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Abstract
Molecular network data are increasingly becoming available, necessitating the development of well performing com-
putational tools for their analyses. Such tools enabled conceptually different approaches for exploring human dis-
eases to be undertaken, in particular, those that study the relationship between a multitude of biomolecules
within a cell. Hence, a new field of network biology has emerged as part of systems biology, aiming to untangle
the complexity of cellular network organization.We survey current network analysis methods that aim to give in-
sight into human disease.
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INTRODUCTION
Molecular causes of diseases are explored through

many different techniques, such as through the

examination of their causal genes, the disruption of

related pathways, analysis of age factors and various

other external influences. Currently, not much is

known about the interconnectivity of all these dif-

ferent causes and elucidating the relationship be-

tween the malfunctioning of a system and its

genomic data would provide insights into disease

and set directions for future research. A scientific

area that is attempting to address this unification is

that of biological networks. It brings together the

concepts of the ‘human diseasome’—a combined

set of all known disorders and their implicated gen-

etic mutations—and all systems-level molecular data.

Networks, also called ‘graphs’, are defined as sets

of nodes (also called vertices) and edges (also called

links), where nodes are singular entities and edges

represent relations between them. This seemingly

simple mathematical concept is a powerful approach

for modelling real-world phenomena across various

disciplines, including biological data, such as physical

interactions between proteins, or synthesis of meta-

bolic compounds. Also, graphs have been used to

model relationships between diseases and they are a

key part of the rising field of network medicine,

which aims to decipher the complex wirings that

govern human diseases [1–3]. An important part of

this complex cellular wiring is the network of pro-

tein–protein interactions (PPIs) [4]. Since proteins

interact, a single gene mutation is not confined

within the actions of its gene products, but can

propagate throughout the system, influencing other

gene products that otherwise contain no aberrations.

Hence, the final phenotypic effect is a result of a

combination of the initial defect along with the in-

fluence that it has on other parts of the networked

system.

This review is organized into four segments. The

first section describes biological data and models used

in their network representations. It illustrates the

process of reconstructing the human metabolome

and the human diseaseome. The second part presents
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basic methods of linking biological concepts within

these networks by virtue of their common features.

The third section focuses on more complex

graph-theoretical approaches to data analysis and

describes key biological insights that such analyses

provide. In addition, the section covers scientific

controversies that arose in this field and how they

led the development of more sophisticated methods

and tools. The final section gives an overview of

future directions that yield as results of most recent

developments in this area.

Data
Advances in biotechnology have led to previously

unseen rates of growth in acquisition of biological

data, as well as to the increase in understanding how

that data can be used to benefit human life [5].

For example, genome-wide association studies are

enabling assaying of more than a million of

single-nucleotide polymorphisms in thousands of

individuals [6,7]. It is to be expected that under-

standing the functioning of disease-associated genetic

variants and elucidating the underlying architecture

of diseases will bridge the gap between scientific

research and its ultimate application in clinical prac-

tice [8]. A decade-long effort to map human disease

loci, followed by the positional cloning and

genome-wide association studies has produced an

impressive database of disease–gene associations.

The Online Mendelian Inheritance in Man

(OMIM) [9] database contains over 4500 phenotypes

for which the molecular basis is known and describes

almost 3000 genes with phenotype-causing muta-

tions [10]. We are currently witnessing the shift

from a ‘single gene single disease’ paradigm towards

the ‘interplay of different disease modules’ [2,3] and

ultimately to the notion of a ‘personalized genome/

diseasome’ [11–13], but that shift is yet to gain

momentum.

Since it is the network of interacting biomol-

ecules, such as proteins, that makes cells work, efforts

for gathering these network data are currently under

way. The largest available molecular network for a

human is that of PPIs. Network data on physical

PPIs for many model organisms [14–20], humans

[21,22], bacteria [23–25] and viruses [26–28] are ob-

tained using high-throughput screens, such as yeast

two-hybrid (Y2H) assays [14–17,21,22,29] and affin-

ity purification with mass spectrometry (AP/MS)

[18,19,30,31]. Since techniques for detecting phys-

ical interactions between proteins do not work well

for membrane proteins, the new technology of

membrane Y2H assays is becoming available

[32–35]. Discovering membrane-interacting proteins

is a key to understanding disease, since integral

membrane-interacting proteins have a role in cell

signalling and hence, their alterations can produce

disorders rooted in disruption of signalling pathways.

Membrane proteins account for one-third of the

proteome. The difficulty in studying them lies in

their hydrophobic nature, which makes conven-

tional biochemical and genetic assays unusable. The

above mentioned new technology allows for

large-scale screening of membrane proteins’ interac-

tors in a range of organisms by utilizing the

split-ubiquitin principle which overcomes this limi-

tation. The effectiveness of this methodology was

demonstrated by using the mammalian ErbB3 recep-

tor as a bait to identify previously unknown ErbB3

interactors [32].

Data for physical molecular interaction are

publicly available in databases including Human

Protein Reference Database (HPRD) [36], the

Biological General Repository for Interaction

Datasets (BioGRID) [37], IntAct [38], Molecular

INTeraction database (MINT) [39], Biomolecular

Interaction Network Database (BIND) [40] and the

Database of Interacting Proteins (DIP) [41].

Databases such as Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING) [42] and

iRefIndex [43] aggregate some or all of the above

mentioned sources into single datasets.

The entire set of these interactions in humans is

termed the human interactome. The complexity of such

a network is overwhelming, as humans have ap-

proximately 25 000 protein-coding genes and an un-

known number of proteins due to many splicing

variants [44] and post-translational modifications.

Hence, the number of proteins that take part in

the interactome is argued to be in the six-digit

range [45]. The current state of art datasets are

approximated to around 50 000 unique proteins

that participate in close to 200 000 interactions

[43]. When the quality score of measurements is

taken into account, the human PPI dataset is

pruned down to around 10 000 proteins participating

in some 50 000–60 000 high-confidence interactions.

This shows that currently available interactome data

are still noisy and incomplete. Numerous biases are

introduced by data collecting and data sampling

techniques, as well as averaging-out the species

population by using universal models of the
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genome and interactome [46–55]. Nevertheless,

even such sparse data are often too large to be effi-

ciently analysed by present day network analysis

algorithms. This is due to their large sizes and the

fact that many graph theoretic algorithms are com-

putationally intractable (NP-hard or NP-complete)

[56]. Hence, new approximate (also called heuristic)
methods for analysing network data that can cope

with the underlying complexities are being de-

veloped [57–60].

Network representations
Constructing the graph model that accurately repre-

sents the observed underlying biological process is

often not straight-forward. It depends on the way

in which the data will be analysed and thus must

be tailored for the specific question that is to be an-

swered. For instance, metabolism is a process which

keeps the organism in homeostasis. The current rep-

resentation of metabolism in literature is through

metabolic pathways which describe smaller parts of

the metabolic system that act upon molecules

through a series of reactions. Thus, this description

of metabolism can be hierarchically broken down

into pathways and further into specific chemical re-

actions that comprise these pathways. The reactions

themselves constitute processes that transform sets of

chemical substances. However, modelling this system

using a network can be done in a number of different

ways, with substantially different outputs [61–74].

Consequently, this dimensionality reduction from

the complex intertwined metabolic system down to

a graph requires logically splitting up the entire me-

tabolism into two categories: its basic elements and

the relations between them, that is, it requires

determining which parts of it will be described by

nodes and which by edges.

One way of making this simplification is to rep-

resent elementary metabolic compounds as nodes

and reactions between them as edges of a network.

This is known as the ‘metabolite-centric’ mapping

[66–69], and is the most common one in use for

general-purpose extraction of knowledge about

metabolism from these networks, as it closely mirrors

the real-world structure of metabolic reactions. The

second way is ‘enzyme-centric’ [70,71]: nodes

represent enzymes, and a pair of nodes is connected

by an edge if the corresponding enzymes catalyse at

least one common reaction. This representation is

used for understanding molecular wirings around

enzymes. The third model, a reaction-centric map

[72–74], is obtained by having nodes represent indi-

vidual reactions and placing links between them if

they are commonly catalysed by at least one enzyme,

or if they act upon the same chemical compounds.

However, even when we choose the nodes in the

network representation of metabolism, it is still not

clear how the edges between them should be drawn

(details given in Figure 1).

Similarly, there are analysis-dependent options in

representing the seemingly simple ‘diseaseome bi-

partite graph’, which is a bipartite graph linking dis-

eases to genes known to be causing them [1]; a

‘bipartite graph’ is a graph whose nodes can be

divided into two separate sets, U and V, such that

every edge in the graph connects a node from U to

one node in V. From this bipartite graph, two pro-

jections are made as follows: that of diseases, in

which nodes are disorders and a pair of disorders is

Figure 1: If we consider a metabolite-centric map of
the following irreversible metabolic reaction from sub-
strates A and B to products C and D, Aþ B!CþD, we
can chose (a) to link only the main substrate ^product
pair (say, A and C) while leaving out the transitive elem-
ents, such as energy or water (say, B and D). However,
it is not always the case that a reaction has transitive
elements. If there are no transitive elements in this re-
action, (b) the metabolite-centric network map would
usually link A to both C and D, as well as B to both C
and D, even though this might not be completely bio-
logically accurate, since for the production of C (and
D) both A and B are needed together, and this subtlety
is lost in this type of network representation.
However, the issue could be solved by using more
involved mathematical concepts, such as hypergraphs
instead of graphs, as edges in hypergraphs consist of
any sub-sets of nodes and not just node pairs. By using
hypergraphs (c), {A, B,C} and {A, B, D} would be hyper-
edges, which would better describe the real-world
product^ substrate relationships. However, algorithms
for analysing hypergraphs are far more mathematically
and conceptually involved than those for graphs.
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linked if they share at least one gene whose mutation

is known to be involved in both disorders, and that

of genes, where nodes are genes and a pair of genes is

linked if they are both involved in at least one same

disorder. When the former projection network is

clustered, major disease classes are discovered, such

as the cancer cluster, which is densely connected due

to the fact that many genes are associated with

multiple types of cancers [1]. Similarly, neurological

disorders cluster together, but metabolic disorders do

not, and are dispersed throughout the network [1].

Subsequent studies have shown that metabolic

disorders are better modelled using adjacency via

metabolic pathways, rather than via sharing of

disease-related genes [75] (see below).

GUILT BYASSOCIATION
In this section we outline some commonly used

approaches that are based on shared features for

extracting disease information out of networks.

Shared genes
Linking several diseases with the same gene points to

the possibility of their common genetic origin. Goh

et al. [1] used data from OMIM to construct such a

network. Their human disease network contained

1284 diseases, out of which 867 were linked to

one or more other diseases. It is expected that

linked diseases would exhibit congruent phenotypes.

Indeed, Park et al. [76] showed co-morbidity

between linked pairs of diseases: they found that

patients with a primary disease are twice as likely

to develop a secondary (co-morbid) disease if the

secondary disease shares genes with the primary

one. On the other hand, many linked disease pairs

in the network representation did not exhibit these

co-morbidity effects, which was attributed to

different contextual scenarios of their genetic

mutations.

Recently, a number of substantially different find-

ings regarding predicting biological function based

on shared gene features were presented in works of

Gillis and Pavlidis [77–79]. In these studies they

showed that multi-functionality of a gene, rather

than its association, is a primary cause of high effi-

ciency in gene function prediction [79]. Also, they

found that it was possible for a small number of edges

to accounts for all prediction performance in the

biological networks and even that high quality pre-

dictions on gene function can be made regardless

whether information on which gene interacts with

which is available or not [77].

Shared metabolic processes
A metabolic reaction can be affected by a disruption

of the enzymes that catalyse it, which then poten-

tially disrupts all downstream metabolic reactions,

ultimately leading to a metabolically-induced disease

phenotype. To model this, Lee et al. [80] constructed

the Metabolic Disease Network (MDN) in which

two diseases are linked by an edge if the enzymes

associated with them catalyse adjacent metabolic re-

actions. Co-morbidity analysis of MDN showed a

1.8-fold co-morbidity increase in diseases linked in

this network when compared to the ones that are

not. A substantially different representation of me-

tabolism, termed Network of Interacting Pathways

(NIP), was used to show that the complexity of an

organism’s lifestyle determines how large, dense and

efficiently organized its metabolism is, quantifying

the changes in evolution of metabolism across ar-

chaea, bacteria and eukarya [75]. In a NIP model,

pathways are represented by nodes and nodes are

connected by an edge if the corresponding pathways

overlap.

SHAREDMICRORNAS
microRNAs (miRNAs) are responsible for

post-transcriptional regulation of protein-coding

genes by means of inhibiting, destabilizing or degrad-

ing target mRNAs. A single miRNA down-regulates

hundreds of target mRNA, thus having a key role in

cellular functions such as development, differenti-

ation, proliferation, apoptosis and metabolism.

Recently, miRNA-based network reconstruction

was implemented by Lu et al. [81], where they

connected disease pairs whose associated genes are

targeted by one or more shared miRNAs. A network

constructed in such a way had clusters associated

with diseases, such as cancer or cardiovascular

diseases. Also, a negative correlation was found be-

tween tissue-specificity of a miRNA and the number

of diseases associated with it. Another study has

shedded additional light on the biological meaning

of miRNA-based network reconstruction by

strengthening the fact that a set of mRNA targets

which are regulated by a single miRNA generally

consist of functionally-associated molecules in

human cells, rather than a random set of

functionally-independent genes [82].
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EXAMINING NETWORK
TOPOLOGY
Regardless of data representation, networks of inter-

connected biomolecules in the cell and the concept

of the human diseasome offer an opportunity for data

analyses that aim to increase our understanding of

why particular diseases co-manifest their phenotypes

more often than others. The hope is that variants of

network representation of these data and the new

tools for their analyses will lead to novel approaches

for disease diagnosis and treatment and aid drug dis-

covery [83]. Even though only �10% of human

genes have a known association to diseases [84],

such limited knowledge about disease genes has still

yielded insight into the link between network top-

ology around a gene and its involvement in disease.

Since proteins are the main workhorses of the cell

and they aggregate to perform a function, PPI net-

works have been analysed to elucidate cellular pro-

cesses and disease. Early studies tried to use very

simple methods to analyse PPI networks and link

their topology to biological function [85–92]. For

example, it was noticed that essential genes in early

PPI networks of baker’s yeast obtained by Y2H

methods tend to code for hub proteins [85], which

was later refuted on more recent PPI data [93]. Also,

it was postulated that there is a negative correlation

between the connectivity of a gene and its rate of

evolution and concluded that hub-coding genes are

older and tend to evolve more slowly than non-hub-

coding genes [86–88]. The number of phenotypic

outcomes upon the removal of hub-coding genes

has also been examined [55,89]. Similarly, 346

cancer-related proteins have been shown to have,

on average, two times more direct interacting part-

ners than non-cancer-related ones [91].

However, using such simple analysis methods on

noisy data that are obtained by biased data collection

and sampling may lead to questionable conclusions

[46–55].

Hence, more sophisticated methods that give

consistent results even in the presence of noise in

the data have been designed.

Rather than looking at the network as a whole on

a global, ‘macroscopic’ level, the local, ‘microscopic’

topology of networks has been examined. ‘Network

motifs’, small sub-graphs that occur in real networks

much more often than is expected at random, have

been introduced to examine the structure of

complex networks [94]. They enabled systematic

detection of repeated appearances of topological

substructures in Escherichia coli transcriptional regula-

tion network and related them to specific biological

responses to external signals [95]. However, since by

definition motifs need to be over-represented in the

data when compared to random graph models, the

question is what models are the best fitting to real

biological networks. This problem cannot be an-

swered exactly due to NP-completeness (i.e. prov-

able computational intractability) of the underlying

sub-graph isomorphism problem that test whether

one network exist as a copy in another network

[56]. Hence, various methods for approximately

comparing [96–98] and aligning [99–107] networks

have been proposed.

‘Graphlets’ have been designed to further

strengthen the bond between network topology

and biological function and disease: they are small

sub-graphs of large networks that do not need to

be over-represented in the data (Figure 2) [96,98].

The statistics of frequencies of appearance of graph-

lets in entire networks, or around nodes in network

have been used to classify networks into models

[96,98], as well as to link the topology around a

node in a network with the node’s biological func-

tion and involvement in disease: proteins with similar

wiring up to a four-deep neighbourhood (Figure 3)

were shown to belong to the same protein com-

plexes, perform the same biological functions, are

localized in the same sub-cellular compartments,

and are co-expressed in tissues [108–113].

Furthermore, clustering of nodes based solely on

graphlet-based topology of human PPI networks

was used to successfully predict RNAi targets as
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Figure 2: Graphlets with up to five nodes. There are
30 of them,G0,G1,G2, . . .G29, and they contain 73 topo-
logically unique node types, which are called ‘auto-
morphism orbits’. Nodes belonging to the same orbit
are of the same shade [98].
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novel components of melanogenesis regulatory path-

ways that could not have been identified by other

existing approaches [111]. Similarly, involvement of

genes in cancer was successfully predicted and

validated both through literature curation and

experimentally, thus providing evidence that

topological wiring around cancer genes differs from

wiring around non-cancer genes [113].

The role of ‘topologically central’ proteins has

also been examined. Several measures of topological

centrality have been proposed, including degree cen-

trality (i.e. hub nodes described above), betweenness

centrality, closeness centrality, sub-graph centrality

and graphlet centrality [114]. A general consensus is

that topologically central proteins in PPI networks

are involved in disease and aging. The concept of a

dominating set (DS), that is, the set of nodes in a

network such that all nodes are either in it or adja-

cent to it, has also been explored. Finding a DS of

minimum size in a network is another computation-

ally intractable problem, so heuristics are being

sought. It was shown that proteins in a DS of the

human PPI network constitute the ‘spine’ of the PPI

network: this DS is statistically significantly enriched

with disease, aging, and proteins participating in sig-

nalling pathways [114].

Predicting new disease proteins has also been

based on examining disease gene DNA neighbour-

hoods and cellular co-localization of proteins

[112,115–121]. Despite their simplicity, these

approaches provided new insight: for example, Oti

et al. [121] searched 432 loci for candidate disease

genes achieving a 10-fold enrichment in success

rate of valid disease–gene predictions. In the same

study, additional consideration of cellular

co-localization led to 1000-fold enrichment. Other

methods base their predictions on overlaying net-

work topology with additional information, such as

the knowledge of functional or disease modules in

the network [122–124]. They do this by, for

instance, deriving a phenotype similarity score to

identify new protein complexes associated with

disease.

Recently, ‘driver’ genes have been proposed to be

those whose mutations trigger genetic instability and

cancer formation [125–128]. Also, genetic inter-

actions, that is, pairs of genes whose joint mutation

produces a distinct phenotype, have been indicated

as potential targets for therapeutic intervention [125].

A very small number of driver genes are currently

known and it is believed that the complete set of

driver genes is not very large [125]. Thus far, there

does not exist a standard method for finding driver

genes. Hence, a new method for analysing PPI net-

work topology has been proposed aiming to give

insight into network parts that are rich in driver

genes [129]. This method, which effectively captures

a large portion of known driver and other

disease-related genes, is based on an iterative pruning

of the human PPI network: it uses k-core decom-

position, a method that first removes nodes of degree

one (k¼ 1), then from the remaining network it re-

moves nodes of degree at most two (k� 2) etc., until

it reaches the value of k where removing nodes

would result in an empty graph [130–133]. The lar-

gest value of k that leaves the graph in a non-empty

state is called kmax. In this way, the part of the human

PPI network that remains after kmax-core decompos-

ition is obtained and examined for structural (i.e.

topological) and functional uniqueness: this central,

tightly-knit sub-network of the human PPI network

is statistically significantly enriched with disease

genes, driver genes and genetic interactions currently

targeted by many drugs. Hence, it is termed ‘The

Core Diseasome’ [129].

FUTUREDIRECTIONS
Despite noise and incompleteness in PPI and other

systems-level biological network data, the structural

properties of these networks have already given

V V V

Orbit 0 1 2 3 4 5 6 . . . 72
GDV(v) 2 1 1 0 0 1 0

Orbit 0 1 2 3 4 5 6 . . . 72
GDV(v) 2 1 1 0 0 1 0

Figure 3: An illustration of the graphlet degree
vector (GDV) of node v. GDV represents one way in
which graphlets can be used to describe topology
around a node. GDV(v)¼ (2,1,1,0,0,1,0 . . . ,0), meaning
that v is touched by two edges (Orbit 0, illustrated in
the left panel), an end-node of one graphlet G1
(Orbit 1, illustrated in the middle panel), the middle
node of one graphlet G1 (Orbit 2, illustrated in the left
panel again), no nodes of a triangle (Orbit 3 in graphlet
G2), no end-node of graphlet G3 (Orbit 4), one middle
node of graphlet G3 (Orbit 5, illustrated in the right
panel), and no other orbits. In this way, GDV essentially
‘quantifies’ the four-level-deep topological environment
of a node.
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insight into biological function and involvement in

disease of individual proteins. As we gather more

network data and as the network data matures and

becomes more reliable, we need to ensure that our

models keep representing the data well and that our

methods can cope with increased data complexity.

Also, systems-level biological networks are currently

only static representations of all interactions that we

have ever observed under any condition and in any

tissue, while cells are in fact dynamic, time- and

condition-dependent systems. Hence, our data and

methods should be extended to capture this

systems-wide dynamics of biological processes

[134–139]. Analysing the Human Diseasome in

such a systems-level dynamic network framework

has a potential to fully explain molecular, and envir-

onmental causes for onset and progression of disease

and substantially change therapeutic practices.

Putting into the context of biological network

data other approaches for analysing molecular

causes of disease may to lead further insight. For ex-

ample, it has been demonstrated that a significant

number of diseases with early-life onset result from

defective enzyme-coding genes, whereas adulthood

onset diseases are caused by alterations in receptors

and modifiers of protein function [140]. Also, it has

been indicated that age-related diseases are a conse-

quence of accumulation of mitochondrial dysfunc-

tion over the life of an individual [141,142].

Mitochondria perform oxidative phosphorylation

that produces adenosine triphosphate (ATP) by uti-

lizing energy released from oxidation of nutrients. In

this process, toxic side-products, reactive oxygen

species (ROS), are generated, which are molecules

such as oxygen ions and peroxides. Increased ROS

levels may lead to significant aberration of cell struc-

ture, specifically to DNA damage. Hence, many stu-

dies examine the role of energy and in particular,

energy deficiency in human disease [141–143]. A

direct link between mitochondrial dysfunction and

disease was established and it was shown that muta-

tions in mitochondrial DNA (mtDNA) alone are

sufficient to generate major clinical phenotypes

[144]. In particular, mtDNA is present in thousands

of copies in a cell and it mediates effects of the

environment onto genes by accumulating somatic

mutations in post-mitotic tissue and resulting in

delayed-onset of age-related diseases [141].

Analysing these processes in the context of systems-

level biological networks may yield further insight.

Another way in which the disruption of one gene

was shown to trigger the onset of a seemingly unre-

lated disease is through what is known as the neigh-

bouring gene effect (NGE) [145], which is also

termed the ‘uncertainty principle of genetics’ [146];

It posits that the deletion of a genomic locus may

affect the function of one or more neighbouring loci

[146], effectively disrupting events downstream of

the unintentionally affected loci. Hence, NGE may

lead to erroneous gene annotation: it is estimated

that NGE erroneously affects the annotation of

10% of the human interactome [147]. Due to these

effects, global changes in the currently available

interaction maps may soon be necessary.

Key points

� Various biological network data are being analysed for elucidat-
ingmechanisms of human disease.

� Network topology is beginning to yield insight into biological
function and disease.

� Data and methods for analysing the dynamics of systems-level
molecular networks are needed for better understanding of
biology and disease.
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65. Ōsterlund T, Nookaew I, Nielsen J. Fifteen years of large
scale metabolic modeling of yeast: developments and im-
pacts. Biotechnol Adv 2011;3:1–10.

66. Kim TY, Kim HU, Lee SY. Metabolite-centric approaches
for the discovery of antibacterials using genome-scale
metabolic networks. Metab Eng 2010;12(2):105–11.

67. Chung BKS, Lee D-Y. Flux-sum analysis: a
metabolite-centric approach for understanding the meta-
bolic network. BMCSys Biol 2009;3:117.
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Topological network alignment uncovers biological func-
tion and phylogeny. J RSoc Interface 2010;7:1341–54.

105. Milenković T, Leong Ng W, Hayes W, et al. Optimal
network alignment with graphlet degree vectors. Cancer
Inform 2010;9:121–37.
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