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Abstract Liver metabolism follows diurnal fluctuations through the modulation of molecular

clock genes. Disruption of this molecular clock can result in metabolic disease but its potential

regulation by immune cells remains unexplored. Here, we demonstrated that in steady state,

neutrophils infiltrated the mouse liver following a circadian pattern and regulated hepatocyte clock-

genes by neutrophil elastase (NE) secretion. NE signals through c-Jun NH2-terminal kinase (JNK)

inhibiting fibroblast growth factor 21 (FGF21) and activating Bmal1 expression in the hepatocyte.

Interestingly, mice with neutropenia, defective neutrophil infiltration or lacking elastase were

protected against steatosis correlating with lower JNK activation, reduced Bmal1 and increased

FGF21 expression, together with decreased lipogenesis in the liver. Lastly, using a cohort of human

samples we found a direct correlation between JNK activation, NE levels and Bmal1 expression in

the liver. This study demonstrates that neutrophils contribute to the maintenance of daily hepatic

homeostasis through the regulation of the NE/JNK/Bmal1 axis.

Introduction
Circadian rhythms regulate several biological processes through internal molecular mechanisms

(Dibner et al., 2010) and the chronic perturbation of circadian rhythms is associated with the

appearance of metabolic syndrome (Kolla and Auger, 2011). This homeostasis is closely dependent

on the circadian system in the liver, which shows rhythmic expression of enzymes associated with

glucose and lipid metabolism (Haus and Halberg, 1966; North et al., 1981; Tahara and Shibata,

2016). Moreover, mice with mutations in clock genes encoding nuclear receptors have impaired glu-

cose and lipid metabolism and are susceptible to diet-induced obesity and metabolic dysfunction,
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consistent with the idea that these genes control hepatic metabolic homeostasis (Delezie et al.,

2012; Kudo et al., 2008; Lamia et al., 2008; Rey et al., 2011; Tong and Yin, 2013; Turek et al.,

2005; Yang et al., 2006). Besides, recent reports have shown that hepatic physiology follows a diur-

nal rhythm driven by clock genes, with expression of proteins involved in fatty acid synthesis higher

in the morning while those controlling fatty acid oxidation are higher at sunset (Toledo et al., 2018;

Zhou et al., 2015).

Blood leukocyte levels also oscillate diurnally, as does the release of hematopoietic stem cells

and progenitor cells from the bone marrow (BM) (Haus and Smolensky, 1999; Lucas et al., 2008;

Méndez-Ferrer et al., 2008) and their recruitment into tissues (Adrover et al., 2019; He et al.,

2018; Scheiermann et al., 2012). Oscillatory expression of clock genes in peripheral tissues is

largely tuned by the suprachiasmatic nucleus (Dibner et al., 2010; Druzd and Scheiermann, 2013;

Huang et al., 2011; Reppert and Weaver, 2002); however, the potential regulation of daily rhythms

of specific tissues by immune cells remains largely unexplored, both in steady state and during

inflammation. Although the molecular mechanisms linking circadian rhythms and metabolic disease

are largely unknown, several studies have demonstrated a strong association between leukocyte

activation and metabolic diseases (McNelis and Olefsky, 2014). A prime example is the BM, where

engulfment of infiltrating neutrophils by tissue-resident macrophages modulates the hematopoietic

niche (Casanova-Acebes et al., 2013).

The circadian clock is dysregulated by obesity (Kohsaka et al., 2007; Xu et al., 2014), and recent

studies suggest that liver leukocyte recruitment and migration show a circadian rhythm

(Scheiermann et al., 2012; Solt et al., 2012) whose alteration can result in steatosis (Solt et al.,

2012; Xu et al., 2014). Neutrophils are key factors in steatosis development (González-Terán et al.,

2016; Keller et al., 2009; Mansuy-Aubert et al., 2013; Nathan, 2006) and show diurnal oscillations

in their recruitment and migration to multiple tissues (Scheiermann et al., 2012; Solt et al., 2012).

Here, we demonstrate that circadian neutrophil infiltration into the liver controls the expression of

eLife digest Every day, the body’s biological processes work to an internal clock known as the

circadian rhythm. This rhythm is controlled by ‘clock genes’ that are switched on or off by daily

physical and environmental cues, such as changes in light levels. These daily rhythms are very finely

tuned, and disturbances can lead to serious health problems, such as diabetes or high blood

pressure.

The ability of the body to cycle through the circadian rhythm each day is heavily influenced by the

clock of one key organ: the liver. This organ plays a critical role in converting food and drink into

energy. There is evidence that neutrophils – white blood cells that protect the body by being the

first response to inflammation – can influence how the liver performs its role in obese people, by for

example, releasing a protein called elastase. Additionally, the levels of neutrophils circulating in the

blood change following a daily pattern. Crespo, González-Terán et al. wondered whether

neutrophils enter the liver at specific times of the day to control liver’s daily rhythm.

Crespo, González-Terán et al. revealed that neutrophils visit the liver in a pattern that peaks when

it gets light and dips when it gets dark by counting the number of neutrophils in the livers of mice at

different times of the day. During these visits, neutrophils secreted elastase, which activated a

protein called JNK in the cells of the mice’s liver. This subsequently blocked the activity of another

protein, FGF21, which led to the activation of the genes that allow cells to make fat molecules for

storage. JNK activation also switched on the clock gene, Bmal1, ultimately causing fat to build up in

the mice’s liver. Crespo, González-Terán et al. also found that, in samples from human livers, the

levels of elastase, the activity of JNK, and whether the Bmal1 gene was switched on were tightly

linked. This suggests that neutrophils may be controlling the liver’s rhythm in humans the same way

they do in mice.

Overall, this research shows that neutrophils can control and reset the liver’s daily rhythm using a

precisely co-ordinated series of molecular changes. These insights into the liver’s molecular clock

suggest that elastase, JNK and BmaI1 may represent new therapeutic targets for drugs or smart

medicines to treat metabolic diseases such as diabetes or high blood pressure.
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clock genes through the regulation of c-Jun NH2-terminal kinase (JNK) and the hepatokine fibroblast

growth factor 21 (FGF21), driving adaptation to daily metabolic rhythm.

Results

Rhythmic neutrophil infiltration into the liver modulates the expression
of hepatic clock genes
Virtually all cell types have an internal clock that controls their rhythmicity through the periodic

expression of clock genes (Robles et al., 2014; Tahara and Shibata, 2016). However, it is unknown

how these multiple cell rhythms are integrated. The liver is an essential metabolic organ that controls

body glucose and lipid homeostasis (Manieri and Sabio, 2015), and neutrophil infiltration alters its

function (González-Terán et al., 2016). We hypothesized that the metabolic cycles in the liver might

be entrained by rhythmic neutrophil infiltration. To test this, we harvested liver, BM, and blood from

C57BL6J mice at 4 hr intervals over a 24 hr period. Liver neutrophil infiltration showed a clear diurnal

pattern, with a peak at ZT2, coinciding with liver-driven lipogenesis in mice (Zhou et al., 2015), and

a nadir during the night, at ZT14 (Figure 1A), correlating with lipolysis (Zhou et al., 2015). These

oscillations corresponded directly to changes in neutrophil numbers in blood (Figure 1—figure sup-

plement 1A), suggesting that liver infiltration might result from higher neutrophil migration to the

liver. We first confirmed that neutrophils were infiltrated in the liver using 3D microscopy. According

to published data (Casanova-Acebes et al., 2018), infiltrated neutrophils presented an intrasinusoi-

dal distribution in the liver, different to that observed in the Kupffer cells population (Figure 1B and

Figure 1—figure supplement 1B). Then we evaluated whether myeloid chemokines could be

involved in circadian neutrophil recruitment into the liver. Analysis of liver lysates indicated that the

expression of the hepatocyte-derived neutrophil chemoattractant Cxcl1 (Su et al., 2018) was higher

at ZT2 than a ZT14. Moreover, mRNA of Cxcl1 in liver samples showed the same oscillation pattern

than infiltrated neutrophils, suggesting that this chemokine may be important in the regulation of

the neutrophil diurnal cycle (Figure 1—figure supplement 1C).

The infiltration pattern correlated with liver expression levels of the clock-gene Bmal1, peaking at

ZT2 and bottoming at ZT14 (Figure 1C). Infiltration also correlated inversely with the expression of

Nr1d2 (encoding Rev-erb b), Per2, and Cry2 (Figure 1C), which are important proteins in the control

of circadian rhythms (Reppert and Weaver, 2002), consistent with the feedback loop that controls

their expression. Bmal1 is thought to induce lipogenesis (Zhang et al., 2014), whereas Nr1d2 con-

trols lipid metabolism and its reduced expression promotes lipogenesis and steatosis (Delezie et al.,

2012; Solt et al., 2012). In agreement with these studies, liver triglycerides were higher at ZT2 than

at ZT14 (Figure 1D).

Our results show a correlation between neutrophil infiltration, hepatocyte Bmal1 expression, and

lipid metabolism regulation, raising the possibility that neutrophils signal to hepatocytes to modu-

late the expression of circadian genes. Exposure of mouse hepatocytes in vitro to freshly isolated

neutrophils increased hepatocyte expression of the clock genes Bmal1 and Clock. In contrast, no

effect was observed upon exposure to T or B lymphocytes, or macrophages, suggesting the exis-

tence of a neutrophil-to-hepatocyte communication that controls hepatocyte clock-gene expression

(Figure 1E and Figure 1—figure supplement 1D).

We then investigated whether neutrophil elastase (NE), a proteolytic enzyme reported to regulate

liver metabolism, could regulate hepatocyte clock genes (Mansuy-Aubert et al., 2013;

Talukdar et al., 2012). Exposure to elastase reproduced the same increase in hepatocyte Bmal1 and

Clock expression in contrast with another protease that did not affect Bmal1 expression (Figure 1F

and Figure 1—figure supplement 1D).

Next, neutrophil-mediated regulation of liver clock-gene expression in vivo was investigated using

a previously characterized genetic model of neutrophil deficiency (Dzhagalov et al., 2007;

Steimer et al., 2009; Figure 1—figure supplement 1E,F and Figure 1—figure supplement 2A–C).

Low hepatic neutrophil infiltration in neutropenic mice correlated with reduced expression of Bmal1

and Clock (Figure 1G) and increased expression of Cry2 and Per2 at ZT2 (Figure 1G). These

changes in clock-gene expression were accompanied by lower liver triglyceride levels (Figure 1H).

Furthermore, lack of neutrophils perturbed the diurnal rhythmicity in Bmal1, Clock, and Per2 expres-

sion in the liver without affecting clock genes in other organs such as the lung, in which there is no
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Figure 1. Neutrophil infiltration into the liver controls hepatic clock-gene expression. (A) Flow cytometry analysis of the CD11b+Ly6G+ liver myeloid

subset, isolated from C57BL6J mice at the indicated ZTs. Left, CD11b+Ly6G+ liver myeloid subset analyzed at 6 hr intervals and normalized by the

tissue weight. Right, percentage of CD11b+Ly6G+ population analyzed at 4 hr intervals and normalized to ZT2 (n = 5). (B) Representative 3-D image of

liver section showing the distribution on infiltrated neutrophils. Livers were stained with anti-S100A9 (Mrp14) (red) and vessels were stained with anti-

Figure 1 continued on next page
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correlation between the peak of neutrophil infiltration and Bmal1 expression (Figure 1—figure sup-

plement 2D,E). Our results thus indicate that neutrophils might specifically control the expression of

hepatocyte circadian clock genes in steady state.

Disruption of daily neutrophil infiltration in the liver affects hepatocyte
molecular clock and metabolism
Chronic jet lag alters liver circadian genes and disrupts liver metabolism (Kettner et al., 2016). Anal-

ysis of a mouse model of jet lag revealed complete disruption of the circadian liver neutrophil infil-

tration with increased hepatic neutrophil infiltration even at ZT14 (Figure 2A). Abolition of rhythmic

neutrophil hepatic infiltration under jet lag correlated with increased steatosis and high levels of liver

triglycerides (Figure 2B). To evaluate whether the metabolic effect of circadian perturbation was

caused by the increased neutrophil infiltration, we exposed neutropenic and control mice to the jet

lag protocol (Figure 2—figure supplement 1A,B). Jet lag-induced steatosis was less severe in neu-

tropenic mice (Figure 2C), and disruption of diurnal liver expression of Bmal1 detected in control

jet-lagged mice was partially ablated in neutropenic mice (Figure 2D). Similar results were also

observed in mice with impaired neutrophil migration such as Cxcr2MRP8-KO BM transplanted mice

(Eash et al., 2010; Mei et al., 2012) and p38g/dLyzs-KO mice (González-Terán et al., 2016). In both

models, the reduction of neutrophil infiltration correlated with decreased levels of liver Bmal1

expression and protection from jet lag-induced steatosis (Figure 2—figure supplement 1C–G).

These results are consistent with the role of neutrophils in the control of liver clock genes.

Inflammation plays a key role in the pathogenesis of non-alcoholic fatty liver disease

(Tiniakos et al., 2010) and the development of hepatic steatosis is associated with increased liver

infiltration by myeloid cells, particularly neutrophils (González-Terán et al., 2016; Mansuy-

Aubert et al., 2013; Talukdar et al., 2012; Tiniakos et al., 2010). Two widely used mouse models

of hepatic steatosis, high-fat diet (HFD) and methionine-choline-deficient (MCD) diet, increased liver

neutrophil infiltration in WT mice at ZT2, ZT14, and ZT18 (Figure 2E,F). Consistent with a neutro-

phil-to-hepatocyte communication in the regulation of hepatocyte clock genes, the MCD diet

enhanced Bmal1 expression and inhibited Cry2 and Per2 expression in control mice, but not in neu-

tropenic mice at ZT2 (Figure 2G). Altered liver clock-gene regulation in neutropenic mice was asso-

ciated with protection against steatosis and lower liver triglycerides (Figure 2H). To confirm the role

of neutrophils in modulating liver clock genes, we depleted neutrophils by injecting anti-Ly6G anti-

body into MCD diet-fed mice (González-Terán et al., 2016). Anti-Ly6G administration for 7 days

reduced circulating neutrophil levels without affecting monocytes (Figure 2—figure supplement

2A,B), and treatment for 21 days markedly decreased hepatic diurnal Bmal1 and Clock expression,

increased expression of Cry2, and Per2 (Figure 2—figure supplement 2C) and consequently

reduced steatosis (González-Terán et al., 2016).

Figure 1 continued

CD31 and anti-endomucin (grey). Sizes of the liver sections are 510 x 510 x 28 mm and 160 x 160 x 28 mm, respectively. (C) qRT-PCR analysis of circadian

clock-gene and nuclear-receptor mRNA expression in livers from C57BL6J mice at the indicated ZTs (n = 5). (D) Liver triglycerides and oil-red-stained

liver sections prepared from C57BL6J mice at ZT2 and ZT14. Scale bar, 50 mm (n = 5). (E) qRT-PCR analysis of clock-gene mRNA in hepatocyte cultures

exposed to freshly isolated FMLP-activated neutrophils (n = 4-6 wells of 3 independent experiments). (F) qRT-PCR analysis of clock-gene mRNA in

hepatocyte cultures treated with 5 nM elastase (n = 3-4 wells of 3 independent experiments). (G) qRT-PCR analysis of clock-gene and nuclear-receptor

mRNA expression in livers from control mice (Mrp8-Cre) and neutropenic mice (MCL1Mrp8-KO) sacrificed at ZT2 (n = 5). (H) Hepatic triglycerides

detected in livers from control mice (Mrp8-Cre) and neutropenic mice (MCL1Mrp8-KO) at ZT2 (n = 5). Data are means ± SEM from at least 2 independent

experiments. *p<0.05; **p<0.01; ***p<0.005 (A, left panel) One-way ANOVA with Tukey’s post hoc test. (A, right panel) Kruskal-Wallis test with Dunn’s

post hoc test. (C) One-way ANOVA with Tukey’s post hoc test or Kruskal-Wallis test with Dunn’s post hoc test. (D to H) t-test or Welch’s test. ZT2 point

is double plotted to facilitate viewing.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Raw data and statistical test.

Figure supplement 1. Neutrophils follow a circadian rhythm.

Figure supplement 1—source data 1. Raw data and statistical test.

Figure supplement 2. Neutrophil deficiency alters clock-gene expression.

Figure supplement 2—source data 1. Raw data and statistical test.
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Figure 2. Increased hepatic neutrophil infiltration alters clock-genes expression and augments triglyceride content in the liver. (A–D) Control (Lyzs-Cre)

(A–B) and control and neutropenic (MCL1Lyzs-KO) mice (C–D) were housed for 3 weeks with a normal 12 hr: 12 hr light/dark cycle (Normal Cycle) or with

the dark period extended by 12 hr every 5 days (JetLag). Samples were obtained at the indicated ZTs. (A) Left, flow cytometry analysis of the

CD11b+Ly6G+ liver myeloid subset. Data represents the percentage CD11b+Ly6G+ normalized to Normal Cycle ZT2. Right, circulating neutrophils in

whole blood. (n = 5-8). (B) Liver triglycerides and representative oil-red-stained liver sections at ZT14. Scale bar, 50 mm (n = 9-10). (C) Hepatic

triglyceride content analyzed at 6 hr intervals, and representative oil-red-stained liver sections at ZT14. Scale bar, 50 mm (n = 4-6). (D) qRT-PCR analysis

of Bmal1 mRNA in livers. (n = 5-8). (E) Flow cytometry analysis of the CD11b+Ly6G+ liver myeloid subset isolated at 6 hr intervals from C57BL6J mice

fed a ND, a HFD (8 weeks) or a MCD (3 weeks). The chart shows the CD11b+Ly6G+ population as a percentage of the total intrahepatic CD11b+

leukocyte population normalized to ND group at ZT2 (n = 5 to 10). (F–I) Control mice (Lyzs-Cre) and neutropenic mice (MCL1Lyzs-KO) or p38g/dLyzs-KO

were fed a ND or the MCD diet for 3 weeks and sacrificed at ZT2. (F) Representative images of the infiltration of neutrophils in the liver stained with

anti-Mrp14 (blue) and anti-NE (red); nuclei with Sytox Green. Scale bar, 50 mm (Top) and 25 mm (Bottom). (G) qRT-PCR analysis of clock-gene expression

in livers (n = 6). (H) Liver triglycerides and representative oil-red-stained liver sections. Scale bar, 50 mm (n = 7-6). (I) qRT-PCR analysis of clock genes in

livers at ZT2 (n = 9-17). Data are means ± SEM from at least two independent experiments. *p<0.05; **p<0.01; ***p<0.005 (A to D) t-test or Welch’s

test. (E) Two-way ANOVA with Fisher’s post hoc test; p<0.05 ND vs HFD; p<0.0001 ND vs MCD. *p<0.05; ***p<0.005 (G to I) t-test or Welch’s test. ZT2

point is double plotted to facilitate viewing.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw data and statistical test.

Figure supplement 1. Defective neutrophil migration to the liver alters hepatic clock- gene expression and triglyceride content.

Figure supplement 1—source data 1. Raw data and statistical test.

Figure supplement 2. Neutrophil depletion alters hepatic clock-gene expression.

Figure supplement 2—source data 1. Raw data and statistical test.

Figure supplement 2—source data 2. Raw data and statistical test.
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To further support the role of neutrophil liver infiltration in the regulation of liver clock genes and

hepatic lipogenesis during diet-induced steatosis, we leveraged a mouse model (p38g/dLyzs-KO) that

exhibits deficient neutrophil migration and subsequently, reduced liver neutrophil infiltration after

MCD diet (González-Terán et al., 2016). Compared with diet-matched control (Lyzs-Cre) mice,

MCD-diet-fed p38g/dLyzs-KO mice showed hepatic down-regulation of Bmal1, which was associated

with higher expression of Cry2, and Per2 (Figure 2I). These results suggest that the reduced neutro-

phil infiltration in mice lacking myeloid p38g/d expression is responsible for the altered expression of

circadian clock genes. Overall, these findings strongly support that neutrophil infiltration modulates

clock-gene expression in the liver, with downstream effects on liver metabolism.

Regulation of daily hepatic metabolism by neutrophils through JNK-
FGF21 axis
It has been suggested that JNK activation in the liver may be regulated in a circadian manner with a

peak at noon (Robles et al., 2014). To evaluate whether neutrophils might mediate this diurnal regu-

lation of JNK, we analyzed JNK activation in neutropenic mice. Lack of neutrophils was associated

with lower liver expression and activation of JNK, lower activation of the JNK downstream effector

c-Jun, and lower expression of acetyl-CoA carboxylase (Acaca), a key enzyme in metabolic regulation

(acetyl-CoA carboxylase; ACC) that mediates inhibition of beta-oxidation and activation of lipid bio-

synthesis (Figure 3A and Figure 3—figure supplement 1A). Similar results were found in p38g/dLyzs-

KO mice, in which reduced liver neutrophil infiltration was associated with decreased JNK phosphory-

lation and ACC protein levels (Figure 3B and Figure 3—figure supplement 1B). Moreover, neutro-

phil-treated hepatocytes showed increased JNK activation together with increased levels of ACC

expression (Figure 3—figure supplement 1C). NE represents a potential mediator of this neutrophil

function because elastase-treated hepatocytes also showed higher JNK activation, suggesting that

this protease modulates the expression of the clock genes through the JNK signaling pathways

(Figure 3C and Figure 3—figure supplement 1D). This JNK activation was accompanied by

increased Bmal1 expression (Figure 3D), indicating that neutrophils altered liver clock-gene expres-

sion through the elastase-JNK pathway.

Our results suggest that neutrophil-mediated JNK activation might modulate hepatocyte clock

genes and metabolism through the regulation of ACC. Supporting this hypothesis, specific JNK

depletion in hepatocytes downregulated Bmal1, Clock, and Acaca compared to Alb-Cre (Figure 3E

and Figure 3—figure supplement 1E). According to these results, JNK inhibition reduced the

expression of Bmal1, Clock and Acaca in WT liver but not in neutropenic mice (Figure 3—figure

supplement 1F,G). These data strongly suggest that JNK activation caused by neutrophil infiltration

modulates clock genes and daily metabolism in hepatocytes.

JNK is an important modulator of the expression of the hepatokine circadian regulator FGF21

(Vernia et al., 2014), which controls glucose and lipid metabolism (Fisher and Maratos-Flier, 2013;

Li et al., 2013; Potthoff et al., 2012). Mice lacking JNK in hepatocytes had higher FGF21 mRNA

expression (Figure 3E). In concordance with high JNK activation, FGF21 expression was reduced in

neutrophil-exposed hepatocytes (Figure 3—figure supplement 1H). Moreover, neutropenic and

p38g/dLyzs-KO mice showed increased FGF21 expression (Figure 3F and Figure 3—figure supple-

ment 1I,J), which was consistent with the reduced hepatocyte JNK activation in these mice.

To further define the role of FGF21 in the neutrophil-mediated regulation of liver metabolism, we

suppressed FGF21 expression using two independent lentiviral shRNA vectors (Figure 3G and Fig-

ure 3—figure supplement 1K). The protection of p38g/dLyzs-KO mice against MCD-diet-induced

alterations was abrogated by shFGF21 and these mice developed steatosis with an elevated hepatic

triglyceride content (Figure 3H,I). These data further supported the idea that neutrophil infiltration

controls liver metabolism through the regulation of FGF21 expression.

Neutrophil elastase deficiency affects the expression patterns of clock
genes and lipid metabolism
To formally confirm the involvement of NE in circadian clock alteration, we first evaluated the diurnal

oscillation of NE levels in liver from WT mice fed a normal diet (ND). According to infiltration pattern

of neutrophils in the liver (Figure 1A), we found higher NE levels at ZT2 than at ZT14. (Figure 4A).

Next, circadian clock-gene expression in NE-/- mice revealed lower Bmal1 and elevated Per2 and
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Figure 3. Diurnal regulation of liver metabolism involves neutrophil-mediated regulation of JNK and the hepatokine FGF21. Immunoblot analysis of

JNK content and activation at ZT2 in liver extracts prepared from control (Lyzs-Cre) and neutropenic (MCL1Lyzs-KO) mice fed a MCD diet for 3 weeks (A)

or Lyzs-Cre and p38g/dLyzs-KO mice after 3 weeks of MCD diet (B). Immunoblot analysis of JNK content and activation (C) and Bmal1 RNA expression (D)

in hepatocyte cultures exposed to NE for 2 hr (n = 14 wells of 3 independent experiments). Immunoblot quantification is shown in Figure 3—figure

Figure 3 continued on next page
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Cry2 expression, compared to control mice (Figure 4B), which mimicked the behavior of neutrope-

nic mice. In addition, NE-/- mice presented lower respiratory quotient during the lights-on period

than WT mice, indicating that these mice have increased fat utilization as a source of energy

(Figure 4C), supporting the data that reduced liver-neutrophil infiltration results in higher lipid oxi-

dation. Interestingly, when fed MCD or HFD diet, NE-/- mice were protected against steatosis

(Figure 4D,E and Figure 4—figure supplement 1A,B), presented lower JNK activation, and

expressed less ACC than control mice (Figure 4F,G and Figure 4—figure supplement 1D). Besides,

NE-/- mice were protected against alterations in clock-gene expression induced by MCD diet, pre-

senting lower expression of Bmal1 and higher of Cry2 and Per2 comparing to control mice at ZT2

(Figure 4H). Furthermore, under HFD, NE-/- mice were also refractory to these changes as these

mice maintained a pattern of clock-gene expression similar to control mice in ND (Figure 4—figure

supplement 1E).

To formally test a direct contribution of NE in the regulation of hepatic clock-gene expression

and liver metabolism, we infused WT or NE-/- neutrophils into neutropenic mice under the jet lag

protocol (Figure 5A). The infusion of WT neutrophils was able to increase Bmal1 expression in the

liver after jet lag, while neutropenic mice infused with NE-/- neutrophils presented the same levels of

Bmal1 than non-infused neutropenic mice (Figure 5B). In addition, while infusion of neutropenic

mice with WT neutrophils increased steatosis, neutropenic mice infused with NE-/- neutrophils pre-

sented the same levels of steatosis than control neutropenic mice (Figure 5C,D). All these data indi-

cate that diet or jet-lag -induced hepatic infiltration of neutrophils results in dysregulation of the

liver clock, and the lack of NE is enough to protect mice against these alterations.

Finally, to evaluate the translational relevance of these findings for human physiology we quanti-

fied in human livers the expression levels for the genes encoding NE, JUN (as an indicator of JNK

activation) and Bmal. Our results suggest that the levels of ELANE expression directly correlate with

BMAL1 and JUN mRNA in livers from a human cohort (Figure 5E). These correlations reinforce the

idea that a rhythmic neutrophil infiltration in the liver controls the expression of clock genes through

the JNK pathway activation and could be a target for therapeutic intervention during non-alcoholic

fatty liver disease.

Discussion
Our analysis demonstrates that neutrophils control clock genes in the liver and that reduced neutro-

phil infiltration protects against jet lag and diet-induced liver steatosis by altering the expression of

these temporal regulators. These findings establish neutrophils as unexpected players in the regula-

tion of daily hepatic metabolism. Our results also demonstrate that at least part of this neutrophil-

induced clock modulation is mediated by elastase. These results agree with previous data showing

that NE mediates the deleterious effects of neutrophils on liver metabolism and that mice lacking

NE are protected against diet-induced steatosis (Mansuy-Aubert et al., 2013; Talukdar et al.,

2012). The molecular mechanism underlying this regulation involves neutrophil NE that induces acti-

vation of JNK and consequently inhibits the production of the hepatokine FGF21. The JNK pathway

Figure 3 continued

supplement 1D (E) qRT-PCR analysis of clock genes and Fgf21 in livers from Alb-Cre, and JNK1/2Alb-KO mice after 3 weeks of MCD diet at ZT2 (n = 9-

12). (F) Immunoblot analysis of FGF21 content in liver extracts prepared from control (Lyzs-Cre) and neutropenic (MCL1Lyzs-KO) mice, or from Lyzs-Cre,

and p38g/dLyzs-KO mice after 3 weeks of MCD diet sacrificed at ZT2. Immunoblot quantification is shown in Figure 3—figure supplement 1I,J. (G–I)

Lyzs-Cre and p38g/dLyzs-KO mice were injected with 2 shRNA independent clones targeting FGF21. Seven days after infection, mice were placed on the

MCD diet and sacrificed after 3 weeks at ZT2. (G) Immunoblot analysis of FGF21 content in liver extracts prepared from Lyzs-Cre, p38g/dLyzs-KO, and

p38g/dLyzs-KO mice infected with FGF21 shRNA. Immunoblot quantification is shown in Figure 3—figure supplement 1K. (H) Representative H&E-

stained liver sections. Scale bar, 50 mm. (I) Hepatic triglyceride content at the end of the treatment period (n = 8-10). Data are means ± SEM from at

least 2 independent experiments. *p<0.05; **p<0.01; ***p<0.005 (A, B, D and E) t-test or Welch’s test. (I) One-way ANOVA with Bonferroni post hoc

test or t-test.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Raw data and statistical test.

Figure supplement 1. Neutrophils regulate hepatic metabolism and clock genes through JNK and FGF21.

Figure supplement 1—source data 1. Raw data and statistical test.
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Figure 4. Elastase controls liver clock-gene expression modulating JNK activation. (A) Extracellular NE levels in livers from WT mice at ZT2 and ZT14.

(B) qRT-PCR analysis of clock-genes and nuclear-receptor mRNA expression in livers from WT and NE KO mice (NE-/-) at ZT2 (n = 5–6). (C) Respiratory

exchange ratio of WT and NE-/- mice fed with ND. Results are from the lights-on period (n = 9). (D–H) WT and NE-/- mice were fed a MCD diet for 3

weeks and sacrificed at the indicated time. (D) Liver triglycerides at the end of the diet period. (E) Representative oil-red-stained liver sections. Scale

Figure 4 continued on next page

Crespo, Gonzalez-Teran, et al. eLife 2020;9:e59258. DOI: https://doi.org/10.7554/eLife.59258 10 of 25

Research article Cell Biology Immunology and Inflammation

https://doi.org/10.7554/eLife.59258


is an important modulator of liver metabolism, and lack of JNK1 and JNK2 in hepatocytes protects

against steatosis (Manieri and Sabio, 2015). Here, we also demonstrate that JNK also regulates

hepatocyte clock genes and, therefore, modulates diurnal adaptation of liver metabolism.

Recently published data have demonstrated that lipogenesis is increased in the light phase, in

agreement with our analysis (Guan et al., 2018). We show that neutrophil infiltration causes JNK

activation down-stream of elastase secretion, a time-dependent process. Indeed, phosphoproteomic

analysis of the hepatic phosphorylation network identifies JNK as a key signaling enzyme with peak

activation at ZT6 (Robles et al., 2017) immediately prior to the peak of lipogenic gene expression

(Guan et al., 2018). Our results suggest that neutrophils induce an accumulative activation of JNK

with a peak during the day that would control the lipogenic program.

Recent evidence established that the metabolic effects of JNK in the liver are mediated by FGF21

(Vernia et al., 2016; Vernia et al., 2014). Our results now show that liver FGF21 expression can be

modulated through the control of JNK by neutrophils. Reduction of FGF21 by shRNA reverted the

protective effect and metabolic changes induced by reduced neutrophil infiltration. In conclusion,

our results show that the diurnal oscillating migratory properties of neutrophils regulate liver func-

tion in a manner that preserves daily metabolic rhythms, and that disturbance of this rhythmicity can

cause disease. These results might imply a novel mechanism of action for the potential use of clock-

modulating small molecules in liver health.

Materials and methods

Study population
For the analysis of human liver mRNA levels, individuals were recruited among patients who under-

went laparoscopic cholecystectomy for gallstone disease. The study was approved by the Ethics

Committee of the University Hospital of Salamanca (Spain), and all subjects provided written

informed consent to participate. Patients were excluded if they had a history of alcohol use disorders

or excessive alcohol consumption, chronic hepatitis C or B, or body mass index �35. Baseline char-

acteristics of these groups are listed in Figure 5—source data 1.

Animal models
Neutropenic mice were generated with MCL1 (B6.129-Mcl1tm3Sjk/J) crossed with B6.Cg-Tg

(S100A8-Cre,-EGFP)1Ilw/J mice or B6.129P2-Lyz2tm1(cre)Ifo/J mice. Mice deficient in NE, with com-

pound JNK1/2 deficiency in hepatocytes, with Cxcr2 deficiency in neutrophils or with p38g/d defi-

ciency in myeloid compartment have been described (Belaaouaj et al., 1998; Das et al., 2011;

Das et al., 2009; González-Terán et al., 2016) All mice were backcrossed for 10 generations to the

C57BL/6J background (Jackson Laboratory). Genotypes were confirmed by PCR analysis of genomic

DNA.

Mice were housed under a 12 hr light:12 hr dark cycle (Light is on at Zeitgeber Time ZT0 and off

at ZT12). For jet lag experiments, the 12 hr:12 hr dark/light cycle was disrupted by extending the

dark cycle 12 hr every 5 days over 3 weeks (Kettner et al., 2016). Cxcr2MRP8-KO chimeras were gen-

erated by exposing WT recipient mice to 2 doses of ionizing radiation (625 Gy) and reconstituting

them with 5 � 106 donor BM (Cxcr2MRP8-KO) cells injected into the tail vein.

Mice were fed a methionine-choline-deficient (MCD) diet for 3 weeks or a high-fat diet (HFD) for

8 weeks (Research Diets Inc). For neutrophil depletion, mice mini-osmotic pumps (Alzet) were

implanted with anti-Ly6G antibody or saline (0.4 mg/kg per day, 21 days). For JNK inhibition

Figure 4 continued

bar, 50 mm (n = 10). (F) Immunoblot analysis and quantifications of JNK content and activation in liver extracts prepared from WT and NE-/-. (G)

Immunoblot analysis and quantification of ACC content in liver extracts from WT and NE-/- mice. (H) qRT-PCR analysis of clock-genes and nuclear-

receptor mRNA expression in livers from WT and NE-/- mice at ZT2 and ZT14 (n = 7–8). Data are means ± SEM from at least two independent

experiments. *p<0.05; **p<0.01; ***p<0.005 (A to G) t-test or Welch’s test. (H) One-way ANOVA with to Tukey’s post hoc test, t-test or Welch’s test.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Raw data and statistical test.

Figure supplement 1. Neutrophil elastase regulates daily hepatic metabolism through JNK.
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Figure 5. Neutrophil elastase reverses neutropenic mice phenotype through regulation of daily hepatic metabolism. (A–D) Neutropenic (MCL1Lyzs-KO)

mice were housed for 2 weeks with the dark period extended by 12 hr every 5 days (JetLag). Mice were infused with purified WT or NE-/- neutrophils.

Samples were obtained at ZT14. (A) Picture describing the neutrophil infusion schedule during the JetLag protocol. (B) qRT-PCR analysis of Bmal1

mRNA in livers. (C) Liver triglycerides and (D) representative oil-red-stained liver sections. Scale bar, 50 mm (n = 6-7). Data are means ± SEM. *p<0.05;

Figure 5 continued on next page
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experiments, mice were intraperitoneally injected with SP600125 (15 mg/kg) (Santa Cruz Biotechnol-

ogy) at ZT0. For neutrophil infusion experiments, mice were intravenously injected with 3 � 106 WT

or NE-/- purified neutrophils each 3–4 days. Neutrophils were isolated from BM using biotinylated

anti-Ly6G antibody (Clone:1A8) and streptavidin-labeled magnetic microbeads (Miltenyi Biotec).

All animal procedures conformed to EU Directive 86/609/EEC and Recommendation 2007/526/

EC regarding the protection of animals used for experimental and other scientific purposes, enacted

under Spanish law 1201/2005.

Cell cultures
Hepatocytes were isolated from adult females by collagenase liver perfusion and cells were filtered

through a 70 mm strainer. Hepatocytes pelleted from centrifuged Percoll gradients were plated at 4

� 105 cells/well on 6-well plates coated with collagen type one and incubated at 37˚C. After 24 hr,

cells were treated with 0.5 mM palmitate (Sigma-Aldrich) for 6 hr and then exposed for 1 hr to

freshly neutrophils (2 � 106 cells/well) in the presence of 1 mM FMLP (Sigma-Aldrich). Neutrophils

were isolated from BM as described above. For some experiments, neutrophils were sorted purified

form the BM using an anti-Ly6G antibody (Clone: 1A8). T and B lymphocytes were sorted purified

from spleens using anti-CD3 (Clone: 145–2 C11) and anti-B220 (Clone: RA3-6B2), and bone marrow

macrophages (BMDM) were differentiated as previously described (González-Terán et al., 2013).

All antibodies were purchased from BD Pharmingen. Alternatively, hepatocytes were exposed 2 hr

to 5 nM NE (R and D Systems) or 0.5 mg/mL of collagenase A (Roche) after palmitate treatment.

Isolation of liver-infiltrating leukocytes
Mice were perfused with 20 mL of PBS and livers were collected and dissociated. Cell suspension

was passed through a 70 mm strainer and centrifuged twice at 50 xg for 2 min to discard the liver

parenchyma. For some experiments, livers were incubated for 15 min with 1 mg/mL Collagenase A

(Roche) and 2 U/mL DNase (Sigma) at 37˚C, and lungs were incubated for 25 min with 0,25 mg/ml

Liberase TL (Sigma) and 5 U/mL DNase (Sigma) at 37˚C Leukocyte fraction was collected and stained

with anti-CD45 (Clone: 30-F11), from Invitrogen, anti-CD11b (Clone: M1/70), anti-Ly6G (Clone: 1A8)

or anti-Ly6C/G (Clone: RB6-8C5), from BD Pharmingen, and alternatively, with anti-F4/80 (Clone:

BM8), from Invitrogen, and Goat anti-Clec4F from R and D Systems and conjugated with anti-goat

Alexa 647. Cells were sorted on a FACSAria to >95% purity. Flow cytometry experiments were per-

formed with a FACScan cytofluorometer (FACS Canto BD), and data were analyzed with FlowJo

software.

Lentivirus vector production
Transient calcium phosphate transfection of HEK-293 cells (#CRL-1573, ATCC) was performed with

the pGIPZ empty or pGIPZ.shFGF21 vector (V3LMM_430499 and V3LMM_430501, from Dharmacon)

together with pD8.9 and pVSV-G. The supernatants were collected, centrifuged (700 xg, 4˚C, 10 min)

and concentrated (165x) by ultracentrifugation for 2 hr at 121,986 xg at 4˚C (Ultraclear Tubes, SW28

rotor and Optima L-100 XP Ultracentrifuge; Beckman). Mice received tail-vein injections of 200 ml of

lentiviral particles.

RNA analysis
Expression of mRNA was examined by qRT-PCR using a 7900 Fast Real Time thermocycler and Fast

Sybr Green assays (Applied Biosystems). Relative mRNA expression was normalized to Gapdh and

Actb mRNA. The primers used were as follows: Actb (F: GGCTGTATTCCCCTCCATCG; R: CCAG

Figure 5 continued

t-test. (E) Correlation between mRNA levels of BMAL1 and ELANE (r = 0.6141; p = 0.0052) or JUN and ELANE (r = 0.7362; p = 0.001105) in human

livers. The mRNA levels of JUN, BMAL1 and ELANE were determined by qRT-PCR. Linear relationships between variables were tested using Pearson’s

correlation coefficient (n = 23). (F) Circadian neutrophil infiltration regulates hepatic metabolism through elastase, JNK and FGF21. Data are means ±

SEM. *p< 0.05; **p< 0.01; (B) One-way ANOVA with Tukey’s pots hoc test. (C) t-test or Welch’s test.

The online version of this article includes the following source data for figure 5:

Source data 1. Baseline characteristics of the human cohort.
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TTGGTAACAATGCCATGT); Gapdh (F: TGAAGCAGGCATCTGAGGG; R: CGAAGGTGGAAGAG

TGGGA); Clock (F: AGAACTTGGCATTGAAGAGTCTC; R: GTCAGACCCAGAATCTTGGCT); Bmal1

(F: TGACCCTCATGGAAGGTTAGAA; R: GGACATTGCATTGCATGTTGG); Nr1d2 (F: CAGACACTTC

TTAAAGCGGCACTG; R: GGAGTTCATGCTTGTGAAGGCTGT); Cry2 (F: CACTGGTTCCGCAAAG-

GACTA; R: CCACGGGTCGAGGATGTAG); Per2 (F: GAAAGCTGTCACCACCATAGAA; R: AAC

TCGCACTTCCTTTTCAGG); Acaca (F: GATGAACCATCTCCGTTGGC; R: GACCCAATTATGAA

TCGGGAGTG); Fgf21 (F: CTGCTGGGGGTCTACCAAG; R: CTGCGCCTACCACTGTTCC); Mip1a (F:

TTCTCTGTACCATGACACTCTGC; R: CGTGGAATCTTCCGGCTGTAG); Mip2 (F: CCAACCAC-

CAGGCTACAGG; R: GCGTCACACTCAAGCTCTG); KC (F: CTGGGATTCACCTCAAGAACATC; R:

CAGGGTCAAGGCAAGCCTC); Sdf-1 (F: GCTCTGCATCAGTGACGGTA; R: ATCTGAAGGGCACAG

TTTGG); Elane (F: ATTTCCGGTCAGTGCAGGTAGT; R: GGTCAAAGCCATTCTCGAAGAT); GAPDH

(F: CCATGAGAAGTATGACAACAGCC; R: GGGTGCTAAGCAGTTGGTG); ELANE (F: TCCACGGAA

TTGCCTCCTTC; R: CCTCGGAGCGTTGGATGATA); BMAL1 (F: GCCGAATGATTGCTGAGG; R:

CACTGGAAGGAATGTCTGG); JUN (F: GGATCAAGGCGGAGAGGAAG; R: GCGTTAGCATGAG

TTGGCAC).

Measurement of hepatic triglycerides
Lipids were extracted from 25 mg of liver in isopropanol (50 mg/mL) and centrifuged (15 min 9500

xg 4˚C). Triglycerides were detected in the supernatant (Sigma-Aldrich).

Histology
Tissue samples were fixed in 10% formalin for 48 hr, dehydrated, and embedded in paraffin. Sec-

tions (5 mm) were cut and stained with hematoxylin and eosin (Sigma-Aldrich and Thermo Scientific).

Sections (8 mm) from frozen tissue and embedded in OCT compound (Tissue-Tek) were stained with

Oil Red O (American Master Tech Scientific). Sections were examined in Leica DM2500 microscope

using 20x objective.

Immunoblotting
Tissue extracts were prepared in Triton lysis buffer [20 mM Tris (pH 7.4), 1% Triton X-100, 10% glyc-

erol, 137 mM NaCl, 2 mM EDTA, 25 mM b-glycerophosphate, 1 mM sodium orthovanadate, 1 mM

phenylmethylsulfonyl fluoride, and 10 mg/mL aprotinin and leupeptin]. Extracts (20–50 mg protein)

were examined by immunoblot. The antibodies employed were anti-FGF21 (1/1000, #RD281108100,

BioVendor), anti-phospho JNK (1/1000, #4668S, Cell Signaling), anti-JNK (1/1000, #9252S, Cell Sig-

naling), anti-phospho c-Jun (1/1000, #9164L, Cell Signaling), anti-c-Jun (1/1000, #9165S, Cell Signal-

ing), anti-ACC (1/1000, #3676S, Cell Signaling), and anti-vinculin (1/5000, #V9131, Sigma). Anti-

phospho JNK and anti-JNK antibodies recognize the two different JNK isoform (JNK1 and JNK2)

and their two spliced variants (JNK1 (46 kDa), JNK1 (54 kDa) and JNK2 (46 kDa) and JNK2 (54 kDa)).

Immunocomplexes were detected by enhanced chemiluminescence (Amersham).

Immunofluorescence
For 3-D imaging, livers were fixed in a solution of paraformaldehyde 4% in PBS at 4˚C. After washing

in PBS, tissues were stored overnight in 30% sucrose (Sigma) with PBS. Then, livers were embedded

in OCT compound (Tissue-Tek) and frozen at �80˚C. Cryosections of organs (70 mm) were washed in

PBS and blocked/permeabilized in PBS with 10% donkey serum (Millipore) and 1% Triton. Primary

antibodies diluted in blocking/permeabilization buffer were incubated overnight at 4˚C, followed by

three washes in PBS and 2 hr incubation with secondary antibodies and DAPI at room temperature.

After three washes in PBS, cells were mounted with Fluoromount-G (SouthernBiotech). The following

primary and secondary antibodies were used: rat anti-CD31 (1:200, #553370 BD Pharmingen,), rab-

bit anti-S100A9 (mrp14) (1:100, #AB242945, Abcam,), goat anti-Clec4f (1:100, #AF2784, RD System),

Alexa 488 donkey anti rat IgG (1:200, #A-21208, ThermoFisher), Cy3 AffiniPure Fab Fragment Don-

key Anti-Rabbit IgG (1:200, #711-167-003, Jackson Laboratories), Alexa Fluor 633 donkey anti goat

IgG (H+L) (1:200, #A21082, ThermoFisher). Immunostaining were imaged with a SP8 confocal micro-

scope using 40x objectives. Individual fields or tiles of large areas were acquired every 2.5 mm for a

total of 30 mm in depth. 3D images were obtained with Fiji/ImageJ 3D Viewer plugging.
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For 2-D imaging, liver sections (12 mm) prepared from frozen tissue and embedded in OCT com-

pound were fixed with 2% paraformaldehyde and permeabilized with PBS 0.1% Triton. After block-

ing with PBS 5% BSA 0.1% Triton and washing, tissues were incubated overnight at 4˚C with primary

antibody. Then, sections were washed and incubated with conjugated secondary antibodies for 1 hr

at room temperature and nuclei were stained with Sytox Green (Invitrogen) after washing. The fol-

lowing primary and secondary antibodies were used: rat anti-mouse S100A9 (Mrp-14) antibody

(1:200, #AB105472, Abcam), rabbit anti-Neutrophil Elastase antibody (1:200, #AB68672, Abcam),

goat Alexa Fluor 405 anti-rabbit (1:200) and goat Alexa Fluor 568 anti-rat IgG (1:500). Sections were

mounted in Vectashield mounting medium (Vector, H-1000) and examined using a Leica SP5 multi-

line inverted confocal microscope and 20x objectives.

NE measurement
20 mL of PBS prefunded livers were crushed with a syringe plunger, resuspended in 4 mL of PBS/

EDTA 5 mM/0.5% FBS and filtered (70 mm). Cell suspension was centrifuged at 1800 rpm 5 min and

the supernatant was filtered (22 mm). Supernatants were concentrated using Amicon Ultra centrifugal

filters (Sigma-Aldrich). NE levels were determined with Mouse Neutrophil Elastase ELISA kit (R and

D system).

Quantification and statistical analysis
All data are expressed as means ± SEM. For comparisons between two groups, the Student’s t-test

was applied. For data with more than two data sets, we used one-way ANOVA coupled with Tur-

key’s multigroup test. When variances were unequal, Welch’s test or Kruskal-Wallis test coupled with

Dunn’s multiple comparison test were applied, respectively. Multiple group comparisons in the

rhythmicity of neutrophil infiltration were analyzed with two-way ANOVA followed by Fisher’s post

hoc test. Significance was determined as a 2-sided p < 0.05. All statistical analyses were conducted

in GraphPad Prism software. Statistical details were indicated in the figure legends.
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Appendix 1

Appendix 1—key resources table

Reagent type
(species) or

resource Designation Source or reference Identifiers
Additional
information

Genetic reagent
(M. musculus)

C57BL/6J background Jackson Laboratory Cat# 000664
RRID:IMSR_
JAX:000664

Genetic reagent
(M. musculus)

B6.129-Mcl1tm3Sjk/J Jackson Laboratory Cat# 006088
RRID:IMSR_
JAX:006088

Genetic reagent
(M. musculus)

B6.Cg-Tg(S100A8-cre,-
EGFP)1Ilw/J

Jackson Laboratory Cat# 021614
RRID:IMSR_
JAX:021614

Genetic reagent
(M. musculus)

B6.129P2-Lyz2tm1(cre)Ifo/J Jackson Laboratory Cat# 004781
RRID:IMSR_
JAX:004781

Genetic reagent
(M. musculus)

B6.129-Mapk12tm1.2 PMID:26843485

Genetic reagent
(M. musculus)

B6.129-Mapk13tm1.2 PMID:26843485

Genetic reagent
(M. musculus)

B6.129 � 1/SvJ-
Elanetm1Sds

Jackson Laboratory Cat# 006112
RRID:IMSR_
JAX:006112

Genetic reagent
(M. musculus)

B6.Cg-Tg(Alb-cre)21Mgn/J Jackson Laboratory Cat# 003574
RRID:IMSR_
JAX:003574

Genetic reagent
(M. musculus)

B6.129-Mapk8LoxP/LoxP
Mapk9tm1Flv/J

PMID:19167327

Genetic reagent
(M. musculus)

C57BL/6-Cxcr2tm1Rmra/J Jackson Laboratory Cat# 024638
RRID:IMSR_
JAX:024638

Cell line (H.
sapiens)

HEK-293 ATCC Cat# CRL-1573
RRID:CVCL_
0045

Cell line (M.
musculus)

Primary hepatocytes PMID:26843485

Transfected
construct
(synthesized)

pGIZP (pD8.9- pVSV-G) Dharmacon Cat# RHS4349 Lentiviral Empty Vector
shRNA Control

Transfected
construct
(synthesized)

pGIZP.shFGF21 (pD8.9-
pVSV-G)

Dharmacon Cat#
V3LMM_430499

Transfected
construct
(synthesized)

pGIZP.shFGF21 (pD8.9-
pVSV-G)

Dharmacon Cat#
V3LMM_430501

Biological
sample (H.
sapiens)

Liver human samples University Hospital of
Salamanca-IBSAL

Figure 5—
source data 1

Antibody Biotinylated monoclonal rat
anti-mouse Ly6G (Clone
1A8)

Miltenyi Biotec Cat# 130-123-
854
RRID:AB_
1036098

1:20

Antibody Biotinylated monoclonal
hamster anti-mouse CD3
(Clone 145–2 C11)

BD Pharmingen Cat# 553057
RRID:AB_
394590

1:20

Continued on next page

Crespo, Gonzalez-Teran, et al. eLife 2020;9:e59258. DOI: https://doi.org/10.7554/eLife.59258 21 of 25

Research article Cell Biology Immunology and Inflammation

https://scicrunch.org/resolver/IMSR_JAX:000664
https://scicrunch.org/resolver/IMSR_JAX:000664
https://scicrunch.org/resolver/IMSR_JAX:006088
https://scicrunch.org/resolver/IMSR_JAX:006088
https://scicrunch.org/resolver/IMSR_JAX:021614
https://scicrunch.org/resolver/IMSR_JAX:021614
https://scicrunch.org/resolver/IMSR_JAX:004781
https://scicrunch.org/resolver/IMSR_JAX:004781
https://www.ncbi.nlm.nih.gov/pubmed/26843485
https://www.ncbi.nlm.nih.gov/pubmed/26843485
https://scicrunch.org/resolver/IMSR_JAX:006112
https://scicrunch.org/resolver/IMSR_JAX:006112
https://scicrunch.org/resolver/IMSR_JAX:003574
https://scicrunch.org/resolver/IMSR_JAX:003574
https://www.ncbi.nlm.nih.gov/pubmed/19167327
https://scicrunch.org/resolver/IMSR_JAX:024638
https://scicrunch.org/resolver/IMSR_JAX:024638
https://scicrunch.org/resolver/CVCL_0045
https://scicrunch.org/resolver/CVCL_0045
https://www.ncbi.nlm.nih.gov/pubmed/26843485
https://scicrunch.org/resolver/AB_1036098
https://scicrunch.org/resolver/AB_1036098
https://scicrunch.org/resolver/AB_394590
https://scicrunch.org/resolver/AB_394590
https://doi.org/10.7554/eLife.59258


Appendix 1—key resources table continued

Reagent type
(species) or

resource Designation Source or reference Identifiers
Additional
information

Antibody Biotinylated monoclonal rat
anti-mouse B220 (Clone
RA3-6B2)

BD Pharmingen Cat# 561880
RRID:AB_
10897020

1:20

Antibody Monoclonal rat anti-mouse
CD45 Pacific Orange
(Clone 30-F11)

Invitrogen Cat# MCD4530
RRID:AB_
2539700

Flow cytometry
1:100

Antibody Monoclonal rat anti-mouse
CD11b FITC (Clone M1/70)

BD Pharmingen Cat# 557396
RRID:AB_
396679

Flow cytometry
1:100

Antibody Monoclonal rat anti-mouse
Ly6C/G APC (Clone RB6-
8C5)

BD Pharmingen Cat# 553129
RRID:AB_
398532

Flow cytometry
1:200

Antibody Monoclonal rat anti-mouse
F4/80 PE-Cy7 (Clone BM8)

eBioscience Cat# 25480182
RRID:AB_
469653

Flow cytometry
1:100

Antibody Monoclonal rat anti-Mouse
Ly-6G PE (Clone 1A8)

BD Bioscience Cat# 551461
RRID:AB_
394208

Flow cytometry
1:200

Antibody Polyclonal Chicken Anti
Goat IgG (H+L) Alexa Fluor
647

Invitrogen Cat# A-21469
RRID:AB_
2535872

Flow cytometry 1:500

Antibody Polyclonal rabbit anti-
mouse FGF21

BioVendor Cat#
RD281108100
RRID:AB_
2034054

WB
1:1000

Antibody Monolconal rabbit anti-
phospho
SAPK/JNK (T183/Y185)
(Clone 81E11)

Cell Signaling Cat# 4668S
RRID:AB_
823588

WB
1:1000

Antibody Polyclonal rabbit anti-
SAPK/JNK

Cell Signaling Cat# 9252S
RRID:AB_
2250373

WB
1:1000

Antibody Polyclonal rabbit anti-
phospho c-jun

Cell Signaling Cat# 9164L
RRID:AB_
330892

WB
1:1000

Antibody Monoclonal rabbit anti-c-
jun (Clone 60A8)

Cell Signaling Cat# 9165S
RRID:AB_
2130165

WB
1:1000

Antibody Monoclonal rabbit anti-
Acetyl-CoA
carboxylase (Clone
C83B10)

Cell Signaling Cat# 3676S
RRID:AB_
2219397

WB
1:1000

Antibody Monoclonal mouse anti-
vinculin (Clone hVIN-1)

Sigma Cat# V9131
RRID:AB_
477629

WB
1:5000

Antibody Polyclonal goat anti-Mouse
IgG
(H+L) Secondary Antibody,
HRP

ThermoFisher Cat# 31430
RRID:AB_
228307

WB
1:5000

Antibody Polyclonal goat anti-Rabbit
IgG
(H+L) Secondary Antibody,
HRP

ThermoFisher Cat# 31460
RRID:AB_
228341

WB
1:5000

Antibody Monoclonal rat anti-mouse
CD31 (Clone MEC 13.3)

BD Pharmingen Cat# 553370
RRID:AB_
394816

IF
1:200
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Appendix 1—key resources table continued

Reagent type
(species) or

resource Designation Source or reference Identifiers
Additional
information

Antibody Monoclonal rabbit anti-
mouse
S100A9 (mrp14) (Clone
EPR22332-75)

Abcam Cat# AB242945
RRID:AB_
2876886

IF
1:100

Antibody Polyclonal goat anti-mouse
Clec4f

RD System Cat# AF2784
RRID:AB_
2081339

IF/Flow cytometry
1:200

Antibody Polyclonal donkey anti rat
IgG Alexa 488

ThermoFisher Cat# A-21208
RRID:AB_
2535794

IF
1:200

Antibody Polyclonal Donkey Anti-
Rabbit IgG Cy3
AffiniPure Fab Fragment

Jackson Laboratories Cat# 711-167-
003
RRID:AB_
2340606

IF
1:200

Antibody Polyclonal Donkey Anti
Goat
IgG (H+L) Alexa Fluor 633

ThermoFisher Cat# A21082
RRID:AB_
10562400

IF
1:200

Antibody Monoclonal rat anti-mouse
S100A9
(Mrp-14) (Clone 2B10)

Abcam Cat# AB105472
RRID:AB_
10862594

IF
1:200

Antibody Polyclonal rabbit anti-
neutrophil elastase

Abcam Cat# AB68672
RRID:AB_
1658868

IF
1:200

Antibody Polyclonal goat Anti-Rabbit
Alexa Fluor 405

ThermoFisher Cat# A-31556
RRID:AB_
221605

IF
1:200

Antibody Polyclonal goat Anti-Rat
IgG Alexa Fluor 568

ThermoFisher Cat# A-11077
RRID:AB_
2534121

IF
1:500

Sequence-
based reagent

RT-qPCR primers Sigma-Aldrich

Peptide,
recombinant
protein

Recombinant Mouse
Neutrophil Elastase/EL

R and D Systems Cat# 4517-SE-
010

Peptide,
recombinant
protein

Collagenase A Roche Cat# 10 103 586
001

Peptide,
recombinant
protein

Collagenase Type 1 CLS1 Worthington
Biochemical

Cat# LS004197

Peptide,
recombinant
protein

Liberase TL Sigma Cat#
5401020001

Peptide,
recombinant
protein

DNase Type II-S Sigma-Aldrich Cat# D4513

Commercial
assay or kit

Serum Triglyceride
Determination Kit

Sigma-Aldrich Cat# TR0100-
1KT

Commercial
assay or kit

Mouse Neutrophil
Elastase/
ELA2 DuoSet ELISA

R and D systems Cat# DY4517-
05

Commercial
assay or kit

RNa easy Mini Kit Qiagen Cat# 74106
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Appendix 1—key resources table continued

Reagent type
(species) or

resource Designation Source or reference Identifiers
Additional
information

Commercial
assay or kit

High-Capacity cDNA
Reverse
Transcription Kit

Applied Biosystems Cat# 4368814

Chemical
compound, drug

Fast SYBR Green Master
Mix

Applied Biosystems Cat# 4385616

Chemical
compound, drug

Percoll GE Healthcare Cat# 17-0891-
01

Chemical
compound, drug

Palmitic acid Sigma-Aldrich Cat# P0500

Chemical
compound, drug

N-Formil Met-Leu-Phe
(FMLP)

Sigma-Aldrich Cat# F3506

Chemical
compound, drug

SP600125 (SAPK inhibitor) Santa Cruz
Biotechnology

Cat# sc-200635

Chemical
compound, drug

Amersham ECL Prime
Western
Blotting Detection Reagent

GE Healthcare Cat# RPN2232

Chemical
compound, drug

Fluoromount-G SouthernBiotech Cat# 0100–01

Chemical
compound, drug

Sucrose Sigma-Aldrich Cat# S8501

Chemical
compound, drug

SYTOX Green Nucleic
Acid Stain - 5 mM

ThermoFisher Cat# S7020

Chemical
compound, drug

VECTASHIELD Antifade
Mounting Medium

Vector Lab Cat# H-1000

Software,
algorithm

GraphPad PRISM GraphPad Software RRID:SCR_
002798

Software,
algorithm

Photoshop CS6 Adobe RRID:SCR_
014199

Software,
algorithm

Fiji/Image J software
Fiji-Image J

https://imagej.
nih.gov/ij/
RRID:SCR_
003070

Software,
algorithm

FlowJo FlowJo https://www.
flowjo.com/
RRID:SCR_
008520

Software,
algorithm

Leica LAS X Leica Software RRID:SCR_
013673

Other Hematoxylin Sigma Cat# H3136

Other Eosin Y Alcoholic Thermo Scientific Cat# 6766008

Other OCT Tissue-Tek Cat# 4583

Other Oil Red O (C.I.26125) American Master
Tech Scientific

Cat# SPO1077

Other 70 mM cell strainers Corning Falcon Cat# 352350

Other 22 mM filter Sigma-Aldrich Cat#
SLGPM33RS

Other Amicon Ultra centrifugal
filters

Sigma-Aldrich Cat#
UFC800324

Other Magnetic streptavidin
microbeads

Miltenyi Biotec Cat# 130-048-
101
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Appendix 1—key resources table continued

Reagent type
(species) or

resource Designation Source or reference Identifiers
Additional
information

Other MACS Separation
Columns- MS columns

Miltenyi Biotec Cat# 130-042-
201

Other Mini-osmotic pumps Alzet Cat# 1004

Other Methionine-choline-
deficient diet (MCD)

Research Diets Inc Cat#
A02082002B

Other High-fat diet (HFD) Research Diets Inc Cat#
D11103002i
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