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Abstract

The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring 

glycemic control in diabetic patients
1
. Pancreas transplantation and the infusion of cadaveric islets 

are currently implemented clinically
2
, but are limited by the adverse effects of lifetime 

immunosuppression and the limited supply of donor tissue
3
. The latter concern may be addressed 

by recently described glucose responsive mature β-cells derived from human embryonic stem 

cells; called SC-β, these cells may represent an unlimited human cell source for pancreas 

replacement therapy
4
. Strategies to address the immunosuppression concern include 

immunoisolation of insulin-producing cells with porous biomaterials that function as an immune 

barrier
5,6. However, clinical implementation has been challenging due to host immune responses 

to implant materials
7
. Here, we report the first long term glycemic correction of a diabetic, 

immune-competent animal model with human SC-β cells. SC-β cells were encapsulated with 

alginate-derivatives capable of mitigating foreign body responses in vivo, and implanted into the 

intraperitoneal (IP) space of streptozotocin-treated (STZ) C57BL/6J mice. These implants induced 

glycemic correction until removal at 174 days without any immunosuppression. Human C-peptide 

concentrations and in vivo glucose responsiveness demonstrate therapeutically relevant glycemic 

control. Implants retrieved after 174 days contained viable insulin-producing cells.

Diabetes is a global epidemic afflicting over 300 million people
8
. While a rigorous regimen 

of blood glucose monitoring coupled with daily injections of exogenous insulin remains the 

leading treatment for patients with type 1 diabetes, they still suffer ill effects due to the 

challenges associated with daily compliance
9,10

. In addition, the process by which beta cells 

of the pancreatic islets of Langerhans release insulin in response to changes in blood glucose 

concentrations is highly dynamic and imperfectly simulated by periodic insulin 

injections
10,11

. The transplantation of donor tissue would achieve insulin independence for 

type 1 diabetics
2,12,13

. Recently, the in vitro differentiation of human pluripotent stem cells 

(hPSCs) into functional pancreatic β-cells was reported, providing for the first time a path to 

produce an unlimited supply of human insulin-producing tissue (Fig. 1a, Supplementary Fig. 

1)
4
. Methods to relieve the need for life long immunosuppression are essential to enable 

broad clinical implementation of this new tissue source
3,14,15

.

Cell encapsulation can overcome the need for immunosuppression by protecting therapeutic 

tissues from rejection by the host immune system
7,16

. The most commonly investigated 

method for islet encapsulation therapy is the formulation of isolated islets into alginate 

microspheres
16–20

. Clinical evaluation of this technology in diabetic patients with cadaveric 

human islets has only achieved glycemic correction for short periods
16,21,22

. Implants from 

these studies elicit strong innate immune-mediated foreign body responses (FBR) that result 

in fibrotic deposition, nutrient isolation, and donor tissue necrosis
23,24

. Similar results are 

observed with encapsulated xenogeneic islets and pancreatic progenitor cells in preclinical 

diabetic mouse or non-human primate models, where both the therapeutic efficacy of 

encapsulated cadaveric human islets and pig islets is hampered by immunological 

responses
19,25,26

.
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A major contributor to the performance of encapsulated islet implants is the immune 

response to the biomaterials used for cell encapsulation
5,7,17

. We demonstrated that 

microsphere size can affect the immunological responses to implanted alginates
27

. More 

recently, we identified chemically-modified alginates such as triazole-thiomorpholine 

dioxide (TMTD, Supplementary Fig. 2) that resist implant fibrosis in both rodents and non-

human primates
28

. Here we show that triazole-thiomorpholine dioxide (TMTD) alginate-

encapsulated SC-β cells provide long-term glycemic correction and glucose-responsiveness 

without immune suppression in immune-competent C57BL/6J mice.

To ensure proper biocompatibility assessment in our studies we used immunocompetent 

C57BL/6J mice, because this strain is known to produce a strong fibrotic and foreign body 

response similar to observations made in human patients
29

. When implanted into the 

intraperitoneal space of non-human primates or rodents with robust immune systems such as 

C57BL/6J,
30,31

 conventional alginate microspheres elicit foreign body reactions and 

fibrosis
30,31

. However, 1.5 mm spheres of TMTD alginate mitigated fibrotic responses in 

non-human primates and C57BL/6J mice
28

. To determine whether encapsulation of SC-β 

cells can induce glycemic correction, we encapsulated cells with three different 

formulations: 500 µm alginate microcapsules conventionally used for islet encapsulation
5,22

, 

1.5 mm alginate spheres
27

, and 1.5 mm TMTD alginate spheres (Supplementary Fig. 2). 

Each of these formulations containing three different doses of SC-β were transplanted into 

diabetic streptozotocin (STZ) treated C57BL/6J mice
32,33

, and we evaluated their ability to 

restore normoglycemia for 90 days for XX days (Fig. 1c–e). Naked, non-encapsulated SC-β 

cells were unable to provide glycemic correction in this diabetic model regardless of 

implantation site (Supplementary Fig. 3). Mice transplanted with SC-β cells encapsulated in 

500 µm microcapsules showed the lowest levels of glycemic control, with only the highest 

dose of transplanted clusters able to restore normoglycemia for 15 days. SC-β cells 

encapsulated in 1.5 mm alginate spheres performed better than the 500 µm microcapsule 

formulation, with normoglycemia maintained for 20–30 days for the two higher doses, 

consistent with earlier results obtained using rat islets
27

. However, the 1.5 mm spheres were 

unable to sustain normoglycemia with SC-β cells as they could with rat islets, which can be 

rationalized by the increased xenogeneic immune responses against implants with human 

tissue compared to those with rat tissue. Sustained normoglycemia was achieved for over 70 

days with 1.5 mm TMTD alginate spheres at all three doses tested (Fig. 1e). Human C-

peptide concentrations detected in blood at 3, 6, and 9 weeks during the course of this study 

were consistent with the notion that transplanted SC-β cells remained functional; recipients 

of TMTD alginate spheres showed statistically significant higher levels of human C-peptide 

than the other treatment groups (Supplementary Fig. 4). The C-peptide levels measured in 

the TMTD alginate group are also consistent with previous studies using human cells to cure 

diabetic immunocompromised mouse models
4,33–35

.

To evaluate the immune responses to these spheres, a separate cohort of encapsulated SC-β 

cells were implanted IP into C57BL/6 mice and retrieved after 14 days, a time point for 

monitoring foreign body responses to implanted materials. Cells associated with the outside 

of the spheres were isolated and analyzed by FACS (Fig. 2a). Statistically significant lower 

numbers of macrophages, neutrophils, B cells, and CD8+ T cells were associated with 

TMTD alginate encapsulated SC-β cells (formulation 3) compared to SLG20 (> 60% G, 75–
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220 kDa MW, NovaMatrix™) controls (formulation 1, 2). Implants retrieved after achieving 

glycemic correction for 80–90 days in STZ-C57BL/6J mice (implants from Fig. 1c–e) 

revealed that TMTD alginate spheres had much lower levels of fibrotic deposition (Fig. 2b–

f). Immunofluorescence staining of these retrieved spheres for cellular deposition (DAPI, F-

actin) and myofibroblasts (α-SMA) showed significantly lower levels of cellular deposition 

on TMTD alginate spheres (Fig. 2d, Supplementary Fig. 5 and 6). Proteomic analysis of 

these protein extracts detected 18 collagen isoforms, and 10 out of the 18 detected collagen 

proteins were significantly reduced in TMTD alginate transplants further showing that these 

materials are able to mitigate fibrotic responses (Fig. 2e). Western blot quantification of α-

SMA protein extracted from the retrieved implants also support the conclusion that there is 

lower fibrosis on TMTD spheres (Fig. 2f, and Supplementary Fig. 5d). Finally, consistent 

with these results, histological processing and immunostaining of TMTD encapsulated SC-β 

clusters prior to transplantation and retrieved after over 90 days from STZ-treated C57BL/6J 

mice revealed cell clusters with positive staining for the mature SC-β cell marker human 

insulin; minimal glucagon staining was observed (Fig. 2g and h). Maintenance of insulin 

positive cells post-retrieval suggests that the SC-β cells retaining their differentiation state 

through the entire study.

We next characterized the ability of TMTD alginate spheres to shield the encapsulated SC-β 

cells from the host immune system. Freeze-fracture cryogenic scanning electron microscopy 

(cryo-SEM) of the spheres display a heterogeneous pore structure with pore sizes ranging 

from sub-micron to 1–3 µm in size, a range capable of preventing permeation by cells and 

large proteins (Supplementary Fig. 2b). Intravital imaging of transplanted spheres after 14 

days in B6.129S6-Ccr6tm1(EGFP)Irw/J mice, in which T, B, and dendritic cells express EGFP, 

showed localization of CCR6+ cells to regions of spheres containing SC-β cells, but an 

inability for these cells to make contact and initiate cytotoxic events (Supplementary Fig. 7).

The achievement of long-term glycemic correction in diabetic animal models has previously 

been defined as sustained normoglycemia for more than 100 days
32,36

. To evaluate the 

capacity of TMTD alginate encapsulated SC-β cell transplants to sustain normoglycemia, we 

tracked a separate cohort of transplanted STZ-treated C57BL/6J diabetic mice for 174 days, 

at which point implants were retrieved prior to the onset of complications of STZ treatment 

on the mice (Fig. 3a). Transplanted mice maintained glycemic correction over the entire 

period, even at the end of the experiment, and closely matched the blood glucose levels of 

wild type C57BL/6J mice tracked over a similar period. In addition, fasted human C-peptide 

levels over 100 pmol/L were recorded at multiple points throughout the study (Fig. 3c) and 

are comparable to C-peptide levels of fasted wild–type mice. We also performed a glucose 

challenge on these mice 150 days post-transplantation, and encapsulated SC-β cells restored 

normoglycemia at a rate comparable to wild type mice (Fig. 3b). Host pancreas insulin 

concentrations confirmed that STZ treatment induced hyperglycemia XXXX, and that there 

was a lack of endogenous pancreas regeneration in STZ-treated mice (Fig. 3d). SC-β cell 

implants retrieved after 6 months displayed no signs of fibrotic overgrowth, with minimal 

collagenous and cellular deposition evident on the capsule surface (Fig. 3e–h). Since spheres 

retrieved after 3 months showed minimal levels of fibrosis, this suggests that TMTD alginate 

mitigates immunological responses by inhibiting the activation of innate immune cell 

populations. Finally, immunostaining of implants retrieved 174 days post-transplantation 
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again showed SC-β clusters staining positive for human insulin; these cells showed minimal 

co-localization with glucagon staining (Fig. 3i). Insulin-positive cells also stained positive 

for the nuclear factor Nkx6.1, a β cell marker, adding further evidence that SC-β cells 

maintained their differentiation state throughout the experiment (Fig. 3j).

Here we showed that encapsulated SC-β cells can achieve glucose-responsive, long-term 

glycemic correction (174 days with the mice still euglycemic at the end of the experiment) 

in an immune-competent diabetic animal with no immunosuppression utilizing a modified 

alginate capable of mitigating the foreign body response. To our knowledge, this is the first 

demonstration of long-term glycemic correction with SC-β cells and the longest duration of 

sustained normoglycemia achieved with any encapsulated insulin-producing human cell in a 

robust FBR rodent model. Previously, we showed that alginate spheres with large diameters 

(> 1.5 mm) could mitigate fibrosis and support euglycemia for 6 months with encapsulated 

rat islets in STZ-treated C57BL/6J mice
27

. In this report, we show that these same large 

spheres, when encapsulating human cells, can only support euglycemia for less than one 

month and become fibrosed in this animal model (Fig. 1d and Fig. 2d–f). These results 

highlight the added barrier erected by the increased immunological responses against 

xenogeneic human cell implants in this model, comparable to the aggressive immune 

responses of an autoimmune diabetic patient, and the need to develop materials that can 

mitigate these responses. Here, the combination of both increased sphere size and alginate 

derivatization was critical to mitigate these immunological responses. The TMTD alginate 

used here is part of a group of imidazole-modified alginates that mitigate foreign body 

responses in non-human primates for up to 6 months
28

. Taken together, these results lay the 

groundwork for studies in autoimmune animal models and future human studies with these 

formulations with the goal of achieving long-term replacement therapy for type 1 diabetes. 

We believe that encapsulated human SC-β cells have the potential to provide insulin 

independence for patients suffering from this disease.

MATERIALS AND METHODS

Materials/Reagents

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO) and cell culture reagents 

from Life Technologies (Grand Island, NY), unless otherwise noted. Antibodies: Alexa 

Fluor 488-conjugated anti-mouse CD68 (Cat. #137012, Clone FA-11) and Alexa Fluor 647-

conjugated anti-mouse Ly-6G/Ly-6C (Gr-1) (Cat. #137012, Clone RB6-8C5) were 

purchased from BioLegend Inc. (San Diego, CA). Cy3-conjugated anti-mouse alpha smooth 

muscle actin antibody was purchased from Sigma Aldrich (St. Louis MO). Filamentous 

actin (F-actin)-specific Alexa Fluor 488-conjugated Phalloidin was purchased from Life 

Technologies (Grand Island, NY). Anti-Glucagon cat# ab82270, Anti-insulin cat# ab7842, 

Goat Anti-Guinea pig IgG H&L conjugated Alexa Fluor® 488 ca#ab150185, and Goat Anti-

Mouse IgG H&L conjugated Alexa Fluor® 594 ca#ab150116 were purchased from abcam 

(Cambridge, MA). Anti human C-peptide cat #GN-1D4, and NKX 6.1 cat # F55A12 was 

purchased from Developmental Studies Hybridoma Bank (University of Iowa, Iowa City, 

Iowa). A sampling of spheres used in study were submitted for endotoxin testing by a 
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commercial vendor (Charles River, Wilmington, MA) and the results showed that spheres 

contained < 0.05 EU/ml of endotoxin levels.

Reproducibility

The batches of SC-β cells used for experiments presented in this manuscript ranged between 

40–65% NKX6.1/C-peptide double positive cells and a representative FACS plot for a single 

batch of cells is presented in Figure 1a. In brief, all materials were implanted 

intraperitoneally and retrieved at specified times from immunocompetent streptozotocin 

induced diabetic C57BL/6J or B6.129S6-Ccr6tm1(EGFP)Irw/J male mice in accordance with 

approved protocols and federal guidelines. No blinding or randomization was used. Sample 

processing, staining, FACS, and imaging were performed as detailed below. Shown are 

representative images in all cases at least from N = 15 mice per treatment group. FACS 

analysis was performed on two separate cohorts of N = 5 per treatment group (total of 10 

animals per treatment). Blood glucose correction, serum C-peptide analysis, and in vivo 

Glucose tolerance test studies were performed on three separate cohorts of N = 5 per 

treatment group (total of 15 animals per treatment). Western Blot analysis was performed on 

retrievals from three separate cohorts of N = 5 per treatment group (total of 15 animals per 

treatment). Long-term blood glucose monitoring study was terminated at approximately 6 

months (174 days) to avoid potential complications associated with tumors forming from the 

STZ treatment, which increase in incidence longer than 6 months post STZ administration. 

Quantified data shown are group mean values ± SEM.

Statistical analysis

Data are expressed as mean ± SEM, and N = 5 mice per time point and per treatment group 

and all experiments were at least repeated twice and in most cased three times (total sample 

size ranges between 10–15 animals per treatment group). We have specified in each figure 

caption the number of N’s for each experiment and treatment group. These sample sizes 

where chosen based on previous literature. All animals were included in analyses and 

cohorts where randomly selected. Investigators where not blind to performed experiments. 

Due to technical limitations (instrument throughput) for proteomics analysis 12 samples 

were analyzed per experiment by randomly selecting a collection of four samples per 

treatment group. FACS, Elisa, and western blot data was analyzed for statistical significance 

either by unpaired, two-tailed t-test, or one-way ANOVA with Bonferroni multiple 

comparison correction, unless indicated otherwise, as implemented in GraphPad Prism 5; *: 

p < 0.05, **: p < 0.001, and ***: p < 0.0001.

hESC maintenance and directed differentiation in stirred suspension culture

The HUES8 hESC line was maintained undifferentiated as previously reported
4
 in mTESR1 

(StemCell Technologies Inc.; 05850) in 500ml stir flasks (Corning, VWR; 89089-814) 

placed on a 9-Position stir plate set at rotation rate of 70rpm in a 37°C incubator, 5% CO2, 

and 100% humidity. Cells were seeded at 0.5×106 cells/ml in mTESR with 10µM Y27632 

(Abcam; ab120129), with mTESR1 media changed (w/o Y27632) on the second day and 

cultures were split every third day to keep cluster diameter size <300µm. Cells were 

differentiated with a modified previously published protocol
4
 by seeding at 0.5×106/ml and 

differentiation starting 72 hours later.
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Media changes were as follows - Day1: S1 + 100ng/ml ActivinA (R&D Systems; 338-AC) 

+ 3µM Chir99021 (Stemgent; 04-0004-10)). Day2: S1 + 100ng/ml ActivinA. Days 4,6: S2 

+ 50ng/ml KGF (Peprotech; AF-100-19)). Days 7,8: S3 + 50ng/ml KGF + 0.25µM Sant1 

(Sigma; S4572) + 2µM Retinoic acid (RA) (Sigma; R2625) + 200nM LDN193189 (Day7 

only) (Sigma; SML0559) + 500nM PdBU (EMD Millipore; 524390) + 10µM Y27632. Days 

9, 11, 13: S3 + 50ng/ml KGF + 0.25µM Sant1 + 100nM RA + 10µM Y27632 + 5ng/ml 

ActivinA. Days 15, 16: BE5 + 0.25µM Sant1 + 50nM RA + 1µM XXI (EMD Millipore; 

565790) + 10µM Alk5i II (Axxora; ALX-270-445) + 1µM GC1 (R&D systems; 

211110-63-3) + 20ng/ml Betacellulin (Thermo Fisher Scientific; 50932345) + 10µM ZnSO4 

+ 100nM LDN + 3nM Staurosporine (EMD Millipore; 569396) + 10µM Y27632. Days 18, 

20: BE5 + 1µM XXI + 10µM Alk5i II + 1µM GC1 + 20ng/ml Betacellulin + 10µM ZnSO4 

+ 100nM LDN + 3nM Staurosporine + 10µM Y27632. Days 22–36 (media change every 

second day): CMRLM + 10µM Alk5i II + 1µM GC1 + 10µM Trolox (Calbiochem; CAS 

53188-07-1).

Basal media formulation used for directed differentiation were as follows:

S1 media: MCDB131 (Cellgro; 15-100-CV) + 8mM D-(+)-Glucose (Sigma; G7528) 

+ 2.46g/L NaHCO3 (Sigma; S3817) + 2% FAF-BSA (Proliant; 68700) + ITS-X 

(Invitrogen; 51500056) 1:50.000 + 2mM Glutamax (Invitrogen; 35050079) + 0.25mM 

Vitamin C (Sigma Aldrich; A4544) + 1% Pen/Strep (Cellgro; 30-002-CI).

S2 media: MCDB131 + 8mM D-Glucose + 1.23g/L NaHCO3 + 2% FAF-BSA + ITS-X 

1:50.000 + 2mMl Glutamax + 0.25mM Vitamin C + 1% Pen/Strep

S3 media: MCDB131 + 8mM D-Glucose + 1.23g/L NaHCO3 + 2% FAF-BSA + ITS-X 

1:200 + 2mMl Glutamax + 0.25mM Vitamin C + 1% Pen/Strep

BE5 media: MCDB131 + 20mM D-Glucose + 1.754g/L NaHCO3 + 2% FAF-BSA + 

ITS-X 1:200 + 2mM Glutamax + 1% Pen/Strep + Heparin 10µg/ml (Sigma; H3149).

CMRLM (CMRL 1066 Modified media): CMRL 1066 w/ Phenol Red and NaHCO3, 

w/o L-Glutamine and HEPES (Invitrogen;11530-037) + 2% FAF-BSA + 2mM 

Glutamax + 1% Pen/Strep + 20nM Human insulin (Sigma-Aldrich; I9278) + 70nM 

Human Apo-Transferrin (Sigma-Aldrich; T2036) + Heparin 10µg/ml (Sigma; H3149) 

+ 10µM ZnSO4 (Sigma Aldrich; Z0251) + 5mM Sodium Pyruvate (Invitrogen; 

11360-070) + 1:2000 Chemically Defined Lipid Concentrate (Invitrogen; 11905-031) 

+ 1:1000 Medium Trace Elements A (Cellgro; 25-021-CI) + 1:1000 Medium Trace 

Elements B (Cellgro; 99-175-CI) + 15µM Ethanolamine (Sigma- Aldrich; E0135)

In Vitro glucose stimulated insulin secretion

Glucose stimulated insulin secretion to assess in vitro function was performed as previously 

described
4
. Approximately 5×105 SC-β cells after 7–14 days in stage 6 were washed with 

Krebs buffer (krb; 128 mM NaCl, 5 mM KCl, 2.7 mM CaCl2, 1.2 mM MgCl2, 1 mM 

Na2HPO4, 1.2 mM KH2PO4, 5 mM NaHCO3, 10 mM HEPES (Life Technologies; 

15630080), and 0.1% BSA (Proliant; 68700) in deionized water) then incubated for 2 hr in 2 

mM glucose (Sigma; G7528) in krb. After incubation, cells were sequentially incubated 30 

min each with 2 mM, 20 mM, 2 mM, 20 mM, 2 mM, and 20 mM glucose in krb then with 
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30 mM KCl in krb. The supernatants after each 30 min incubation collected and insulin 

quantified using the Human Ultrasensitive Insulin ELISA (ALPCO Diagnostics; 80-

INSHUU-E01.1) with measurement by a FLUOstar optima spectrophotometer (BMG 

Labtech) at 450 nm. Data was normalized with viable cell counts from a Vi Cell XR 
(Beckman Coulter).

TMTD Alginate Synthesis

A complete description of methods and characterization are provided for TMTD alginate in 

reference 27, where the material is referred to as Z1-Y15. Briefly, 3.5 g of 4-

Propagylthiomorpholine 1,1-Dioxide (1 equiv. 20 mmol) was added to a solution of 2.5g 

TBTA (0.2 equiv, 4 mmol), 750µL Triethylamine (0.5 equiv, 10 mmol), 250mg Copper(I)-

iodide (0.06 equiv, 1.3 mmol) in 50ml methanol. The mixture was cooled to 0 °C and 5.25 

ml of 11-Azido-3,6,9-trioxaundecan-1-amine (1 equiv, 20 mmol) was added. The reaction 

was agitated overnight at 55 °C, and the solvent was removed under reduced pressure the 

next day. The crude reaction was purified by reverse phase (water/acetonitrile) flash 

chromatography on a C18 column, yielding purified TMTD amine. This product was then 

reacted with ultrapure alginate follows: 1.5 g of UP-VLVG (1 equiv, > 60% G, ~25 kDa 

MW, NovaMatrix™) was dissolved in 45ml of water and 675 mg of 2-Chloro-4,6-

dimethoxy-1,3,5-triazine (CDMT, 0.5 equiv) and 840 µL of N-Methylmorpholine (NMM, 1 

equiv) was added. Then 7.65 mmol of the TMTD amine was dissolved in 22.5 ml 

acetonitrile and added to the mixture. The reaction was stirred overnight at 55 °C. The 

solvent was removed under reduced pressure and the solid was dissolved in water. The 

solution was filtered through a pad of cyano functionalized silica (Silicycle) and the water 

was removed under reduced pressure to concentrate the solution. It was then dialyzed 

against a 10,000 MWCO membrane in DI water overnight. The water was removed under 

reduced pressure to give the functionalized alginate.

Fabrication of alginate hydrogel spheres and cell encapsulation

Prior to sphere fabrication, buffers were sterilized by autoclave and alginate solutions were 

sterilized by filtration through a 0.2 um filter. Aseptic processing was implemented for 

fabrication by performing capsule formation in a type II class A2 biosafety cabinet to 

maintain sterility of manufactured microcapsules/spheres for subsequent implantation. An 

electrostatic droplet generator was set up in the biosafety cabinet as follows: an ES series 0–

100 kV, 20 Watt high voltage power generator (Gamma ES series, Gamma High Voltage 

Research, FL, USA) is connected to the top and bottom of a blunt tipped needle (SAI 

Infusion Technologies, IL, USA).

This needle is attached to a 5 mL luer lock syringe (BD, NJ, USA) which is clipped to a 

syringe pump (Pump 11 Pico Plus, Harvard Apparatus, MA, USA) that is oriented vertically. 

The syringe pump pumps alginate out into a glass dish containing a 20 mM barium 5% 

mannitol solution (Sigma Aldrich, MO, USA). The settings of the PicoPlus syringe pump 

are 12.06 mm diameter and 0.2 mL/min flow rate. After the capsules are formed, they are 

then collected and then washed with HEPES buffer (NaCl 15.428g, KCl 0.70g, 

MgCl2*6H2O 0.488g, 50 mL of HEPES (1 M) buffer solution (Gibco, Life Technologies, 
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California, USA) in 2L of DiH2O) 4 times. The alginate capsules are left overnight at 4 °C. 

The capsules are then washed 2 times in 0.8% saline and kept at 4 °C until use.

To solubilize alginates, SLG20 (NovaMatrix, Sandvika, Norway) was dissolved at 1.4% 

weight to volume in 0.8% saline. TMTD alginate was initially dissolved at 5% weight to 

volume in 0.8% saline, and then blended with 3% weight to volume SLG100 (also dissolved 

in 0.8% saline) at a volume ratio of 80% TMTD alginate to 20% SLG100.

For formation of 0.5 mm spheres were generated with a 25G blunt needle, a voltage of 5kV 

and a 200 µl/min flow rate. For formation of 1.5 mm spheres, an 18 gauge blunt tipped 

needle (SAI Infusion Technologies) was used with a voltage of 5–7 kV.

Immediately prior to encapsulation, the cultured SC-β clusters were centrifuged at 1,400 rpm 

for 1 minute and washed with Ca-free Krebs-Henseleit (KH) Buffer (4.7mM KCl, 25mM 

HEPES, 1.2mM KH2PO4, 1.2mM MgSO4×7H2O, 135mM NaCl, pH≈7.4, ≈290 mOsm). 

After washing, SC-β cells were centrifuged again and all supernatant was aspirated. The SC-

β pellet was then re-suspended in the SLG20 or TMTD alginate solutions (described above) 

at cluster densities of 1,000, 250, and 100 clusters per 0.5 ml alginate solution. Spheres were 

crosslinked using a BaCl2 gelling solution and their sizes were controlled as described 

above. Immediately after crosslinking, the encapsulated SC-β clusters were washed 4 times 

with 50 mL of CMRLM media and cultured overnight in a spinner flask at 37°C prior to 

transplantation. Due to an inevitable loss of SC-β clusters during the encapsulation process, 

the total number of encapsulated clusters were recounted post-encapsulation

Transplantation surgeries

All animal protocols were approved by the MIT Committee on Animal Care, and all surgical 

procedures and post-operative care was supervised by MIT Division of Comparative 

Medicine veterinary staff. Immune-competent male (6–14 weeks of age) STZ-induced 

diabetic C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) or male (6–10 weeks of age) 

B6.129S6-Ccr6tm1(EGFP)Irw/J mice (Jackson Laboratory, Bar Harbor, ME) were 

anesthetized with 3% isoflurane in oxygen and had their abdomens shaved and sterilized 

using betadine and isopropanol. Preoperatively, all mice also received a 0.05 mg/kg dose of 

buprenorphine subcutaneously as a pre-surgical analgesic, along with 0.3 mL of 0.9% saline 

subcutaneously to prevent dehydration. A 0.5 mm incision was made along the midline of 

the abdomen and the peritoneal lining was exposed using blunt dissection. The peritoneal 

wall was then grasped with forceps and a 0.5–1 mm incision was made along the linea alba. 

A desired volume of spheres (all materials without islets, as well as SLG20 spheres 

encapsulating rat islets) were then loaded into a sterile pipette and implanted into the 

peritoneal cavity through the incision. The incision was then closed using 5-0 taper-tipped 

polydioxanone (PDS II) absorbable sutures. The skin was then closed over the incision using 

a wound clip and tissue glue.

Blood glucose monitoring

To create insulin-dependent diabetic mice, healthy C57BL/6J mice were treated with 

Streptozotocin (STZ) by the vendor (Jackson Laboratory, Bar Harbor, ME) prior to shipment 

to MIT. The blood glucose levels of all the mice were retested prior to transplantation. Only 
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mice whose 1 hour-fasted blood glucose levels were above 400 mg/dL for two consecutive 

days were considered diabetic and underwent transplantation.

Blood glucose levels were monitored two to three times a week following transplantation of 

islet-containing alginate capsules. To measure the blood glucose of animals we used 

clinically approved and commercially available handheld glucose meters (Clarity One, 

Clarity Diagnostic Test Group, Boca Raton, FL) with a measurement range of 0–600 mg/dL. 

These readers only require very low volumes of blood, (< 2 µl) making it feasible for us to 

perform multiple blood glucose measurements per week from mice. A small drop of blood 

was collected from the tail vein using a lancet and tested using a commercial glucometer 

(Clarity One, Clarity Diagnostic Test Group, Boca Raton, FL). Mice with unfasted blood 

glucose levels below 200 mg/dL were considered normoglycemic. Monitoring continued 

until experimental time points had been reached, at which point they were euthanized and 

the spheres were retrieved.

Human c-peptide monitoring

Human c-peptide levels were monitored every three weeks following transplantation of SC-β 

containing alginate capsules. Mice were fasted for 1 hour before blood collection, at which 

point approximately 100–150 µL of blood was collected retro-orbitally into a serum 

collection tube. Collected blood was centrifuged for 10 minutes at 13000 rpm, serum was 

removed, and stored at 20 °C until assayed. Serum was assayed for human c-peptide using 

the Alpco human c-peptide kit (Catalog #: 80-CPTHU-E10) according to the manufacturer’s 

instructions.

Retrieval of cells, tissues, and materials

At desired time points post-implantation or transplantation (with encapsulated islets), as 

specified in figures, mice were euthanized by CO2 administration, followed by cervical 

dislocation. In certain instances, 5 ml of ice cold PBS was first injected in order perform an 

intraperitoneal lavage to rinse out and collect free-floating intraperitoneal immune cells. An 

incision was then made using the forceps and scissors along the abdomen skin and 

peritoneal wall, and intraperitoneal lavage volumes were pipetted out into fresh 15 ml falcon 

tubes (each prepared with 5 ml of RPMI cell culture media). Next, a wash bottle tip was 

inserted into the abdominal cavity. KREBS buffer was then used to wash out all material 

spheres from the abdomen and into petri dishes for collection. After ensuring all the spheres 

were washed out or manually retrieved (if fibrosed directly to intraperitoneal tissues), they 

were transferred into 50 mL conical tubes for downstream processing and imaging. After 

intraperitoneal lavage and sphere retrieval, remaining fibrosed tissues were also excised for 

downstream FACS and expression analyses.

Imaging of the retrieved material spheres

For phase contrast imaging retrieved materials were gently washed using Krebs buffer and 

transferred into 35 mm petri dishes for phase contrast microscopy using an Evos Xl 

microscope (Advanced Microscopy Group).
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For bright-field imaging of retrieved materials, samples were gently washed using Krebs 

buffer and transferred into 35 mm petri dishes for bright-field imaging using a Leica 

Stereoscopic microscope.

Confocal Immunofluorescence

Immunofluorescence imaging was used to determine immune populations attached to 

spheres. Materials were retrieved from mice and fixed overnight using 4% paraformaldehyde 

at 4°C. Samples where then washed twice with KREBS buffer, permeabilized for 30 min 

using a 0.1% Triton X100 solution, and subsequently blocked for 1 hour using a 1% bovine 

serum albumin (BSA) solution. Next, the spheres were incubated for 1 hour in an 

immunostaining cocktail solution consisting of DAPI (500 nM), specific marker probes 

(1:200 dilution) in BSA. After staining, spheres were washed three times with a 0.1% Tween 

20 solution and maintained in a 50% glycerol solution. Spheres were then transferred to 

glass bottom dishes and imaged using an LSM 700 point scanning confocal microscope 

(Carl Zeiss Microscopy, Jena Germany) equipped with 5 and 10× objectives. Obtained 

images where adjusted linearly for presentation using Photoshop (Adobe Inc. Seattle, WA).

Proteomic Analysis

For this assay four samples were randomly selected from each treatment group for protein 

analysis.

Reduction, Alkylation and Tryptic Digestion—Retrieved samples were suspended in 

urea cell lysis buffer (8 M urea, Tris pH 8.0) and incubated at 4 °C overnight. Equivalent 

amounts of protein were reduced (10 mM dithiothreitol, 56 °C for 45 min) and alkylated (50 

mM iodoacetamide, room temperature in the dark for 1 h). Proteins were subsequently 

digested with trypsin (sequencing grade, Promega, Madison, WI), at an enzyme/substrate 

ratio of 1:50, at room temperature overnight in 100 mM ammonium acetate pH 8.9. Trypsin 

activity was quenched by adding formic acid to a final concentration of 5%. Peptides were 

desalted using C18 SpinTips (Protea, Morgantown, WV) then lyophilized and stored at 

−80 °C.

TMT Labeling—Peptides were labeled with TMT 6plex (Thermo) per manufacturer’s 

instructions. Lyophilized samples were dissolved in 70 µL ethanol and 30 µl of 500 mM 

triethylammonium bicarbonate, pH 8.5, and the TMT reagent was dissolved in 30 µl of 

anhydrous acetonitrile. The solution containing peptides and TMT reagent was vortexed, 

incubated at room temperature for 1 h. Samples labeled with the six different isotopic TMT 

reagents were combined and concentrated to completion in a vacuum centrifuge. For the first 

analysis samples were labeled using the TMT 6plex channels as follows: 126 – TMTD-1.5 

biological replicate 1; 127- TMTD-1.5 biological replicate 2; 128 – SLG-1.5 biological 

replicate 1; 129 – SLG-1.5 biological replicate 2; 130 – SLG-0.5 250 biological replicate 1; 

and 131 – SLG-0.5 biological replicate 2. For the second analysis samples were labeled 

using the TMT 6plex channels as follows: 126 – TMTD-1.5 biological replicate 3; 127- 

TMTD-1.5 biological replicate 4; 128 – SLG-1.5 biological replicate 3; 129 – SLG-1.5 

biological replicate 4; 130 – SLG-0.5 biological replicate 3; and 131 – SLG- 0.5 biological 

replicate 4.
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LC-MS/MS—Peptides were then loaded on a precolumn and separated by reverse phase 

HPLC (Thermo Easy nLC1000) over a 140 minute gradient before nanoelectrospray using a 

QExactive mass spectrometer (Thermo). The mass spectrometer was operated in a data-

dependent mode. The parameters for the full scan MS were: resolution of 70,000 across 

350–2000 m/z, AGC 3e
6
, and maximum IT 50 ms. The full MS scan was followed by 

MS/MS for the top 10 precursor ions in each cycle with a NCE of 32 and dynamic exclusion 

of 30 s. Raw mass spectral data files (.raw) were searched using Proteome Discoverer 

(Thermo) and Mascot version 2.4.1 (Matrix Science). Mascot search parameters were: 10 

ppm mass tolerance for precursor ions; 0.8 Dathe fragment ion mass tolerance; 2 missed 

cleavages of trypsin; fixed modification was carbamidomethylation of cysteine; variable 

modification was methionine oxidation. TMT quantification was obtained using Proteome 

Discoverer and isotopically corrected per manufacturer’s instructions.

Histological processing for H&E and Masson’s Trichrome staining

Retrieved materials where fixed overnight using 4% paraformaldehyde at 4°C. After 

fixation, alginate sphere or retrieved tissue samples were washed using 70% alcohol. The 

materials where then mixed with 4 degrees calcium-cooled Histogel (VWR, CA # 

60872-486). After the molds hardened, the blocks were processed for paraffin embedding, 

sectioning and staining according to standard histological methods.

Histological immunostaining

Parafin embedded sectioned samples were stained for the following: human insulin (Anti-

insulin cat# ab7842, abcam), human c-peptide (C-peptide cat #GN-1D4, Developmental 

Studies Hybridoma Bank, University of Iowa), NKX 6.1 (cat # F55A12, Developmental 

Studies Hybridoma Bank, University of Iowa), human glucagon (Anti-Glucagon cat# 

ab82270, abcam). Cellular nuclei were stained with DAPI (Life Technologies).

Parafin slides were deparaffinized through subsequent incubations in the following solvents 

(Xylene 5min 2× 100% ETOH 2min ×2 95% 2 min ×2 70% 2min ×2 d-water). Antigen 

retrieval was done by incubating sections for 30min in ice cooled PBS, and then blocking 

with 3% horse serum to block for 30 min. Antibody mixtures were then applied as follows: 

Primary A - Mix together KKX 6.1, 1 to 500 3% & horse serum and c-peptide, 1 to 500. 

Primary B - Mix together Human insulin 1 to 500 and glucagon 1 to 200, incubate for 2 

hours and then Wash in PBS 10min×4. Secondary A - Add anti-mouse AF594 1 to 500 and 

anti-rat AF488 1 to 500. Secondary B - Add anti-guinea pig AF488 1 to 500 with anti-

mouse AF594 1 to 500 incubate for 30min then wash 10min 4×. Slides were then stained 

with DAPI and coverslips mounted using prolong gold antifade (Life Technologies, 

Carlsbad, CA)

Western Blotting

Protein was extracted directly from materials for western blot analysis. For protein analyses, 

retrieved materials were prepared by immersing materials in Pierce RIPA buffer (Cat. 

#89901, Thermo Scientific) with protease inhibitors (Halt Protease inhibitor single-use 

cocktail, Cat. #78430, Thermo Scientific) on ice, and then lysed by sonication (for 30 

seconds on, 30 seconds off, twice at 70% amplitude). Samples were then subjected to 
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constant agitation for 2 hours at 4°C. Lysates were then centrifuged for 20 min at 12,000 

rpm at 4°C, and protein-containing supernatants were collected in fresh tubes kept on ice. In 

samples from fat tissue, an excess of fat (a top layer on the supernatant) was first removed 

before supernatant transfer. 20 µg protein (quantified by BCA assay, Pierce BCA protein 

assay kit, Cat. #23225, Thermo Scientific) for each lane was boiled at 95 °C for 5 min and 

electrophoresed on SDS-polyacrylamide gels (Any kD 15-well comb mini-gel, Biorad, Cat. 

#456-9036) and then blotted onto nitrocellulose membranes (Biorad, Cat. #162-0213). Blots 

were probed with anti-αSmooth Muscle actin antibody (1:400 dilution, Rabbit polyclonal to 

alpha smooth muscle actin; Cat. #ab5694, AbCam), and anti-β-actin antibody (1:4000 

dilution, monoclonal anti-β-actin antibody produced in mouse; Cat. #A1978, Sigma Aldrich) 

as a loading control followed by donkey anti-rabbit (1:15,000 dilution, Cat. #926-32213, Li-

Cor) and goat anti-mouse (1:15,000 dilution, Cat. #926-68070, Li-Cor) fluorophore-

conjugated secondary antibodies. Antibody-antigen complexes were visualized using 

Odyssey detection (Li-Cor, Serial No. ODY-2329) at 700 and 800 nm wavelengths.

FACS analysis

Single-cell suspensions of cells from the surfaces of freshly retrieved capsules were prepared 

using a gentleMACS Dissociator (Miltenyi Biotec, Auburn, CA) according to the 

manufacturer’s protocol. Single-cell suspensions were prepared in a passive PEB 

dissociation buffer (1X PBS, pH 7.2, 0.5% BSA, and 2 mM EDTA) and suspensions were 

passed through 70 µm filters (Cat. #22363548, Fisher Scientific, Pittsburgh, PA). This 

process removed the majority of cells adhered to the surface (>90%). The cells were then 

centrifuged at 300–400g at 4°C and resuspended in a minimal volume (~50 µl) of 

eBioscience Staining Buffer (Cat. #00-4222) for antibody incubation. All samples were then 

co-stained in the dark for 25 min at 4°C with two of the fluorescently tagged monoclonal 

antibodies specific for the cell markers CD68 (1 µl (0.5 µg) per sample; CD68-Alexa647, 

Clone FA-11, Cat. #11-5931, BioLegend), Ly-6G (Gr-1) (1 µl (0.5 µg) per sample; Ly-6G-

Alexa-647, Clone RB6-8C5, Cat. #108418, BioLegend), CD11b (1 µl (0.5 µg) per sample; 

or CD11b-Alexa-488, Clone M1/70, Cat. #101217, BioLegend), CD19 (1 µl (0.5 µg) per 

sample; CD19-Alexa-647, Clone 6D5, Cat. #115522, BioLegend), IgM (1 µl (0.5 µg) per 

sample; IgM-FITC, Clone RMM-1, Cat. #406506, BioLegend), CD8 (1 µl (0.5 µg) per 

sample; CD8-Alexa647, Clone 53-6.7, Cat. #100724, BioLegend), or NK1.1 (1 µl (0.5 µg) 

per sample; NK1.1-Alexa488, Clone PK136, Cat. #108718, BioLegend). Two ml of 

eBioscience Flow Cytometry Staining Buffer (Cat. #00-4222, eBioscience) was then added, 

and the samples were centrifuged at 400–500g for 5 min at 4°C. Supernatants were removed 

by aspiration, and this wash step was repeated two more times with staining buffer. 

Following the third wash, each sample was resuspended in 500 µl of Flow Cytometry 

Staining Buffer and run through a 40 µm filter (Cat. #22363547, Fisher Scientific) for 

eventual FACS analysis using a BD FACSCalibur (Cat. #342975), BD Biosciences, San 

Jose, CA, USA). For proper background and laser intensity settings, unstained, single 

antibody, and IgG (labeled with either Alexa-488 or Alexa- 647, BioLegend) controls were 

also run.
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Intravital Imaging

For intravital imaging, SC-β containing hydrogels of 0.5 mm and 1.5 mm sizes were 

fabricated with Qdot 605 (Life technologies, Grand Island, NY) and surgically implanted 

into B6.129S6- Ccr6tm1(EGFP)Irw/J mice as described above. After 14 days post implantation, 

the mice were placed under isoflurane anesthesia and a small incision was made at the site 

of the original surgery to expose beads. The mice were placed on an inverted microscope 

and imaged using a 25×, N.A. 1.05 objective on an Olympus FVB-1000 MP multiphoton 

microscope at an excitation wavelength of 860 nm. Z-stacks of 200 µm (10 µm steps) were 

acquired at 2-minute intervals for time series of 20 – 45 minutes depending on the image. 

The mice were kept under constant isoflurane anesthesia and monitored throughout the 

imaging session. Obtained images were analyzed using Velocity 3D Image Analysis 

Software (Perkin Elmer, Waltham, MA).

In vivo glucose challenges (GSIS)

Mice were fasted overnight (12 hours) prior to glucose challenge. On the day of the 

challenge, fasting blood glucose levels were measured and then mice were injected via tail-

vein with a 30 g/L solution of glucose at a dose of 200 mg/kg. Blood glucose was then 

monitored every 15 minutes for 2 hours.

Pancreas removal and insulin quantification

After 174 days, mice treated with SC-β cells encapsulated in TMTD-alginate were 

euthanized and the pancreas of each mouse removed. Each pancreas was weighed and then 

placed into vial with a stainless steel ball while keeping samples frozen in liquid nitrogen. A 

volume of 3 ml of acid ethanol was added to each vial and samples were homogenized on a 

GenoGrinder at 1000 rpm at 1 min increments until tissue was pulverized. Sample vials are 

held by aluminum blocks that can be placed in liquid nitrogen between each cycle to keep it 

cold. Vials were then centrifuged at 2400 rpm at 4 °C for 30 min. The supernatant (now 

containing insulin) was removed and stored, while the vial is filled with more acid ethanol 

and vortexed. The vials were left overnight shaking at 4°C. Again, vials were centrifuged at 

2400 rpm at 4°C for 30 min and the supernatant was collected and added to the previously 

stored supernatant. Acid ethanol was again added to the vials, vortexed, incubated overnight, 

centrifuged, and supernatant collected and combined. Supernatant solution was evaporated 

using a Genevac EZ-2 plus. Samples were stored at −80°C until used. Prior to insulin 

quantification, samples were resuspended in PBS and quantified using a mouse insulin 

ELISA kit (Alpco catalog #: 80-INSMS-E10) according to manufacturer’s instructions. This 

same procedure was repeated for healthy, wild type C57BL/6J mice and a STZ treated 

C57BL/6J mice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
SC-β cells encapsulated with TMTD alginate sustain normoglycemia in STZ-treated 

immune competent C57BL/6J mice. (a) SC-β cells were generated using the differentiation 

protocol described
4
. FACS analysis shows surface markers on cells at indicated 

differentiation stages. Data is representative of 10 separate differentiations from the HUES8 

stem cell line. (Editor: Stage 1–3 is previously described
4
 and not relevant to this 

manuscript) (b) Brightfield images of encapsulated SC-β cells.. Scale bar = 400 µm, N = 15. 

(c–e) SC-β cells encapsulated as shown in (b) were transplanted into the intraperitoneal 

space of STZ-treated C57BL/6 mice, and blood glucose concentrations were measured at 

indicated times. (c) 500 µm SLG20 alginate microcapsules; (d) 1.5 mm SLG20 alginate 

microspheres; (e) 1.5 mm TMTD alginate spheres. Three different doses of cell clusters 

(100, 250, and 1000 cluster per mouse) were implanted under each encapsulation condition. 

The red dashed line indicates the blood glucose cutoff for normoglycemia in mice. For 

reference 250 clusters equates to approximately 1 million cells. Error bars, mean ± s.e.m. 

Quantitative data shown is the average of N = 5 mice per treatment. All experiments were 

repeated three times for a total of N = 15 mice per treatment.
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Figure 2. 
SC-β cells encapsulated with TMTD alginate elicit weaker immunological and fibrotic 

responses in immune competent C57BL/6J mice. (a) FACS analysis of encapsulated SC-β 

cell implants retrieved 14 days after intraperitoneal transplantation in C57BL/6 mice, N = 

10. Red asterisks specify statistical significance between indicated groups while black 

asterisks specify significance against the SLG 0.5 group. (b–d) Dark-field (N=15) (b), 

brightfield (N=15) (c) and Z-sacked confocal immunofluorescence imaging (DAPI shown 

blue, F-actin shown in green, α-SMA shown in red) (d) of implants retrieved after 90 days 
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from the STZ-treated C57BL/6J mice presented in Figure 1c–e, (N = 15) (e) The implants 

containing 250 clusters were retrieved from the STZ-treated C57BL/6J mice shown in 

Figure 1c–e 90 days after implantation at XX days after implantation. Implant lysates were 

subjected to proteomic analysis XXX analysis. (N = 4 per mice treatment; analysis was 

performed on two separate cohorts for a total of 8 mice per treatment). Each column in the 

heatmap represents an individual mouse from the respective treatment group. (f) α-SMA 

protein isolated from implants retrieved from the STZ-treated C57BL/6J mice shown in 

Figure 1c–e was analyzed by immunoblot. Graph shows lower levels of α-SMA for TMTD 

1.5 mm spheres. (N = 5) (g-h) Pre-transplantation (g) and post-retrieval (h) histological 

sectioning and immunostaining of encapsulated SC-β cells from implants retrieved at 90 

XXXX days after implantation from the STZ-treated C57BL/6J mice shown in Figure 1c–e 

(N = 15). Scale bar = 20 µm. All experiments were performed at least three times with the 

exception of FACS and proteomics quantification, which were each repeated twice. One-way 

ANOVA with Bonferroni multiple comparison correction, = p < 0.0001. Scale bar in a = 2 

mm. Scale bar in b and c = 300 µm.
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Figure 3. 
SC-β cells encapsulated with TMTD alginate sustain long-term normoglycemia in STZ-

treated C57BL/6J mice. (a) Blood glucose levels were measured in STZ-treated C57BL/6 

mice implanted with SC-β cells encapsulated with TMTD alginate at a dose of 250 clusters/

mouse. Blood glucose levels were also measured of a Healthy C57BL/6J mouse cohort not 

treated with STZ. Shown are cohorts of N = 5 mice; experiment was repeated 3 times for a 

total of 15 mice per condition. (b) The mice shown in (a), together with a cohort of STZ-

treated non-implanted mice, were subjected to IVGTT 174 days after implantation. (c) 
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Human C-peptide levels were measured in the blood of the STZ-treated C57BL/6 mice 

implanted with SC-β cells shown in (a). (d) Quantification of mouse insulin extracted from 

the pancreas of mice (N = 5) in each treatment group. TMTD alginate treated mice had their 

pancreas removed after 174 days post-implantation, while the pancreas of healthy and STZ-

treated non-implanted C57BL/6 mice were taken at 8–10 weeks. at XX time point. (e–f) 

Brightfield (e) and Z-sacked confocal immunofluorescence imaging (e) (DAPI shown blue, 

F- actin shown in green, α-SMA shown in red) of implants retrieved at XX time point from 

the mice presented in (a–c). Scale bar = 400 µm (g-h). Masson’s thrichrome (g), and H&E 

(h) histological analysis of implants retrieved after 174 days from the mice presented in (a–
c); Scale bar = 2 mm. (i-j) immunofluorescence analysis of implants retrieved after 174 days 

from the mice presented in (a–c). (i) DAPI shown blue, Insulin shown in green, and 

Glucagon shown in red. Scale bar = 50 µm (j) DAPI shown blue, NKX6.1 shown in green, 

and C-peptide shown in red. Scale bar = 50 µm. Error bars, mean ± s.e.m. N = 5 mice per 

treatment and all experiments were performed at least three times for a total of 15 mice per 

treatment. Insulin extraction data: one-way ANOVA with Bonferroni multiple comparison 

correction, = p < 0.0001.
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