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Abstract

Objective

So-called cold physical plasmas for biomedical applications generate reactive oxygen and

nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore,

the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and

its predecessor model (kINPen 09) were assessed.

Methods

Inner egg membranes of fertilized chicken eggs received a single treatment with either the

kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of

incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and

1000 erythrocytes per egg were evaluated for the presence of polychromatic and normo-

chromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg

test for micronuclei induction, HET-MN). At the same time, the embryo mortality was docu-

mented. For each experiment, positive controls (cyclophosphamide and methotrexate) and

negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant

potential of the blood plasma was assessed by ascorbic acid oxidation assay after

treatment.

Results

For both plasma sources, there was no evidence of genotoxicity, although at the longest

plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxi-

dant potential in the egg’s blood plasma was not significantly reduced immediately (p =

0.32) or 1 h (p = 0.19) post exposure to cold plasma.
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Conclusion

The longest plasma treatment time with the kINPen MED was 5–10 fold above the recom-

mended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects

for any plasma treatment time using the either kINPen 09 or kINPen MED. The data pro-

vided with the current study seem to confirm the lack of a genotoxic potential suggesting

that a veterinary or clinical application of these argon plasma jets does not pose mutagenic

risks.

Introduction
Transportable cold physical plasma sources, operating in the range of the body temperature
(so-called cold plasma), pose new therapeutic options in medicine. For example, high potential
is seen in the treatment of chronic wounds [1–3]. The kINPen cold plasma source used in this
study has been shown to generate reactive oxygen and nitrogen species (ROS/RNS) in the gas
phase [4–6] that diffuse into and react with liquids [7–9] and cells [10–12]. Thus, the oxidation
of proteins and lipids is considered to be the plasma’s main route of action[13]. At low concen-
trations, these species contribute to cell signaling [14]. At high concentrations, they are cyto-
toxic, effectively inducing apoptosis [15–17]. Importantly, permanent and/or excessive
oxidative stress, such as smoking or extensive exposure to UV-light, is known to be mutagenic
[18]. It is therefore important to understand the genotoxic risks of plasma-derived ROS/RNS
before plasma can be offered as standard therapy in clinics.

The high reactivity of oxygen radicals has two reasons. Thermodynamically, they are oxidiz-
ing agents. Kinetically, oxygen radicals and many other charged gas radicals undergo one-elec-
tron reactions which are much faster than more complex redox reactions [19]. As such, highly
reactive species, for example hydroxyl radicals, even oxidize seemingly inert materials such as
elemental gold [20]. However, vertebrate systems are equipped with an arsenal of options for
ROS/RNS detoxification [21]. Yet, this defense system can be overcome by high concentrations
of reactive molecules and some in vitro studies suggested DNA damage to be present following
exposure to cold plasmas [22–29]. Yet, final conclusions of these studies using non-OECD tests
are somewhat limited. First, they were carried out only in cell culture models. Second, they uti-
lized read-out system such as cytochrome C release, Comet-assay, or the ATM/ATR system
that are not exclusively linked only to DNA-damage but also to general oxidative stress and
apoptosis [30–32]. By contrast, mutagenicity studies carried out and according to OECD
guidelines concluded a lack of permanent DNA damage following exposure to cold plasma [33,
34], also for the plasma jet used in this study [35]. Nonetheless, all studies mentioned were in
vitro work, and such test models do not allow for biologically relevant conclusions in vertebrate
organisms.

We utilized fertilized chicken eggs and well-described mutagenic assays of blood cells to
investigate the genotoxic hazard in these eggs following exposure to two atmospheric pressure
argon plasma jets. The kINPen MED was approved as a class IIa medical device. Its use is indi-
cated for the treatment of chronic or infected wounds as well as pathogen-related diseases of
the skin. Its predecessor, the kINPen 09, has previously been used for veterinary purposes and
differs in terms of energy output. Using the highly-sensitive chorioallantoic membrane of fertil-
ized chicken eggs both jets have been shown to be tolerated well, suggesting the plasma’s com-
patibility with tissues [36]. Studies using porcine and human tissues underlined this notion
[37, 38] which was a prerequisite for first observational studies in humans [2]. To complement
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the risks assessment made with the kINPen MED and kINPen 09, we here investigated their
genotoxic potential.

Materials and Methods

The HET-MNmodel
Due to lack of pain perception until day 11 of incubation [39], the hen’s egg test for micronu-
cleus induction (HET-MN) is not classified as an animal experiment [40]. Fertilized, pathogen-
free eggs were taken from Leghorn chickens (Lohmann Tierzucht, Germany). Eggs with intact
shells were selected, weighted, and disinfected with 70% ethanol. Subsequently, eggs were incu-
bated at 37.5 ± 1.0°C with a relative humidity of 62.0 ± 7.5% in a thermal incubator (J. Hemel
Brutgeräte, Germany). From day one to day six, eggs were rotated automatically in a three-
hour interval (Fig 1A). On day seven, they were placed in a vertical position with the blunt pole
on top and further incubated without rotation. Following recent suggestions [41], the applica-
tion of the test substances was carried out on day eight while blood was collected on day 11. On
day eight, eggs were screened with a Powerlux-Lamp (Schier-lamp, J. Hemel Brutgeräte, Ger-
many) for presence of blood vessels, and unfertilized eggs were sorted out. Immediately before
opening the egg shell, the eggs were disinfected on the blunt pole to prevent penetration of
microorganisms during preparation of the egg [42] because infection has been linked to
increase embryo mortality [43]. Using the Schier-lamp, the boundaries of the air chamber were
marked with a pen to prevent any violation of the inner shell membrane during the preparation
process. The egg shell was carefully removed under aseptic conditions to uncover the inner egg
membrane which was chosen for cold plasma application because it is considered to be very
sensitive [32]. After exposure to the test agents, the egg opening was covered with a bacteria-
impermeable, sterile, transparent Tegaderm dressing (3M, Germany), and incubated for three
days before blood was collected to determine genotoxic effects. At the same time, embryo mor-
tality was assessed.

Cold plasma jets
Two atmospheric pressure argon plasma jets, the kINPen 09 and the kINPen MED (both neo-
plas, Germany), were tested. These sources were operated at a feed gas flow rate of 5 standard
liters of argon per minute. In contrast to the pulsed (on:off cycle = 1:1) operation of the kINPen
MED, the kINPen 09 generates its plasma in a continuous mode, resulting in higher energy
densities. Operation details and parameters were previously described [44]. The gas tempera-
tures at the typical working distance (8 mm effluent length) were 45°C for the kINPen 09 [45]
and 37°C for the kINPen MED [46], respectively. Treatment was carried out manually. To
ensure that during exposure the distance of either of the jets was not lower than 8 mm, an auto-
clavable spacer was used.

Exposure of the inner shell membrane to cold plasma or test agents
The eggs were exposed on day eight. A 72 h contact time was allowed for all substances because
it yields an high MNE II-rate, a low toxicity, and a high xenobiotic metabolisms [41, 47, 48].
Moreover, we wanted to investigate the long-term effects of plasma by identifying possible
mutagenic effects of a single plasma exposure regimen which exceeded the recommended
application time by far [1, 46, 49]. Prior to plasma exposure (Fig 1B) and to reduce dehydra-
tion, 100 μl of 0.9% NaCl solution was applied. To account for any effect of the NaCl applica-
tion alone, the solution was added to the inner membrane also immediately after (instead of
before) exposure to plasma for one treatment condition (5 min, kINPen MED). Exposure
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times for the kINPen 09 (30 s per spot) were 1.5 min (3 spots), 2.0 min (4 spots), or 2.5 min (5
spots), and for the kINPen MED (60 s per spot) 3 min (3 spots), 4 min (4 spots), 5 min (5
spots) or 10 min (10 spots). Spots were treated manually by holding the jet steady above each
spot for 30 s (kINPen 09) or 60 s (kINPen MED) without any movement and with the visible
tip of the effluent touching the egg’s surface (about 10 mm for the kINPen MED and 11 mm
for the kINPen 09 but not less than 8 mm which was achieved by using an autoclavable spacer).
Spots were treated one after the other with the spots being 5-10 mm apart from each other with
the total treatment area being about 2 cm2. Several spots were treated to prevent perforation of
the sensitive egg membrane, and different treatment times per spots (30 s for the kINPen 09
and 60 s for the kINPen MED) were chosen according to the plasma’s intensity (continuous
mode in the kINPen 09 vs. pulsed operation in the kINPen MED). Only the visible plasma
effluent was in contact with the inner egg’s membrane (Fig 1B). Positive controls were exposed
to 100 μl PBS containing either 50 μg/egg of CYP450-activated, pro-mutagenic cyclophospha-
mide (CAS 50-18-0; Baxter Oncology, Germany) [50], or 5μg/egg of CYP450-independent,
pro-mutagenic methotrexate (CAS 59-05-2; TEVA, Germany) [51]. Negative controls were
exposed to either 100 μl 0.9% NaCl alone or non-ionized argon gas (flow rate of 5 standard
liters per minute). After exposure, eggs were continued to be incubated for 3 days without rota-
tion. Eleven independent experiments were conducted with three eggs per treatment group
and experiment (1.5, 2.0, 2.5 min with the kINPen 09; 3, 4, and 5 min with the kINPen MED;
NaCl negative control; 5 min of argon gas alone; and cyclophosphamide positive control).
Within these eleven experiments, eight experiments also included 10 min (with NaCl addition

Fig 1. Cold plasma treatment of the HET-MN. (A) The experimental chronology is shown. (B) Treatment of the inner
egg membrane with the kINPen MED. (C) A representative blood smear and Giemsa staining is shown. Labeling refers
to micronucleated (1), normochromic (2), late polychromatic (3), and primitive (4) erythrocytes.

doi:10.1371/journal.pone.0160667.g001
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before treatment) and 5 min (with NaCl addition after treatment) of kINPen MED plasma
exposure with three eggs per group and experiment. Three experiments included 10 min treat-
ment of argon gas, and seven experiments included treatment with methotrexate, both with
three eggs per group and experiment. The total number of eggs among all experimental groups
is given in Table 1 with differences to the planed number of eggs being attributed to sorting out
eggs that were either unfertilized or damaged during the preparation procedure.

Micronuclei test
On day 11, blood from the umbilical artery was collected using a micro-hematocrit capillary
(Brand, Germany). Subsequently, blood smears and panoptic May-Grünwald-Giemsa staining
were carried out [52]. For each blood smear, 1000 erythrocytes were investigated for the pres-
ence of micronuclei, nuclear aberrations, and/or binucleation using an H 500 microscope with
100x oil immersion objective (Helmut Hund, Germany). Erythrocyte staging (Fig 1C) was car-
ried out as previously described [40, 53, 54]. The sum of micronucleated polychromatic and
normochromatic definite erythrocytes was obtained and used as an index for genomic toxicity.
According to Müller and Streffer [55], a micronucleus is a small nucleus present in addition to
the main nucleus. Micronuclei are similar to the morphology of cell nuclei and display a round
to oval form with clear borders and their size being up to one third of the diameter of the cell
nucleus. Additionally, cells with nuclear aberrations and binucleated cells were counted, as
they can be alert parameters for genotoxicity Cells were counted as binucleated if they showed
two uniform main nuclei, whereas non-uniform multiple nuclei without a main nucleus were
counted as nuclear aberrations, if not fulfilling the criteria for micronuclei [31].

The antioxidant potential (AOP) in the extra-embryonic compartment
On day 11 and immediately after exposure to control agents or 10 min of plasma treatment (kIN-
PenMED), the inner egg’s membrane was removed and blood was collected into heparinized

Table 1. Frequencies of nuclear aberrations, binucleated cells, andmicronucleated definite erythrocytes.

Test Agent kINPen Plasma
(min)

Eggs
(n)

Nuclear aberrations
(‰)

Binucleated cells
(‰)

micronucleated erythrocytes (‰):

polychromatic normochromic sum

kINPen 09 1.5 30 0.00 ± 0.00 0.30 + 0.79 0.03 + 0.18 0.13 + 0.35 0.17 + 0.38

2.0 30 0.00 ± 0.00 0.29 ± 0.66 0.11 ± 0.31 0.18 ± 0.39 0.29 ± 0.46

2.5 30 0.11 ± 0.31 0.29 ± 0.53 0.04 ± 0.19 0.21 ± 0.50 0.25 ± 0.52

kINPen MED (NaCl before
treatment)

3 29 0.00 ± 0.00 0.61 ± 1.77 0.11 ± 0.31 0.29 ± 0.53 0.39 ± 0.63

4 29 0.07 ± 0.26 0.46 ± 1.04 0.00 ± 0.00 0.14 ± 0.36 0.14 ± 0.36

5 29 0.00 ± 0.00 0.17 ± 0.38 0.08 ± 0.28 0.17 ± 0.38 0.25 ± 0.44

10 19 0.00 ± 0.00 0.36 ± 1.21 0.09 ± 0.30 0.18 ± 0.40 0.27 ± 0.47

kINPen MED (NaCl after
treatment)

5 19 0.00 ± 0.00 0.24 ± 0.56 0.12 ± 0.33 0.24 ± 0.44 0.35 ± 0.49

NaCl - 30 0.00 ± 0.00 0.17 ± 0.38 0.00 ± 0.00 0.30 ± 0.70 0.30 ± 0.70

Argon gas only 5 31 0.00 ± 0.00 0.26 ± 0.68 0.03 ± 0.18 0.16 ± 0.73 0.19 ± 0.75

10 9 0.00 ± 0.00 0.44 ± 1.01 0.00 ± 0.00 0.22 ± 0.44 0.22 ± 0.44

Cyclophosphamide - 30 1.21 ± 1.37 4.31 ± 5.24 2.79 ± 3.27 9.66 ± 4.07 12.21 ± 6.16

Methotrexate - 18 1.12 ± 1.17 3.29 ± 3.22 7.59 ± 5.09 1.76 ± 1.60 9.35 ± 5.23

Mean ± S.D were given for all parameters (nuclear aberrations, binucleated cells, and micronucleated erythrocytes), statistically significant differences

compared to NaCl controls were only given for cyclophosphamide (p<0.001) and methotrexate (p<0.001) but not any other treatment regimen (p>0.05) as
evaluated using one-way ANOVA with Dunnett post-testing.

doi:10.1371/journal.pone.0160667.t001
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capillaries (Radiometer Medical, Denmark). Alternatively, collection took place 1 h after plasma
treatment to account for a possible delay in oxidative processes. Day 11 was chosen because it is
technically challenging to draw blood from the CAM capillaries at earlier time points whereas
from day 12 on the embroy’s nervous system develops, making this approach an in vivo animal
model. The early sampling time point (immediately after treatment and due to experimental
handling about 10 min after exposure) was chosen because reactive species quickly react with
antioxidants, making a reduced AOP in blood plasma likely. The second blood sampling time
point (60 min after exposure) was chosen to investigate late alteration or even recovery of the
blood’s AOP after plasma treatment. Drawing blood from the same egg multiple times is not pos-
sibility as the veins are very fragile [51]. As positive control, UV-A radiation was generated using
a Spectroline EA-160/FE at 50 Hz and 0.17 A (Spectronics Corporation, USA) resulting in a final
power of 6 W longwave UV-A at 365 nm (distance: 2 cm). As negative control 0.9% NaCl was
applied. Capillaries were gently mixed, centrifuged at 1000 x g for 10 minutes, and the blood
plasma was stored at -70°C until analysis. The water-soluble antioxidant potential was deter-
mined by measuring the blood plasma’s capability to oxidize exogenously added ascorbic acid
using a PHOTOCHEM device (Analytik Jena, Germany) as previously described [56]. The eggs
used for this study were not the eggs that were used to assess genotoxicity but were bred indepen-
dently for this assay.

Statistics
To statistically compare the results of each, the nuclear aberrations, the number of binucleated
cells, the number of micronucleated erythrocytes, and the AOP-values, one-way analysis of
variances was used with Dunnett post-testing correcting for multiple comparison with �, ��, and
��� indicating p-values of<0.05,<0.01, and<0.001, respectively. Analysis was carried out
using prism 6.07 (Graphpad software, USA).

Results

Irritation of the CAM after exposure to different test agents
The irritation of the CAM gives a qualitative measure of disturbed tissue owing to exposure to
the test agent in question (Fig 2). Three days after exposure, both the negative (0.9% NaCl solu-
tion) and the positive (cyclophosphamide and methotrexate) controls did not result in any irri-
tation of the CAM (Fig 2A–2C). In contrast, the physical pressure of the argon gas flow alone
caused disturbed tissue pattern on the CAM (Fig 2D). Plasma treatment with both the kINPen
MED and kINPen 09 resulted in similar structures (Fig 2E and 2F).

Evaluation of the HET-MN test model
The HET-MN is a well-established system to test the genotoxicity [40]. The mutagenic agents
cyclophosphamide and methotrexate have often been used as positive controls. The application
of these substances yielded a mutagenic rate of micronucleated erythrocytes of 12.21‰ ± 6.16
‰ and 9.35‰ ± 5.23‰, respectively (Table 1). Although thresholds and standard deviations
are lab-specific, these results are about similar to what others have found [51, 57]. Nuclear
aberrations and the number of binucleated cells in positive controls were significantly
increased (p<0.001 for cyclophosphamide; p<0.001 for methotrexate) compared to both
NaCl-treated controls and plasma-treated samples. Test validity was given as well for 0.9%
NaCl solution (0.17‰ ± 0.38‰). The number of micronuclei in NaCl-treated samples (0.30
‰ ± 0.70‰) was very low and comparable with that of double-distilled water in previous
reports (1.00‰ ± 0.90‰) [57].

Investigating the Mutagenicity of a Cold Plasma Jet

PLOS ONE | DOI:10.1371/journal.pone.0160667 September 1, 2016 6 / 15



Evaluation of the mutagenicity of cold plasma generated by the kINPen
Reactive species are known to be mutagenic at very high concentrations. The plasma of the
tested two types of plasma jets is ignited by using argon as feed gas. Accordingly, the argon gas
was tested for its genotoxic effects (Table 1). Both treatment times (5 min and 10 min) did not
induce an enhanced micronuclei formation (0.19 ± 0.75‰ and 0.22 ± 0.44‰, respectively).
No nuclear aberrations were found in erythrocytes, and the frequency of binucleated cells
(0.26 ± 0.68‰ and 0.44 ± 1.01‰, respectively) was significantly (p<0.001) different from
positive controls. No exposure to the plasma of the kINPen 09 exceeded the micronuclei for-
mation compared to the negative controls. Nuclear aberrations were only found for 2.5 min of
treatment (0.11‰ ± 0.31‰) but were about 10 fold lower compared to the positive controls.
The number of binucleated cells was similar to numbers determined in the cells of the hen’s
egg receiving argon gas controls, indicating a negligible influence of the plasma itself. This was
also the case for the nuclear aberrations found in erythrocytes following treatment with the
kINPen MED. Similar to the kINPen 09, nuclear aberrations were not present, except in the
4 min group (0.07‰ ± 0.26‰) which was not differing significantly to the NaCl group
(p = 0.16). Importantly, the number of cells with micronuclei was not significantly different
from negative controls for any plasma treatment time (3–10 min). Within these samples, the
highest micronuclei frequency was found to be 0.39 ± 0.63‰ for 3 min of plasma treatment.
To reduce dehydration, NaCl solution (0.9%) was used as a negative control and for moistening
purposes before or after the plasma treatment. While in the former regimen, evaporation of the
water of the NaCl solution took place, positively regulating the exogenous osmotic pressure,
the latter regimen was used to control for this effect. However, similar negative results between
both regimes suggest such processes to be of minor importance. This was also true for CAM

Fig 2. CAM irritation of different test agents.Given are representative images of the CAM three days after exposure
to 0.9% NaCl solution (A), cyclophosphamide (B), methotrexate (C), argon gas treatment for 10 min (D), kINPen MED
plasma treatment for 10 min (E), kINPen 09 plasma treatment for 2.5 min (F). D-F show hemorrhages, lysis/
discoloration, coagulation (thrombus-intravascular and extravascular), and/or increased opacity.

doi:10.1371/journal.pone.0160667.g002
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irritation (data not shown). Comparing the micronuclei frequencies of any plasma treatment
mode to the NaCl negative control, no statistically significant difference could be found
(p = 0.99). In order to eliminate possible negative effects of the kINPen plasma on erythrocytes
maturation by potentially affecting the total number of micronuclei being formed, the ratio of
polychromatic and normochromic erythrocytes was determined [31]. For the plasma treatment
group (10 min), the ratio was calculated to be 0.79 which does not substantially differ from the
accompanying negative control (0.74).

Chicken embryo viability
The chicken embryo viability was determined three days after application of the test agents
(Fig 3). Cyclophosphamide and methotrexate showed a very modest toxicity (3–6%) whereas
NaCl and argon gas treatment did not cause any chicken embryo mortality. Exposure to the
plasma of kINPen 09 demonstrated a similar lethality compared to that of the positive controls.
This was also true for HET-MN treatment with the kINPen MED for short exposure times (3
min and 4 min). However, longer exposure for up to 10 minutes caused acute toxicity with
mortality rates of 10–42%. There was no strong difference between application of the NaCl
solution before or after the plasma treatment.

Antioxidant potential
As a next step, we sought to determine whether the acute cytotoxic effect of the longer exposure
times with the kINPen MED was due to excessive oxidation of the hen’s egg blood components
via the plasma-derived reactive components. If such an oxidation effect would have been active
systemically, we hypothesized that this should be reflected in the capacity of blood plasma to
protect ascorbic acid from experimental oxidation (antioxidant potential, AOP). Irradiation of
the inner shell membrane with UV-A significantly (p<0.05) decreased the AOP of blood

Fig 3. Embryo viability following exposure to test agents. Egg membranes were treated with different test agents. After three days, the embryo
viability was determined for each group. Shown are mean values +S.E. of 11 independent experiments. Statistical analysis was performed using one-way
ANOVA with Dunnett post-testing.

doi:10.1371/journal.pone.0160667.g003
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plasma (Fig 4). By contrast, the AOP of plasma-treated embryos differed non-significantly
immediately (p = 0.62) or 1 h (p = 0.40) after exposure when compared to NaCl-treated
controls.

Discussion
For the testing of cytotoxic and/or mutagenic agents, the HET-MNmodel takes an intermedi-
ate position between cell culture experiments and assessing effects in fully developed mamma-
lian organisms, such as rodents. Unlike cell cultures, chicken embryos metabolically (phase I
and phase II reactions) convert exogenously added substances [48], making this model more
suitable to mimic systemic cytotoxic and/or genotoxic effects in complex organisms. At
day eight of incubation, mainly definitive erythrocytes are present, which are formed by embry-
onic hematopoietic stem cells in the yolk sac [54, 58]. In the latter, biotransformation and

Fig 4. The antioxidant potential in blood plasma.Chicken blood plasma was collected after cold plasma treatment,
and the antioxidant potential (AOP) was measured by means of assessing the total ascorbic acid equivalents that have
not been oxidized by the sample. (A) A experimental scheme is shown for investigating the blood plasma of chicken
embryos that were treated with the kINPenMED. (B) AOP of blood plasma collected after treatment with 0.9% NaCl
solution, UV-A, or kINPen plasma (10 min). UV-A treatment differed significantly (p<0.05) from NaCl controls whereas
AOP in blood plasma 10 min (p = 0.62) or 60 min (p = 0.40) after exposure to the cold physical plasma of the kINPen MED
did not (mean +S.D.).

doi:10.1371/journal.pone.0160667.g004
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erythropoiesis are parallel processes [48]. Up to day 13, the limited functionality of the embry-
onic spleen disallows a rapid phagocytosis of damaged erythrocytes or micronucleated erythro-
cytes [59] which makes this model suitable for genotoxic studies [60]. Further, a long exposure
time of test agents is recommended to increase the sensitivity of the assay [41]. Thus, applica-
tion at day eight and incubation to day 11 (72 h) was favored in the present study because it
yields higher micronuclei rates, lower embryo toxicity, and higher xenobiotic metabolism
[47, 48].

In contrast to red blood cells of mammalian organisms, avian erythrocytes are nucleated
[61]. Accordingly, the HET-MN detects structural chromosome fragmentation and numerical
aberrations. [57]. Furthermore, it should be noted that DNA repair mechanisms in avian eryth-
rocytes are not as effective as in human cells [62, 63]. However, this can be neglected when
interpreting the present results, because no genotoxic effects were evoked by cold plasma.
Despite this finding, plasmas treatment adversely affected chicken embryo viability. This clini-
cal impression was reflected by an increasing irritation of the CAM (coagulation, thrombus,
and hemorrhage) and an enlarged irritation area as well as an increasing loss of viability. A
slight but non-significant decrease of the AOP in the plasma group 10 min and 60 min after
exposure underlined this view. In the embryo, lipid oxidation has been detected 9 h following
lead injection [64] but this seems to be a rather secondary reaction whereas the plasma-derived
ROS are short-lived and their effect on AOP should be apparent swiftly. Both the decrease in
AOP and viability suggested that cold plasma components (atomic size: argon 0.21 nm; oxygen
0.12 nm; bond length of O, OH, 1O2, and NO ~0.1 nm; H2O2 ~0.34 nm; O3 ~0.13 nm) [65] dif-
fused to the embryo through the inner membrane (pore size: 25 nm) [66].

The plasma’s main components, reactive oxygen and nitrogen species, can be detoxified and
metabolically controlled by living cells and organisms via glutathione, for example [67]. Experi-
mental supplementation of e.g. catalase protects cells in vitro from excessive oxidation induced
by plasma [68, 69]. Also, the chicken embryo possesses strong safeguards against oxidative
stress, such as ascorbic acid, α-tocopherol, carotenoid, reduced glutathione, catalase, and
superoxide dismutase [70–73]. Yet, reactive species are short-lived and antioxidants need to be
present locally in order to counteract the plasma-derived ROS. Moreover, the elevated mortal-
ity of chicken embryos following 10 min of kINPen MED plasma treatment suggested a limited
control of toxic ROS if their concentration had exceeded a certain local threshold to act system-
ically, although this was not significantly reflected by AOP measurements at the early (10 min)
or late (60 min) sampling time points. Hence, this read-out system may have limitations and
future studies should collect the remaining liquid on the egg’s membrane or other egg material
after plasma treatment to find markers indicative for ROS-stress. Yet, and assuming a treat-
ment area of 2 cm2, it should be stressed that the long exposure times used in this study
exceeded the therapeutically effective duration for the kINPen 09 (5 s per cm2) [49] 15 fold and
for the kINPen MED (30–60 s per cm2) [46] 5–10 fold. As these treatment regimens did not
cause significant genotoxicity they suggest the kINPen plasma not to be a mutagenic hazard
within such treatment times.

However, possible limitations of our model need to be stated. Due to their high reactivity
and short-lived nature, introduction of ROS/RNS into biological systems does not fit classical
parameters such as bioavailability. Moreover, detecting ROS/RNS-mediated oxidation in 3D
tissues is highly challenging. This also complicates the AOP-measurements in whole blood as
these do not reflect tissue oxidation. Nonetheless, our provided data may add relevance as a
more complex test system was used compared to other studies like Comet-assay or γ-H2AY
assay in cell culture models. As future option, the investigation of red blood cells should be car-
ried out sooner (24 h instead of 72 h) after plasma treatment to identify possible repair mecha-
nism in the HET-MN [41].
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Conclusion
Regardless of the plasma device used (kINPen 09 and kINPen MED) or the treatment time
applied (1.5-10 min), no genotoxic effects of the kINPen plasma were found using the
HET-MNmodel. Also, the global antioxidant defense was not significantly challenged follow-
ing exposure to the plasma. The data provided with the current study seem to confirm the lack
of a genotoxic potential, fostering its presumably safe applications in veterinary and human
medicine.
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