monaurally and in the presence of white noise ver-

sus babble noise). In the physiological part, we followed previous protocols that presented the

speech stimulus monaurally (e.g., [24, 25, 54, 58]). The monaural stimulation enables one ear

to be unoccluded, maximizing participants’ alertness and promoting stillness. In addition, the

use of a continuous, stable masker was preferred in the physiological part (similar to [20, 30,

159] using the 40 ms /da/] because we used a very short stimulus that made it difficult to com-

bine with a constantly changing masker. Therefore, a future study that uses the same stimula-

tion conditions in perceptual and neural measures is needed. Furthermore, as some

differences between our findings and previous ones have been suggested to be attributed to

using a shorter syllable, a follow-up study should examine the effects of stimulus duration and

characteristics on physiological results. Such a study is critical to examine whether physiologi-

cal differences observed depend on the characteristics of the speech being tested.

Conclusions

The current study addresses the subcortical neural aspects underlying speech perception in

noise among bilinguals. We provide evidence for differences between monolinguals and bilin-

guals in perceptual performance and auditory brainstem responses evoked by speech stimuli

presented in challenging listening conditions. The current results show that the susceptibility

of the auditory system at subcortical levels correlates with the ability of bilinguals to perceive

speech presented in noise and can predict which individuals may be more prone to the detri-

mental effect of noise. Implications of the current results were discussed, and future studies

were proposed.
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70. Abdi H. Bonferroni and Šidák corrections for multiple comparisons. Encyclopedia of measurement and

statistics. 2007; 3:103–107.

71. Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N. Aging affects neural precision of speech

encoding. Journal of Neuroscience. 2012; 32(41):14156–14164. https://doi.org/10.1523/JNEUROSCI.

2176-12.2012 PMID: 23055485

72. Coffey EB, Chepesiuk AM, Herholz SC, Baillet S, Zatorre RJ. Neural correlates of early sound encod-

ing and their relationship to speech-in-noise perception. Frontiers in neuroscience. 2017; 11:479.

https://doi.org/10.3389/fnins.2017.00479 PMID: 28890684

73. Du Y, Kong L, Wang Q, Wu X, Li L. Auditory frequency-following response: a neurophysiological mea-

sure for studying the “cocktail-party problem”. Neuroscience & Biobehavioral Reviews. 2011; 35

(10):2046–2057. https://doi.org/10.1016/j.neubiorev.2011.05.008 PMID: 21645541

74. Anderson S, Skoe E, Chandrasekaran B, Kraus N. Neural timing is linked to speech perception in

noise. Journal of Neuroscience. 2010; 30(14):4922–4926. https://doi.org/10.1523/JNEUROSCI.0107-

10.2010 PMID: 20371812

75. Anderson S, Kraus N. Sensory-cognitive interaction in the neural encoding of speech in noise: a

review. Journal of the American Academy of Audiology. 2010; 21(09):575–585. https://doi.org/10.

3766/jaaa.21.9.3 PMID: 21241645

76. Parbery-Clark A, Marmel F, Bair J, Kraus N. What subcortical–cortical relationships tell us about pro-

cessing speech in noise. European Journal of Neuroscience. 2011; 33(3):549–557. https://doi.org/10.

1111/j.1460-9568.2010.07546.x PMID: 21255123

77. Song JH, Nicol T, Kraus N. Test–retest reliability of the speech-evoked auditory brainstem response.

Clinical Neurophysiology. 2011; 122(2):346–355. https://doi.org/10.1016/j.clinph.2010.07.009 PMID:

20719558

78. Desjardins JL, Barraza EG, Orozco JA. Age-related changes in speech recognition performance in

Spanish–English bilinguals’ first and second languages. Journal of Speech, Language, and Hearing

Research. 2019; 62(7):2553–2563. https://doi.org/10.1044/2019_JSLHR-H-18-0435 PMID: 31251686

79. Garcia Lecumberri MLG, Cooke M, Cutler A. Non-native speech perception in adverse conditions: A

review. Speech communication. 2010; 52(11–12):864–886.

80. Bidelman GM, Dexter L. Bilinguals at the “cocktail party”: Dissociable neural activity in auditory–linguis-

tic brain regions reveals neurobiological basis for nonnative listeners’ speech-in-noise recognition defi-

cits. Brain and language. 2015; 143:32–41. https://doi.org/10.1016/j.bandl.2015.02.002 PMID:

25747886

81. Bradlow AR, Alexander JA. Semantic and phonetic enhancements for speech-in-noise recognition by

native and non-native listeners. The Journal of the Acoustical Society of America. 2007; 121(4):2339–

2349. https://doi.org/10.1121/1.2642103 PMID: 17471746

82. Meador D, Flege JE, MacKay IR. Factors affecting the recognition of words in a second language.

Bilingualism: Language and Cognition. 2000; 3(1):55–67.

83. Hurtig A, Keus van de Poll M, Pekkola EP, Hygge S, Ljung R, Sörqvist P. Children’s recall of words

spoken in their first and second language: effects of signal-to-noise ratio and reverberation time. Fron-

tiers in psychology. 2016; 6:2029. https://doi.org/10.3389/fpsyg.2015.02029 PMID: 26834665
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