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Abstract: In this paper, a system that uses an algorithm for target detection and navigation and
a multirotor Unmanned Aerial Vehicle (UAV) for finding a ground target and inspecting it closely is
presented. The system can also be used for accurate and safe delivery of payloads or spot spraying
applications in site-specific crop management. A downward-looking camera attached to a multirotor
is used to find the target on the ground. The UAV descends to the target and hovers above the target
for a few seconds to inspect the target. A high-level decision algorithm based on an OODA (observe,
orient, decide, and act) loop was developed as a solution to address the problem. Navigation of the
UAV was achieved by continuously sending local position messages to the autopilot via Mavros.
The proposed system performed hovering above the target in three different stages: locate, descend,
and hover. The system was tested in multiple trials, in simulations and outdoor tests, from heights
of 10 m to 40 m. Results show that the system is highly reliable and robust to sensor errors, drift,
and external disturbance.

Keywords: unmanned aerial vehicles; vision-based navigation; vision and action; OODA; remote
sensing; inspection; target detection

1. Introduction

Development in Unmanned Aerial Vehicle (UAV) path planning [1–3], design [4–6], and remote
sensing [7–10] has been an active field of research over the past 15 years. Several researchers
have studied the possibility of using vision for navigation, target tracking, and landing site
detection. A predictive navigation technique was developed for a wildlife detection scenario in [11].
In [12], a vision-based control system for a quadcopter for following a ground-moving target was
demonstrated. Vision-based autonomous landing on a landing pad is presented in [13]. In most of the
earlier work, the main focus has been on demonstrating the ability of the developed controllers and
not on the reliability and robustness of the systems. Our motivation was to use a low-cost UAV system
to remotely sense and find a target, and reliably descend and hover above the target with the purpose
of closely inspecting it. The system can also be used for accurate and safe delivery of payloads or spot
spraying applications in site-specific crop management.

Figure 1 illustrates the concept and a typical mission. Initially, the UAV has to take off (1). After
takeoff, the UAV searches for a ground target (2). If a target is found, the UAV changes its original
path (3) and hovers above the target for a few seconds for an action such as close inspection (4). After
hovering, the UAV will fly to the next waypoint (5) and start to search for other targets. This paper
focuses on target detection and navigation. A red-colored 0.2 m radius circular target was used in this
study for illustrative purposes.
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inexpensive platforms. The authors grouped the existing work, including the use of more costly 
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general technique used in this application is tracking lines in infrastructure. Araar and Aouf [18] 

demonstrated a power line inspection task using a quadrotor. The authors developed a classical 

image-based visual servoing controller and a partial pose-based visual servoing controller for this 

purpose. 

Mathe et al. [19] presented the task of inspecting railway semaphores using a proportional 

controller based on the distance to the object and flying the UAV around a semaphore in a 4–5 m 
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In other related work, a robust marker tracking algorithm was presented for precise UAV vision-

based landing in [20]. The authors employed a pinhole camera model to calculate the relative position 

of the UAV from the landing target. The study was limited due to simulation and estimation errors 

and disturbances such as wind that were not considered. 

Vision-based landing on a moving vehicle was demonstrated in [21]. The authors used the 

relative distance between the UAV and the vehicle to generate velocity commands to the UAV. 

Therefore, extending this method to multiple target-finding scenarios is difficult. In [22], a target 
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method proposed was effective only for detection and tracking with low disturbances. Furthermore, 

the method was only tested in simulation. 
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Figure 1. Typical mission performed by the multirotor UAV in a target finding and inspection mission.

The system uses a modular system architecture and a vision-based algorithm with the observe,
orient, decide, and act (OODA) decision loop [14] for searching and hovering above a target. The OODA
loop is commonly used by military pilots during the decision making process. The OODA loop has
also been used in other contexts such as modeling the development of intelligent agents [15,16]. Our
results from multiple outdoor flight tests show that the proposed algorithm is reliable and robust
regardless of sensor errors and external disturbances.

2. Related Work

Related work in the field of vision-based navigation includes work by Mathe and Busoniu [17]
who reviewed vision and control for UAVs in the context of inexpensive platforms for infrastructure
inspection. They defined UAVs under $1500, diameter under 1 m, and weight under 4 kg as inexpensive
platforms. The authors grouped the existing work, including the use of more costly UAVs, into three
groups: power line inspection, building monitoring, and railway inspection. A general technique used
in this application is tracking lines in infrastructure. Araar and Aouf [18] demonstrated a power line
inspection task using a quadrotor. The authors developed a classical image-based visual servoing
controller and a partial pose-based visual servoing controller for this purpose.

Mathe et al. [19] presented the task of inspecting railway semaphores using a proportional
controller based on the distance to the object and flying the UAV around a semaphore in a 4–5 m radius
arc. However, the study did not consider the part of navigating the UAV from a high altitude to the
railway semaphore.

In other related work, a robust marker tracking algorithm was presented for precise UAV
vision-based landing in [20]. The authors employed a pinhole camera model to calculate the relative
position of the UAV from the landing target. The study was limited due to simulation and estimation
errors and disturbances such as wind that were not considered.

Vision-based landing on a moving vehicle was demonstrated in [21]. The authors used the relative
distance between the UAV and the vehicle to generate velocity commands to the UAV. Therefore,
extending this method to multiple target-finding scenarios is difficult. In [22], a target detection and
tracking algorithm was discussed with the aim of landing the UAV on a target. The method proposed
was effective only for detection and tracking with low disturbances. Furthermore, the method was
only tested in simulation.

An open-source computer vision-based guidance system for landing and hovering the UAV on
a target was proposed in [23]. The authors used simple geometry to estimate the target’s position and
position control to guide the UAV towards the target. Their method was tested only with the UAV
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cruising a few meters (3–5 m) above the ground. Even though there is literature on the topic related to
this work, this paper contributes to the literature by extending the technique to high altitude flights.

3. Hardware System

The hardware system architecture is shown in Figure 2 and the complete hardware system is
shown in Figure 3. A quadrotor UAV that uses the DJI 450 frame was developed for the purpose
of this study. Four DJI 2212/920 KV motors and 8 × 4.7” propellers were used to produce thrust.
The open source Pixhawk autopilot board was used as the main flight controller. The Pixhawk
controller supports PX4 and APM firmware stacks. However, the PX4 firmware stack was used as it
has more hardware support [24]. The Pixhawk autopilot board consist of gyroscopes, accelerometers,
and a barometer as sensors. A ublox GPS + compass module was externally mounted for positioning.
The GPS and compass modules were mounted externally and away from other electronics to reduce
interference and increase accuracy. A Raspberry Pi 2 computer was attached to the UAV as an onboard
computer to run the detection and navigation algorithm. Ubuntu 14.04 and ROS Indigo were installed
on the onboard computer.
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A downward-looking Raspberry Pi camera was attached to the UAV as an imaging sensor. This
camera is capable of taking images with 640 × 480 resolution at 90 fps. A USB Wi-Fi adapter was
connected to the Raspberry Pi computer for the purpose of debugging the code from the development
PC. A terminal was configured for the onboard Ubuntu operating system to remotely access the UAV
from the ground computer through a RFD 900 long-range radio. This terminal connection was used
for monitoring flight log messages and initiating the autonomous flight. UBEC 1 and UBEC 2 were
used to distribute the power to the Pixhawk and Raspberry Pi board, respectively.

4. Software System

The software system consists of four ROS [25] nodes (Figure 4): an image capture node that
captures the images from the Raspberry Pi camera at a predefined frame rate; a target detection node
that uses a modified version of the algorithm described in [26] for target detection; a main node that
runs the main control loop of the system; and a Mavros node that provides communication between
the ROS and PX4 autopilot.
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The image capture node, target detection node, and the main node were developed in C++.
Mavros is a prebuilt package available with ROS. OpenCV is used to capture images in the
image capturing node. All the decision and guidance functions are performed by the main node.
The following subsections describe in detail each function of the main node.

4.1. Conversion of 2D Image Coordinates to World Coordinates

The main node receives the center coordinates of the detected target from the target detection
node as an input. This is then converted to the target location in the inertial frame by using the pinhole
camera model (Figure 5). The coordinates of the target in world coordinates (inertial frame {L}) are
given by Equation (1).

Lt = Lξ C . Ct (1)

The center of the target in the camera frame Ct is given by Equation (2):

Ct =

 x
y
z

 = S CRK−1

 u
v
1

 (2)
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where u and v are pixel coordinates of the center of the target in image frame {I}. The projected pixel
coordinates change with the rotation of the camera. Therefore, the rotation of the camera in its own
frame CR is used for correcting the rotation. K is the camera matrix and is found by using the ROS
camera calibration package as described in the tutorial [27]. S is an unknown constant. S can be solved
by equating the last rows of the final matrix from the right side to the UAV’s flying height z.Sensors 2017, 17, x FOR PEER REVIEW  5 of 17 
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(u,v) into world coordinates (x, y, z).

The camera is directly attached to the UAV without any gimbal mechanism. Therefore, the camera
rotation matrix CR is written as:

CR = R(−θ)R(−φ)R(−ψ) (3)

where φ, θ, and ψ are roll, pitch, and yaw angles of the UAV in the body frame {B}. The camera pose
in inertial frame Lξ C is given by Equation (4):

Lξ C = Lξ B . Bξ C (4)

where Lξ B is the pose of the body frame {B} in inertial frame {L}. It is given by the position of the
UAV. The camera pose in body frame Bξ C is dependent on the camera mounting arrangement. In our
case, it can be written as a homogeneous matrix (Equation (5)):

Bξ C =


0 −1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 1

 (5)

4.2. Navigation Algorithm

Navigation of the UAV is achieved by continuously sending the local position messages from
the main node via the Mavros [28]. The proposed algorithm performs the task of hovering above the
target for close inspection through three different stages: locate, descend, and hover.
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The OODA loop makes different decisions based on this stage of the UAV. In the locate stage,
the estimated target position TP (line 30) is used to move the UAV laterally to the target’s x,y position
without descending (lines 32, 33 and 34). In the descend stage, the lateral deviation between the
target’s position TP and the UAV’s position CP is calculated (line 37). If the deviation is within the
tolerance t, the height of the multirotor is reduced by a predefined parameter dh (line 39). Otherwise,
the locate stage will be repeated (lines 45 and 46). This process continues until the multirotor reaches
the hovering height hh (line 38). This process happens in quick succession.

After reaching the hovering height, in the hover stage, if the distance between the center of the
target and the center of the image in pixels is more than the tolerance value g (line 49), a proportional
controller generates displacement vectors based on the pixel distance between the centers. These
displacement vectors are used to adjust the position of the multirotor above the target (lines 50–54).
In this stage, the camera field of view is very small. Therefore, if the target is out of the field of view,
the last detected target pixel coordinate CTL is used for a timeout period to to laterally move the UAV
above the target (lines 61–66). If the UAV is exactly above the target, the position is maintained for s
seconds (line 56). Finally, the UAV flies to the next waypoint (lines 71 and 72).

Algorithm 1 Navigation Algorithm
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1. NWP= Number of waypoints

2. NP=Next pose of UAV

3. t=tolerance in meters

4. WP=Waypoint

5. HP=Hovering pose of UAV

6. hh= hovering height

7. s=hovering time

8. dh= descending height

9. CI=center of image frame in pixels

10. L=displacement constant

11. HR=horizontal resolution of camera

12. CTL=Centroid of target from last target detection in pixels

13. TL=Timestamp of last target-detected image

14. to=timeout from last target detection

15. u-horizontal image coordinate

16. v-vertical image coordinate

17. g-tolerance in pixels

18. i=0

19. TAKEOFF

20. IP=Initial position of UAV

21. stage=1

22. while (i<NWP)

23. NP=WPi

24. for each image Imj

25. CP=read current pose of UAV

26. if(target found)

27.       TLD=timestamp of(Imj) 

28.       CT = Compute centroid of target(Imj) 

29.       CTL=CT 

30.       TP=Compute target pose(CT, CP) 

31.  if(stage=1) 



Sensors 2017, 17, 2929 7 of 17

Sensors 2017, 17, x FOR PEER REVIEW 7 of 17 

32.  HP=TP 

33.  HP.z=CP.z 

34.  NP=HP 

35.  stage=2 

36. else if(stage=2) 

37. if(distanceXY(TP.position, CP.position)<t) 

38. if(hh +IP.z< CP.z-dh) 

39.  HP.z=CP.z-dh 

40. else 

41.  HP.z= hh+IP.z 

42.  stage=3 

43. end if 

44. NP=HP 

45. else 

46.  stage=1 

47.   end if 

48. else if(stage=3) 

49. if(|CI.u- CT.u|>g OR |CI.v- CT.v|>g) 

50.  dx=(CI.u-CT.u)*L/HR 

51.  dy=(CI.v-CT.v)*L/HR 

52.  HP.x=CP.x+dx 

53.  HP.y=CP.y+dy 

54.  NP=HP 

55. else 

56.  wait s 

57.  break 

58.    end if 

59. end if 

60. else

61.  TLI=timestamp of(Imi) 

62. If(stage=3 & TLI-TLD< to) 

63.  dx=(CI.u-CTL.u)*L/HR 

64.  dy=(CI.v-CTL.v)*L/HR 

65.  HP.x=CP.x+dx 

66.  HP.y=CP.y+dy 

67.  NP=HP 

68. end if 

69. end if

70. end for

71. i=i+1

72. NP=WPi 

73. end while

4.3. Target Detection Algorithm 

A robust target detection is needed for the navigation algorithm to perform properly. Different 

target detection techniques were tested. The Hough circle method described in [26] was used to detect 

the target. However, when increasing the altitude, the detection became less reliable. The color 

detection method described in [29] was also used and gives reliable detection at high altitudes; 

however, false positives were observed at low heights. A detection algorithm (Algorithm 2) was 

developed by combining both techniques. 

LOCATE 

HOVER 

DESCEND 

4.3. Target Detection Algorithm

A robust target detection is needed for the navigation algorithm to perform properly. Different
target detection techniques were tested. The Hough circle method described in [26] was used to
detect the target. However, when increasing the altitude, the detection became less reliable. The color
detection method described in [29] was also used and gives reliable detection at high altitudes; however,
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false positives were observed at low heights. A detection algorithm (Algorithm 2) was developed by
combining both techniques.

Algorithm 2 Target Detection Algorithm

1. for each image Imi

2. u=v=−1
3. Imi=preprocess(Imi)
4. binaryImg= threshold (Imi, colorRange)
5. binaryImg=postProcessing(binaryImg)
6. [u,v]=findHoughCircleCenter(binaryImg)
7. if(u<1 OR v<1)
8. if(moment00(binaryImg)>0)
9. [u,v]=findCentroidOfBlob(binaryImg)
10. end if
11. end if
12. end for

In Algorithm 2, a binary image is created for red-colored blobs using a threshold operation (line 4).
The center of the target is found using the OpenCV HoughCircle function (line 6). If no Hough circle is
found, but blobs exist (lines 7 and 8), then the image moments are used to find the centroids of the
blob (u, v) in pixels (line 9).

u =
m10

m00
(6)

v =
m01

m00
(7)

where m00 is 0th moment and m10 and m01 are the first-order moments.
A ground-based test was conducted where the target was moved by walking slowly away from

the camera and the detection of the new algorithm was observed. The distance between the camera and
the target was measured. From this test, the range of the target detection algorithm was determined as
88 m under bright sunlight.

5. Experiments

Simulated and real flight experiments were conducted to validate the developed system. There
were two goals for the experiments. The first goal was to descend and hover the UAV reasonably close
to the target with the purpose of inspecting the target. To achieve this goal, a criterion was defined
such that if the UAV could hover above the target within an area of 1 m from the center of the target
in the inertial xy plane and within 2.5 m above the ground, then the mission would be considered as
successful. The second goal was to test the reliability of the system. To achieve this goal, tests were
repeated multiple times with different parameters. The Experimental Scenario subsection describes
the details.

5.1. Experimental Scenario

Figure 6 shows the experimental scenario used for both simulation and field tests. The UAV
had to take off and move from one waypoint to another waypoint while scanning for a red circle
target on the ground. A 0.2 m radius red-colored circular target was placed on the ground between
the waypoints.

The UAV was flown at different heights ranging from 10 to 40 m. Each height was repeated five
times. When repeating the heights, the coordinates of the waypoints were changed to ensure the ability
of the system with different flight scenarios (Figure 6). The target was also placed randomly along the
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path, to the right or left sides of the flight path, but so the target was visible to the UAV when the UAV
flew along the flight path. In Figure 6, letters indicate the waypoints and arrows indicate the flight
paths used. Paths AB and CD were flown according to the coordinates shown in the diagram. Paths
similar to EF, GH, and IJ were chosen randomly.Sensors 2017, 17, x FOR PEER REVIEW  9 of 17 
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5.2. Simulation Experiments

Refining and testing the system is mandatory before doing any field flight test. Therefore,
a Software in the loop (SITL) simulation environment was set up using the Gazebo robotics
simulator [30] and the PX4 firmware for the Pixhawk autopilot hardware. A quadrotor model
and simulated world were created to closely resemble the real experimental environment. Real
images captured from the field test were also used in modeling the simulation environment.
A downward-looking simulated camera model was attached to the simulated quadrotor. Simulated
camera parameters were set to the real Raspberry Pi camera’s parameters used in the real test. A very
high frame rate increases the image processing load in the Raspberry Pi computer and may introduce
additional delays. Therefore, the camera frame rate was set to 10 Hz in the real test as well as in the
simulation. Horizontal flying velocities of the multirotor were kept similar to the field tests by setting
the PX4 parameters.

Figure 7a shows the UAV approaching the target in a plane view and Figure 7b shows the UAV
above the target at hovering height. Figure 7c shows the UAV flying at a height of 20 m and Figure 7d
shows target detection using the simulated camera where the UAV is at a height of 20 m.
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5.3. Flight Test Experiments

Flight tests were conducted at Queensland University of Technology’s (QUT’s) Samford Ecological
Research Facility (SERF), Queensland, Australia on different days, including cloudy and overcast
days, over a four-month period. The same experimental scenario described in Figure 6 was followed.
Figure 8 shows the test site and the mission boundaries. Figure 9 shows the UAV hovering above the
target during a field test.
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6. Results and Discussion

All of the simulated flight experiments were successful. In the real flight test, the overall success
rate was 92%. Two flight tests failed: one at 15 m and one at 30 m altitude. Our analysis of the failed
tests showed that the timeout period of 1 s had expired in the hover stage of the navigation algorithm.
Therefore, the UAV had lost track of the target. However, we believe that experimentally adjusting the
timeout period to a more suitable value can reduce the problem. Table 1 summarizes the results of the
simulation and field tests.

Table 1. Results of simulations and flight tests.

Height (m) Success Rate (Simulation) Success Rate (Flight Test)

10 100% (5/5) 100% (5/5)
15 100% (5/5) 80% (4/5)
20 100% (5/5) 100% (5/5)
30 100% (5/5) 80% (4/5)
40 100% (5/5) 100% (5/5)
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The task performed by the system is simple if all the sensor measurements are ideal and there are
no external disturbances. However, target position estimations in the real world have considerable
errors and uncertainty. Figure 10 shows these errors clearly. It shows the recorded target’s X and Y
position estimates and the UAV position when the UAV took off and flew at a height of 10 m from
waypoint A to waypoint B without descending to the target.
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Figure 10. Image-based target position estimation and the actual position of the target from a 10 m
height flying mission. (a) Target’s actual and estimated X positions; (b) Target’s actual and estimated Y
positions; (c) UAV positions.
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Nisi and Menichetti [31] listed and gave a good discussion of the error sources in their task
of geo-referencing photovoltaic arrays using UAVs. Among the error sources discussed by Nisi
and Menichetti are barometric altimeter resolution, UAV velocity, target height, lens distortion,
GNSS accuracy, and imaging sensor resolution, which are also all applicable to our task. Moreover,
experimental data collected showed considerable drift in the autopilot’s inertial frame {L} (Figure 11).
The UAV’s position data shown in Figure 11 was recorded while the UAV was resting in a static
position on the ground. The plot shows significant drift in the inertial frame of the UAV.
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Figure 11. A plot of the autopilot’s position estimation drift when the UAV is stationary on the ground.

Further to the error sources discussed in [31], the target position estimation method assumes that
the camera is in perfect alignment with the UAV’s body frame and that both the camera frame and
the body frame have the same origin. There are practical limitations in aligning the camera and the
Inertial Measurement Unit (IMU) of the UAV. Other sources such as errors in synchronization of data
from different sensors (camera, IMU) and camera vibration also contribute to the overall error in target
position estimation.

Figure 12a,b shows the 3D view and top view of the flight trajectories for a target finding and
hovering mission at a 20 m height for both simulation and field tests. Here, the UAV was expected
to move from waypoint C to waypoint D. The point E indicates the decision point where the system
decided to move towards the target in the x,y before descending. The path in the field test, compared to
the simulation, took a small spiral shape. This was mainly because of the image-based target position
estimation errors and external disturbances such as wind. The top view of the field test shows a slight
difference between the target’s position and the hovering position. The drift in the inertial frame
{L} was the cause of this effect. Figure 12c,d show X and Y coordinates of the UAV, estimated target
position and real target position for the same 20 m target finding and hovering mission.

Figure 13 shows the results for a target finding and hovering mission at a 40 m height. Here,
the UAV was expected to move from waypoint A to waypoint B. The point E indicates the decision point
where the system decided to move towards the target. Compared to the 20 m flight test (Figure 12b,
right), the 40 m flight test (Figure 13b, right) shows an increase of a spiral-like path when the UAV
descended. An increase in the image-based target position error (Figure 13c,d, right) was the main
reason for this.
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Figure 12. Flight trajectories from a 20 m simulated and a real target finding and hovering missions.
Left column shows simulated results and the right column shows field test results. (a) 3D View; (b) top
view; (c) X coordinates of UAV position, estimated target position and real target position; and (d) Y
coordinates of UAV position, estimated target position and real target position.
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Figure 13. Flight trajectories from a 40 m simulated and a real target finding and hovering missions.
Left column shows simulated results and the right column shows field test results. (a) 3D View; (b) Top
View; (c) X coordinates of UAV position, estimated target position and real target position; (d) Y
coordinates of UAV position, estimated target position and real target position.
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In contrast, the 40 m simulation results show less error, similar to the 20 m simulation results.
One possible reason might be that all the sensors in the simulation were ideal, except the IMU. Though
the position estimation error increased with height in the flight test, the UAV could still compensate
for the error and reach the target.

Infrastructure inspection with inexpensive UAVs is a growing field. Researchers have explored
manually positioning the UAVs at a workable distance from the target. However, a fully autonomous
system with the capability of finding and approaching the target is desirable. For instance, in railway
infrastructure inspection tasks, the line tracking techniques discussed in earlier papers can be used to
fly the UAV along the railway track at a 50–100 m altitude and the technique presented here can be
used to approach an identified target and do a detailed inspection.

Moreover, purely image-based techniques without position estimation such as image-based visual
servoing are useful in vision-based landing tasks. The technique may have limitations when multiple
targets have similar features or in detecting distinguishable features when the targets are very far
from the UAV. Generally, researchers have used relatively large targets with uniquely distinguishable
features for vision-based landing tasks, where the challenges due to sensor errors and disturbances are
less prevalent.

The navigation algorithm presented here tested with a reliable detection (>90%). However, target
detection algorithms may be less reliable in real applications. Performance of the navigation algorithm
might be affected when the target detection is unreliable. Further research is needed to make the
algorithm robust for such cases.

7. Conclusions

In this paper, a system architecture and a reliable and robust algorithm for inspection of the
ground target using an inexpensive multirotor UAV system is presented. Image-based target position
estimation was used to guide the UAV towards the target. In an ideal sense, the task was very simple.
However, uncertainties and errors introduced by the low-cost onboard sensors and disturbances in the
outdoor environment present significant challenges to reliably perform the task. The authors applied
a high-level decision making approach with the observe, orient, decide, and act (OODA) loop to address
the problem. The results from multiple field tests show that the proposed algorithm is 100% reliable in
simulation and 92% in real experiments and robust to sensor errors, drift, and external disturbances.

Future work will focus on extending the system for multiple targets. Multiple target detection
and inspection needs real-time detection and tracking of each target. This is a more challenging task
owing to the limited onboard computation power that is available with the inexpensive UAV system.
Moreover, path planning and decision making are also important to optimally visit the targets with
the limited battery capacity.

A video of the flight test can be found at the link https://youtu.be/6w_OFScBWIg.
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19. Máthé, K.; Buşoniu, L.; Barabás, L.; Iuga, C.I.; Miclea, L.; Braband, J. Vision-based control of a quadrotor for
an object inspection scenario. In Proceedings of the 2016 International Conference on Unmanned Aircraft
Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 849–857.

20. Youeyun, J.; Hyochoong, B.; Dongjin, L. Robust marker tracking algorithm for precise UAV vision-based
autonomous landing. In Proceedings of the 2015 15th International Conference on Control, Automation and
Systems (ICCAS), Busan, Korea, 13–16 October 2015; pp. 443–446.

21. Hanseob, L.; Seokwoo, J.; Shim, D.H. Vision-based UAV landing on the moving vehicle. In Proceedings of the
2016 International Conference on Unmanned Aircraft Systems (ICUAS), Piscataway, NJ, USA, 7–10 June 2016;
IEEE: Piscataway, NJ, USA, 2016.

http://dx.doi.org/10.3390/s150819667
http://www.ncbi.nlm.nih.gov/pubmed/26274959
http://dx.doi.org/10.1371/journal.pone.0077151
http://www.ncbi.nlm.nih.gov/pubmed/24146963
http://dx.doi.org/10.1007/s10846-012-9749-7
http://dx.doi.org/10.3390/s150714887
http://www.ncbi.nlm.nih.gov/pubmed/26121608


Sensors 2017, 17, 2929 17 of 17

22. Singh, G.; Anvar, A. Investigating feasibility of target detection by visual servoing using UAV for oceanic
applications. In Proceedings of the 2014 13th International Conference on Control Automation Robotics &
Vision (ICARCV), Singapore, 10–12 December 2014; pp. 1621–1626.

23. Choi, H.; Geeves, M.; Alsalam, B.; Gonzalez, F. Open source computer-vision based guidance system for
UAVs on-board decision making. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA,
5–12 March 2016.

24. Why We Chose PX4 (vs. APM) as Luci’s Default Firmware. Available online: https://medium.com/
@Dronesmith/why-we-chose-px4-vs-apm-as-lucis-default-firmware-ea39f4514bef#.2a1pl81ao (accessed on
2 January 2017).

25. Robot Operating System. Available online: http://wiki.ros.org (accessed on 6 June 2017).
26. Sol. Detect Red Circles in an Image Using OpenCV. Available online: https://www.solarianprogrammer.

com/2015/05/08/detect-red-circles-image-using-opencv/ (accessed on 3 February 2017).
27. Camera Calibration/Tutorials/MonocularCalibration. Available online: http://wiki.ros.org/camera_

calibration/Tutorials/MonocularCalibration (accessed on 6 June 2017).
28. Mavros. Available online: http://wiki.ros.org/mavros (accessed on 2 June 2017).
29. Stathopoulos, C. Visual Servoing Using a Webcam, Arduino and OpenCV. Available online: https://

xstath.wordpress.com/2015/06/04/visual-servoing-using-a-webcam-arduino-and-opencv/ (accessed on
6 August 2016).

30. Gazebo. Available online: http://gazebosim.org/ (accessed on 7 August 2017).
31. Addabbo, P.; Angrisano, A.; Bernardi, M.L.; Gagliarde, G.; Mennella, A.; Nisi, M.; Ullo, S. A UAV infrared

measurement approach for defect detection in photovoltaic plants. In Proceedings of the 2017 IEEE
International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, Italy, 21–23 June 2017;
pp. 345–350.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://medium.com/@Dronesmith/why-we-chose-px4-vs-apm-as-lucis-default-firmware-ea39f4514bef#.2a1pl81ao
https://medium.com/@Dronesmith/why-we-chose-px4-vs-apm-as-lucis-default-firmware-ea39f4514bef#.2a1pl81ao
http://wiki.ros.org
https://www.solarianprogrammer.com/2015/05/08/detect-red-circles-image-using-opencv/
https://www.solarianprogrammer.com/2015/05/08/detect-red-circles-image-using-opencv/
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
http://wiki.ros.org/mavros
https://xstath.wordpress.com/2015/06/04/visual-servoing-using-a-webcam-arduino-and-opencv/
https://xstath.wordpress.com/2015/06/04/visual-servoing-using-a-webcam-arduino-and-opencv/
http://gazebosim.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Hardware System 
	Software System 
	Conversion of 2D Image Coordinates to World Coordinates 
	Navigation Algorithm 
	Target Detection Algorithm 

	Experiments 
	Experimental Scenario 
	Simulation Experiments 
	Flight Test Experiments 

	Results and Discussion 
	Conclusions 

