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Abstract

To account for the functional non-equivalence among a set of genes within a biological pathway when performing gene set
analysis, we introduce GOGANPA, a network-based gene set analysis method, which up-weights genes with functions
relevant to the gene set of interest. The genes are weighted according to its degree within a genome-scale functional
network constructed using the functional annotations available from the gene ontology database. By benchmarking
GOGANPA using a well-studied P53 data set and three breast cancer data sets, we will demonstrate the power and
reproducibility of our proposed method over traditional unweighted approaches and a competing network-based approach
that involves a complex integrated network. GOGANPA’s sole reliance on gene ontology further allows GOGANPA to be
widely applicable to the analysis of any gene-ontology-annotated genome.
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Introduction

Microarray-based case-control studies often begin by perform-

ing statistical differential expression analysis, and result in a list of

significantly differentially expressed genes. The interpretation of

such results often amounts to analyzing whether certain biological

functions are enriched within the genes inside the gene list. For

example, gene set over-representation analysis and its variants are

popular approaches for downstream analysis upon differential

expression analysis. Interested readers are referred to [1] and [2]

for an overview of various gene set over-representation analysis

methodologies.

An alternative approach, commonly termed gene-set-analysis

(GSA) and initiated by [3], performs statistical differential analysis

based on summary test-statistics evaluated using gene expression

measurements of all the genes within pre-defined gene sets.

Specifically, the null hypothesis of GSA is that genes belonging to a

pathway are not collectively differentially expressed between two

phenotype groups. One characteristic of GSA, as compared to

more standard gene-wise approaches, is that if the subsets are

chosen based on relevant biological knowledge, GSA may lead to

more powerful tests by borrowing information across functionally

similar genes. It can also lead to clearer interpretation by

suggesting some biological features, rather than individual genes,

that appear significant to the phenotype being studied. Variants of

GSA, such as those proposed by [4] and [5], basically differ from

each other by the construction of the test statistic and the choice of

the null distribution.

The introduction of GSA is revolutionary, as it allows

convenient interpretation of biological results, and enjoys higher

power due to reasons described previously. With the steadily

growing amount of information regarding functional groupings of

genes from databases such as the Kyoto Encyclopedia of Genes

and Genomes (KEGG) [6], Biocarta, Reactome [7], and MSigDB

[3] to facilitate the convenient usage of GSA, GSA is now a

mainstay technique for statistical analysis of gene expression data,

either exploratory or confirmatory.

Classical GSA approaches, however, treat all genes within a

gene set equally. Cognizant of the fact that gene sets are typically

defined by the genes within a biological pathway, and that a

pathway’s functions are induced by a group of genes in concert,

the importance of genes with functions central to the pathway’s

functionality should be emphasized; while a collection of

differentially expressed genes can imply the significance of a

pathway, a small set of differentially expressed gene can also imply

the significance of a pathway if they are functionally crucial to the

pathway of interest. Ignoring different functional classes of genes

within a pathway may limits classical GSA’s its interpretability and

biological relevance in application.

This problem has not been properly addressed until recently,

when the functional non-equivalence among pathway genes are

adjusted by exploiting the curated network topology of the

pathway’s gene network available from various databases. For

example, [8] and [9] consider weighting the importance of a gene

based on how it is regulated by its direct upstream genes within the

pathway network, while [10] weight genes according to their

network distances from their neighbouring genes, and [11] further

consider the genes’ distances from the terminal nodes of a

pathway. However, possibly except for [10], all the above

approaches require well-curated information regarding the path-

way dynamics (e.g. induction and repression relationships for
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[8,9], and the locations of terminal pathway genes for [11]), and

hence are not applicable to more general gene sets without

detailed network topological information.

In lights of the above issues, GANPA [12] attempts to integrate

functional-linkages information among genes into the GSA

framework by considering an integrated global gene network

using a gene co-expression network, a protein-protein interaction

(PPI) network, and a gene ontology (GO) based functional-linkage

network. While previous approaches utilize the curated pathway

network from various databases, GANPA instead considers the

subnetwork of the global network, consisting only of the pathway’s

genes, as the pathway network.

Although the utilization of the global network has eliminated

the needs for potentially erroneously curated network topological

information, the limited availability of PPI information for certain

organisms limits GANPA’s applicability on certain, particularly

non-modelled, organisms. Further, when constructing the GO-

based functional-linkage network, GANPA ignores the semantic

similarity between GO functions, and will link two genes only if

they share certain specific biological functions, hence limiting the

reliability and coverage of the global gene network.

In this article, we present GOGANPA, a Gene-Ontology and

Gene Association Network-based Pathway Analysis tool. In

GOGANPA, we construct a functional network by thresholding

a gene-gene similarity matrix based on the Resnik similarity [13],

which can account for the semantic similarities between various

GO terms during network construction. Furthermore, GO-

GANPA does not require gene co-expression network and PPI

network information; GOGANPA’s sole reliance on GO annota-

tions allows GOGANPA to be applied to any GO-annotated

genome, thus providing a more general network-based GSA

framework, comparing to other network-based GSA approaches

which require curated network information which are limited in

availability.

Materials and Methods

Here we assume our data consists of N genes fGigN
i~1, with

their expressions measured across n subjects. Further, we have K

sets of gene sets fSkgK
k~1, each representing the set of gene indices

for the genes within a pathway, i.e. i[Sk if the kth pathway

contains Gi. Our method for network-based GSA involves the

following steps (Figure 1):

1. Compute the Resnik similarity for all pairs of genes in fGigN
i~1.

2. Create a functional gene network by using the similarities

obtained from step 1.

3. Compute a weight for each gene in each gene set using the

information obtained from the network from step 2.

4. Incorporate the weights from step 3 into the GSA test statistic,

and perform weighted GSA.

Resnik Similarity
The first step of GOGANPA is to create a genome-wide

functional similarity network. This will be achieved by considering

the Resnik functional similarity between each pair of genes within

the genome of interest. We will begin by briefly over-viewing the

Resnik similarity, a measure of similarity between two GO terms.

For complete details, please consult [13].

For every GO term c, a specificity measure p(c) is first assigned

to each GO term based on its number of annotated gene products.

The Resnik similarity brl for two GO terms cr,cl is then defined

by:

simResnik(cr,cl)~ max
c[C(cr,cl )

({log(p(c))), ð1Þ

where C(cr,cl) is the set of all common co-ancestors of cr and cl

within the GO hierarchy.

For a pair of genes Gi and Gj , one first identifies GOGi and

GOGj , the set of GO-terms associated with gene Gi and gene Gj

respectively. Assuming there are Ri and Lj GO terms associated

with gene Gi and Gj respectively, the Resnik similarities for the

Ri|Lj pairs of GO terms between GOGi and GOGj are then

evaluated:

b
(i,j)
rl :simResnik(GO

Gi
r ,GO

Gi
l ),Vr[(1, . . . ,Ri),Vl[(1, . . . ,Lj),

where GO
Gi
r denotes the rth annotated GO term for gene Gi, and

GO
Gj
l is defined similarly. A measure of functional similarity

between gene Gi and Gj can then be defined as:

Sij~sim(Gi,Gj)~ max
r[(1,...,Ri ),l[(1,...,Lj )

b
(i,j)
rl : ð2Þ

Other similarity measures besides the Resnik measure (equation 1)

are also available in the literature. Instead of using the maximum

operator as in equation 2, the similarity between two genes can

also be defined by combining the set of b
(i,j)
rl in alternative ways.

See [14] for an overview of such alternatives.

The Resnik similarity is unbounded above. For ease of

manipulation, in this article we will normalize each Sij by its

maximal entry:

Sij=( max
i~1,...,N,j~1,...,N

Sij):

In the following sections, Sij will correspond to the normalized

Resnik similarity measure by default, and S will represent the

similarity matrix, with its (i,j)th entry equalling Sij .

In the GO database, functions are annotated to various genes in

different manners. While certain annotations have been manually

confirmed by curators, most annotations, with evidence code

‘‘IEA’’, are computationally annotated based on homologs

information, and have not been manually confirmed.

A similarity matrix constructed using non-IEA annotations may

be more accurate due to the high quality, manually curated

annotations used. Yet it may be less informative, as currently-

available manually curated annotations are far from being

complete. Although a similarity matrix constructed using all

annotations (including those with evidence code IEA) may be

noisier due to the low-quality annotations, the high coverage of

gene functional annotations can result in a more informative

network. In this article, we will explore both networks’ perfor-

mances for network-based-GSA. We term GOGANPA the

network-based-GSA method where the network is constructed

without using IEA annotations, and we term GOGANPAIEA the

method which utilizes the network constructed using both non-

IEA and IEA annotations. More details regarding the annotations

used will be presented in the ‘‘Data and other implementation

details’’ section below.

Network-Based Gene Set Analysis
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Similarity Transformation
We will now describe how to obtain a genome-wide functional

network based on the similarity matrix S obtained above. A gene

network is represented by two sets ffGigN
i~1,Eg, where each gene

Gi is a node, and E represents a set of gene-pairs, where (Gi,Gj)[E

if gene Gi and gene Gj are connected by an edge. A gene network

can be succinctly encoded by an adjacency matrix A, where Aij ,

the (i,j)th entry of A, is 1 if gene i and gene j are linked by an

edge, and Aij~0 otherwise. We will not consider self-edges, and

hence we set Aij~0 if i~j.

To obtain an adjacency matrix, we threshold the similarity

matrix S:

Aij~
1 if Sij§ r ;

0 if Sijƒ r :

�
ð3Þ

In other words, a pair of genes will be connected if their

similarity lies above a certain threshold r [15].

To determine an appropriate threshold r in (3), we will employ

the scale-free-topology criterion for threshold selection [15].

Briefly, the network connectivity Cnet
i of a gene Gi is defined as

the number of genes connected to Gi by an edge within the whole

functional network. That is, Cnet
i ~

PN
j~1 Aij . Many past studies in

gene networks suggest that the connectivities of all the nodes inside

a network should follow a power-law distribution [16], i.e.

P(Cnet
i ~Cnet

i )~
(Cnet

i ){g

Z
,

where Z is the normalizing constant for the power-law distribu-

tion, Cnet
i is the realization of the random variable Cnet

i , and g is a

positive constant.

Based on this idea, [15] suggests a linear regression based

goodness-of-fit test, testing how the observed network connectivity

distribution fit against a power-law distribution. Briefly, by taking

log10 on both sides of the above equation, one obtains a linear

relation:

log10(P(Cnet
i ~Cnet

i ))~{log10(Z){glog10(Cnet
i )

One may now divide the range of fCnet
i g

N
i~1 into, say,

m~1,2, . . . ,10 bins of equal lengths, and assign each Cnet
i to the

bins according to their values. Let ŷym be the proportion of Cnet
i ’s

falling into the mth bin, and x̂xm be the mean of the Cnet
i values

inside the mth bin. Treating ŷy as an estimate of P(Cnet
i ~Cnet

i ),

and considering the linear relation between log10(P(Cnet
i ~Cnet

i ))

and log10(Cnet
i ), one can fit an ordinary least square regression

model with predictors log10(x̂xm) and responses

log10(ŷym),m~1,2, . . . ,10. The typical goodness-of-fit measures

for linear regression, R2, can then be used as a goodness-of-fit

measure for Cnet
i against the power-law distribution.

As such, one can fit a series of linear regression models, and

obtain the corresponding series of R2, for a range of r. The r

which achieves the maximum R2 will be used for downstream

analysis (Figure S1). For complete details for the above r selection

scheme, please consult [15].

Figure 1. Overview of GOGANPA. GOGANPA transforms a GO similarity matrix into a gene network. Gene weights are then evaluated for each
pathway (represented by transparent coloured boxes), and the weights are integrated into the gene expression data to evaluate the test statistics T
and weighted pathway test statistics.
doi:10.1371/journal.pone.0055635.g001

Network-Based Gene Set Analysis

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e55635



Gene Weights Evaluation
Upon obtaining the adjacency matrix A from the previous

section, we are now ready to evaluate the gene weights for

weighted-GSA, where the gene weights will reflect the importances

for their respective genes within different gene sets. Similar to [12],

GOGANPA construct gene weights based on a gene’s degree

within a pathway, adjusted for its degree within the global

network.

Along with the network connectivity Cnet
i defined above, the

pathway connectivity Ck
i of gene Gi is defined as the number of

genes connected to Gi by an edge within the subgraph of the full

genome-wide functional network, consisting only of the genes

inside the kth gene set Sk. I.e. Ck
i ~

P
j[Sk

Aij . It is worth noting

that, as Ck
i are defined based on a sub-network of the full

functional network, Ck
i ƒCnet

i always.

Now, if gene i is significantly functionally associated to the genes

inside Sk, then most of gene i’s edges will be preferentially

connected to genes inside Sk, and to a significantly lesser extent,

be connected to genes outside Sk. We will measure this

significance using the hypergeometric distribution, as argued

below.

If gene i is not functionally associated with genes inside Sk, then

among the other DSk{1D genes, the number of them gene i will be

connected to will have a hypergeometric distribution with

parameters N{1, Cnet
i , and DSk{1D. To see this, just imagine

that all genes, except gene i, inside the full functional network are

balls in an Urn. The ones connected to gene i are the Cnet
i white

balls, and the rest are black. If we randomly select DSk{1D balls,

the number of selected genes which are connected to gene i (i.e.

the number of white balls) will follow a hypergeometric

distribution.

Hence, if Gi has no specific functional association with the genes

in Sk, then the density function of the hypergeometric distribution

provides:

P(Ck
i ~Ck

i DN,Cnet
i ,Sk)~

Cnet
i

Ck
i

� �
N{1{Cnet

i

DSkD{1{Ck
i

� �

N{1

DSk D{1

� � ,

where DSk D denotes the number of genes inside Sk. Under this

distribution, the expected value of Ck
i is:

E(Ck
i DSk)~(DSk D{1)

Cnet
i

N{1
: ð4Þ

The gene weight, Wik, measuring the importance of Gi with

respect to pathway Sk, is defined in the following two steps:

wik~Ck
i {E(Ck

i DDSk D), ð5Þ

Wik~log2(wikI(wikw0)z2), ð6Þ

where I(wikw0) is the indicator function, equalling 1 if wikw0
and 0 otherwise. As most genes are not functionally crucial for

most pathways, the distribution of fwikg will be right-skewed. A

log-transform is therefore applied to reduce the importances of

those genes with unusually high wik, while allowing those genes

with wik around the median to be more distinguishable from each

other.

When the observed Ck
i is smaller than E(Ck

i DDSk D) (for example,

when Ck
i ~1 and E(Ck

i DDSk D)~2:5), gene i is potentially non-

central to the k gene set. In this case, wik will be negative

(wik~{1:5 following from the example above). However, as most

gene sets will only have a few numbers of crucial genes, we do not

want to lose the potential information available from the non-

central genes by under-weighting them. Hence, we reset negative

wik to 0 by using the thresholding function I(:) in equation 6. Such

negative wik will then lead to Wik~log2(0z2)~1. By setting

weights for non-central genes to Wik~1, we will not lose their

information when performing the downstream tests of significance,

yet their contribution will not be emphasized.

A gene with a large weight for a pathway implies that the gene

plays a function central to the pathway of interest. For example, in

the P53 Pathway (Figure 2), a pathway describing how the p53

transcription factor controls cell cycle in the presence of damaged

DNA, the central role of the TP53 gene is highlighted by a high

weight being assigned to it by the above weighting scheme. The

CDKN1A gene, a gene responsible for cell-cycle regulation and

DNA-damage response, also receives a high weight due to its

functional significance within the P53 Pathway.

Multi-subunit protein correction. Certain genes in the

human genome, e.g. the ANAPC family of genes, are responsible

for encoding the subunits of a multi-subunit protein (MSP). The

ignorance of the existence of MSP-coding genes may lead to the

‘‘over-counting problem’’ [12], where the MSP-coding genes may

unnecessarily inflate the weights of the genes connected to such

MSP-coding genes, and consequently masking the importance of

the other genes within a gene set. Figure 3A presents a toy gene

network with two groups of MSP-coding genes. The gene of

interest (yellow node) will have a high network connectivity and

pathway connectivity due to the existence of the MSP-coding

genes, thus inflating the weight for this gene-of-interest. Cognizant

Figure 2. P53 Pathway. Node sizes correspond to the gene weights
evaluated by GOGANPAIEA . The functional-centrality of the TP53 gene is
highlighted by being assigned a high weight. The CDKN1A gene, a gene
responsible for cell-cycle regulation and DNA-damage response, also
receives a high weight due to its functional significance within the P53
Pathway.
doi:10.1371/journal.pone.0055635.g002
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of the fact that such MSP-coding genes will share similar functions

as they encode the same gene product, such genes can be collapsed

to a single unit when evaluating connectivities, as demonstrated in

Figure 3B.

To correct the MSP problem, we employ the approach

described in [12]; we simply collapse MSP-coding genes into a

single unit prior to connectivity evaluation. MSP-corrected gene

weights are then simply evaluated by (4–6) on the collapsed gene-

network.

Weighted Gene Set Enrichment Analysis
In standard GSA, one first obtains a set of test-statistics fTigN

i~1

for each gene Gi (e.g. the test statistics for the 2-sample T-test, or

the Kolmogorov-Smirnov-like statistics pioneered by [3]). Then a

summary statistic for a gene set Sk is computed by applying a

function on fTigi[Sk
. In this article we will employ the mean-

absolute statistic:

F (Sk)~
1

DSkD

X
i[Sk

DTi D: ð7Þ

To incorporate the weights obtained in the previous section, we

modify the above equation by:

F (Sk)~
1P

i[Sk
Wik

X
i[Sk

Wik DTi D: ð8Þ

Weighted-GSA then simply follows the typical permutation

procedure: we create B copies of our original expression data, but

with the phenotype class labels randomly permuted. We then

obtain B sets of test-statistics fTb
i g

N
i~1,b~1, . . . ,B, and subse-

quently:

Fb(Sk)~
1P

i[Sk
Wik

X
i[Sk

Wik DTb
i D, b~1, . . . ,B:

A permutation p-value for Sk can then be evaluated as:

1

B

XB

b~1

I(Fb(Sk)wF (Sk)),

where I(:) is the identity function, equalling 1 if the condition

inside (:) is true, and 0 otherwise. To correct for multiple-testing,

we consider controlling the false-discovery rate (FDR) [17] and

investigate the resulting sets of q-values [18].

We further consider a normalized test-statistics, Fnorm(Sk),
proposed in [12], which is simply the original gene set test statistic

(7, 8), but subtracted by the median and divided the standard

deviation of all the gene sets’ permuted test-statistic values, i.e.:

Fnorm(Sk)~
F (Sk){medk~1...K,b~1...BfFb(Sk)g

s:d:k~1...K,b~1...BfFb(Sk)g , ð9Þ

where med and s:d: are the median and standard deviation

operator. Fnorm(Sk) provides a measure of effect size of the

correlation between Sk and the phenotype of interest, while the

normalization allows the test-statistics to be compared across

pathways with different sizes.

In practice, a measure of statistical significance (e.g. q-value) and

a measure of effect size (e.g. Fnorm) are both important for decision

making; a significant gene set with a large effect size is potentially

more biologically interesting than a significant gene set with a

small effect size. Therefore, besides the q-values, Fnorm can provide

another way to assess the gene sets’ biological relevance. In

particular, in the presence of a huge number of significant gene

sets, one can utilize the Fnorm scores to prioritize the biological

Figure 3. Illustrating MSP-correction. (A) The gene-of-interest (yellow node) is connected to certain single-protein-coding genes and two groups
of MSP-coding genes (inside blue shades). The presence of MSP-coding genes inflates both Cnet and Ck for the gene-of-interest inside the pathway

shaded in yellow. (B) Upon collapsing the MSP-coding gene groups into single units, both Cnet and Ck are reduced at the protein level.
doi:10.1371/journal.pone.0055635.g003
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relevance of such significant gene sets. We have employed this

ranking procedure in two of the three experiments presented

below.

Data and Other Implementation Details
For the choice of the global gene network, GANPA [12] utilizes

an integrated network, where two genes are linked together if

either they regularly co-express, they translate interacting proteins,

or they share certain specific GO functions. GOGANPA, on the

other hand, utilizes the functional network constructed as

described in section 2.1 and 2.2. We obtained GO annotations

from the R Bioconductor package org.Hs.eg.db, version 2.6.4. GO

annotations with evidence code ‘‘ND’’ (no biological data

available) are excluded for functional network construction. As

mentioned in the Resnik Similarity section above, GOGANPA

will not use electronically inferred annotations (GO evidence code

‘‘IEA’’) when building the functional network, and we will

consider a variant of GOGANPA, termed GOGANPAIEA, which

will further utilize IEA annotations when calculating the pair-wise

gene-gene similarities.

To construct the functional network for the various GOGANPA

variants, we first obtain pairwise gene similarity matrix S using the

R package csbl.go [19], version 1.3.6, available from the package

website. We only use GO Biological Process functional annota-

tions for similarity calculation. To obtain the adjacency matrix A,

the power-law goodness-of-fit test described above has chosen

thresholds r~0:7 and r~0:9 for GOGANPAIEA and GO-

GANPA, respectively (Figure S1). This will result in two networks

with 6,456 genes (143,697 gene-pairs) and 1,060 genes (751 gene-

pairs) for GOGANPAIEA and GOGANPA respectively.

Unless stated otherwise, in this article, GOGANPA will refer to

the weighted-GSA method with weights derived from the network

constructed without using ‘‘IEA’’ and ‘‘ND’’ annotations, and with

r~0:9. On the other hand, GOGANPAIEA will refer to the

weighted-GSA method with weights derived from the network

constructed using all annotations (including ‘‘IEA’’ annotation, but

excluding ‘‘ND’’ annotations), and with r~0:7.

We will compare five gene set analysis methods: the

Kolmogorov-Smirnov based method (KS) [3], the unweighted

method using the absolute mean test statistic (7) (absM) [5], and

the three weighted-GSA methods (8) with weights evaluated

according to the GANPA, GOGANPA, and GOGANPAIEA

pipelines, which differ from each other by the gene network

involved. For KS, we use the software downloaded from the

website of [3]. For absM and GANPA, we use the R-package

GANPA available on the CRAN R-repository.

The p53 data set was downloaded from the website of [3]. KS

was applied to the data as downloaded, while for the other

methods, the data was preprocessed as described in [12] before

being analyzed by absM, GANPA, GOGANPA and

GOGANPAIEA. The three breast cancer data sets (GSE3744,

GSE10780, and GSE14548) and the asthma data set (GSE18965)

were downloaded from the NCBI Gene Expression Omnibus

database, and preprocessed as in [12]. The 522 functional gene

sets used in the p53 analysis, and the 833 gene sets used in the

breast cancer and asthma studies were downloaded from MSigDB

[3].

Genes inside the data being analyzed, but not inside the gene-

network, will be assigned the basic weight 1 in the three network-

based GSA methods.

Unless stated otherwise, the FDR thresholds are chosen as those

employed in [12], whenever appropriate, for consistency with

previously published results. As there is currently no standard

FDR threshold established by the research community, the choice

of the FDR threshold is somewhat arbitrary. In practice,

increasing the FDR/ranking threshold will result in more

significant gene sets, yet the number of false-discoveries will also

increase. Users are therefore suggested to choose this threshold

appropriately, according to the number of false-discoveries they

can tolerate.

Principled methods for power or accuracy analysis for GSA

methods, such as sensitivity/specificity analysis or cross-validation,

require a reference ‘‘ground truth set’’ of positive and negative

gene sets, i.e. gene sets known to be related, and known not to be

related, respectively, to the phenotype-of-interest [9]. Currently, a

lack of such ground truth set of gene sets has made principled

evaluation of GSA methods impossible; while some gene sets have

been documented in the literature to be correlated to certain

phenotypes, the documentation is far from being complete, thus

introducing difficulties in establishing a set of positive gene sets.

Furthermore, establishing non-existence of relationship between

gene sets and phenotypes is experimentally difficult, and is

generally non-interesting to the scientific community. Documen-

tations of such negative results will therefore be even rarer,

constituting difficulties in creating a set of negative gene sets.

While simulations provide an alternative approach for power

analysis, such simulations are only meaningful when the data

collection scheme is carefully designed according to the stochastic

model behind the chosen hypothesis test, and can shed little light

on the power of GSA methods in our exploratory analysis setting.

Therefore, as a guide to the compared methods’ efficacy and

validity in the absence of a ‘‘ground-truth set’’, we will check

whether the gene sets deemed significant by our methods are

consistent with the published results from the literature, as well as

a reproducibility analysis [9] described in the ‘‘Breast Cancer

Data’’ section below.

An R-package, GOGANPA, which implements our proposed

method, is available at the CRAN R-repository.

Results

p53 Status in Cancer Cell Lines
The p53 dataset has been widely used for validating pathway

analysis algorithms. The data set contains 17 p53-wild-type (WT)

and 33 p53-mutated (MUT) cancer cell lines, with their gene

expression measured across 10,100 genes. We limit our analysis to

gene sets with size between 15 and 500, leaving us with 308 gene

sets from the original 522 gene sets for analysis. 15,000
permutations are performed for each method being compared.

Controlling FDR at 0:15, we consider gene sets with q-value

v0:15 as significant.

The results are presented in Table 1. KS and absM can only

identify, respectively, five and six pathways as significant, while

GANPA has identified 10 significant pathways, and

GOGANPAIEA has identified 16 pathways as significant. It’s

reassuring, furthermore, that GOGANPAIEA has discovered all 10

pathways deemed significant by GANPA, suggesting its solid

improvement over GANPA. GOGANPA, without IEA annota-

tions, has only discovered 12 significant pathways, suggesting that

IEA annotations can provide further insights into the pathways’

correlations with the phenotype of interest.

Among the pathways considered significant by GOGANPAIEA

but not by the unweighted methods or GANPA, a number of them

are well-known to be related to p53 functions. These includes the

mitochondria pathway, the BCL2 network, and the ceramide

pathway, which are related to apoptosis [20,21]. p53 functions in

cell cycle are also reflected by the significance of the cell cycle, cell

cycle arrest, and cell cycle regulator pathways [22,23]. p53-
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dependent actions of the G2 pathway is also well documented in

the literature [24].

As discussed in [12], the HSP27 Pathway, known to be

functionally related to p53 functions [25], is somehow given a

higher q-value by GANPA (q-value = 0.09) compared to that by

the absM (q-value = 0.033). It is worth-noting that GOGANPAIEA

can assign the HSP27 Pathway a lower q-value (q-value = 0.029),

which is more biologically relevant.

To obtain better insights into GANPA’s and GOGANPAIEA’s

results, Figure 4 presents the HSP27 Pathway network, indicated

with its genes’ test statistics for differential expression (i.e. DTi D) and

their gene weights evaluated by GANPA and GOGANPAIEA.

Comparing to GANPA, although GOGANPAIEA has down-

weighted the highly-differentially-expressed BCL2 and MAPKAPK2

gene, GOGANPAIEA has up-weighted the highly-differentially-

expressed FAS, TNF, and IL1A genes, resulting in a smaller q-value

for the HSP27 Pathway. Note that the highly-differentially-

expressed TNFRSF6 gene is heavily down-weighted by both

GANPA and GOGANPAIEA, a potential reason why absM can

somehow provide the HSP27 Pathway a low q-value.

For a clearer comparison, we further investigate the Ceramide

Pathway (Figure 5), whose functions are regulated by p53 [21],

and is deemed significant by GOGANPAIEA (q-value = 0.038) but

not by the other four methods. The BAX gene, which clearly

stands out as a highly-differentially-expressed gene inside the

Ceramide Pathway, is significantly up-weighted by

GOGANPAIEA, but significantly down-weighted by GANPA.

Unlike the HSP27 Pathway, which contains a fair amount of

highly-differentially-expressed genes, the significance of the

Ceramide Pathway can only be discovered if the singly differen-

tially-expressed BAX gene is up-weighted, as done by

GOGANPAIEA, but not by GANPA.

Besides the values of r chosen by the scale-free-fitness test, we

have also explored how GOGANPA and GOGANPAIEA perform

under r~0:3 and 0:5 (Table S1). We find that GOGANPA with

r~0:5 can obtain 17 significant pathways, one more compared to

that of GOGANPAIEA with r~0:7 (the r chosen by the scale-

free-fitness test). This suggests that, without IEA annotations,

GOGANPA can still achieve comparable performances compared

to GOGANPAIEA, if a suitable r can be chosen appropriately.

To investigate how the results may vary under different q-value

threshold, we have also explored the results obtained under q-

value threshold ~0:16. Under this new threshold, GOGANPAIEA

with r~0:7 can identify 20 significant gene sets, the highest

number of significant gene sets obtained among all methods being

compared. It is worth noting that GANPA and GOGANPAIEA

with r~0:5 can identify significantly more pathways (17 and 19,

respectively), compared to that when the q-value threshold was set

at 0:15 (Table S1).

Breast Cancer Data
One of the main advantages of GSA is its robustness against

independently repeated experimentation, possibly done with

different platforms [3]. Due to limited sample sizes, the outcomes

of single-gene differential expression analysis are often highly

variable; experimental data of the same phenotypic nature, but

collected by independent groups, often leads to different results. In

GSA, the fact that a gene can ‘‘borrow information’’ from its

neighbouring pathway genes through a pathway test-statistic can

thus increase the stability and reproducibility of the analytic

outcome. In this section, we will investigate the reproducibility of

GOGANPA and GOGANPAIEA. While we will still provide

certain in-depth analysis of some pathways, the focus of this

section is reproducibility, but not the interpretation of the results.

Table 1. p53 Data – Results.

Pathway KS absM GANPA IEAGOGANPA GOGANPA

p53 hypoxia pathway 0.001 0.015 0.01 0.005 0.015

hsp27 pathway 0.002 0.033 0.09 0.029 0.033

p53 pathway 0.006 0.015 0 0 0.01

p53 up 0.01 0.015 0 0 0

radiation sensitivity 0.064 0.015 0 0 0.014

ck1 pathway 0.474 0.178 0.157 0.139 0.145

bad pathway 0.507 0.079 0.125 0.049 0.067

p53 signalling 0.517 0.22 0.125 0.041 0.209

st dictyostelium 0.788 0.178 0.157 0.106 0.145

G2 pathway 0.8 0.22 0.198 0.106 0.212

bcl2 family and reg network 0.828 0.22 0.125 0.08 0.141

DNA damage signalling 0.862 0.178 0.198 0.2 0.141

ceramide pathway 0.874 0.189 0.157 0.038 0.177

mitochondria pathway 0.881 0.178 0.127 0.106 0.044

cell cycle pathway 0.899 0.178 0.151 0.107 0.145

cell cycle arrest 0.958 0.22 0.157 0.095 0.209

cell cycle regulator 0.969 0.178 0.125 0.078 0.152

Total Significant Pathways 5 6 10 16 12

Controlling FDR at 0.15, the q-values obtained by each method for the pathways deemed significant by at least one of the five methods are listed, with q-values ƒ 0.15

boldfaced. The absM method can only identify six pathways, while GANPA can identify four more. Compared to GANPA, GOGANPAIEA can discover six more pathways,
while discovering all the pathways deemed significant by GANPA. Abbreviation: st dictyostelium: st dictyostelium discoideum camp chemotaxis pathway.
doi:10.1371/journal.pone.0055635.t001
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We analyzed three breast cancer data to identify the conserved

significant pathways across the three different data sets. Among

the 620 gene sets (with size between 15 and 500) and controlling

FDR at 0.15, absM, GANPA, and the two GOGANPA variants

have generated a huge amount of significant pathways (more than

600 in all three data sets). For the three breast cancer data sets, at

q-value threshold set at 0.15, KS can only discover 58 significant

gene sets in the GSE14548 data set, and 0 significant gene sets in

GSE3744 and GSE10780. The lack of significant gene sets

discovered by KS precludes us to analyse the conservation ability

of KS across the three breast cancer data sets, and we hence

exclude KS from our analysis in this experiment.

To compare the various methods in the presence of a huge

amount of significant pathways, we consider the normalized test

statistics, Fnorm(Sk) (9). For each method being compared, a

pathway is considered conserved if its three normalized test-

statistics, obtained from each of the three data sets, are ranked

above 80.

As suggested in the analysis in [12], multi-subunit-protein (MSP)

correction is employed in GANPA and the two GOGANPA

variants (see the Methods and materials section for details

regarding MSP-correction). B = 15,000 permutations are run for

each method on each data set, and the results are presented in

Table 2. While GANPA has conserved 14 pathways,

GOGANPAIEA has obtained 17 conserved pathways, and hence

has further outperformed GANPA in terms of reproducibility.

GOGANPA, without IEA annotations, has apparently under-

performed comparing to GANPA and GOGANPAIEA by

conserving only 11 pathways.

We select the Cdc20:Phospho-APC/C Mediated Degradation

Of Cyclin A (CDC20) Pathway, a pathway conserved across the

three breast cancer data set only by GOGANPAIEA, and

investigate the gene weights and the test statistics for differential

expression of the genes within this pathway in one of the three

breast cancer data sets (Figure 6). According to the integrated

network used in GANPA, the CDC20 Pathway, being a set of

Figure 4. p53 Data - HSP27 Pathway. Deeper colour represents stronger differential expression (i.e. higher DTi D). Grey nodes represent genes with
missing expression measurements. Node sizes correspond to the gene weights evaluated by GANPA (A) and GOGANPAIEA (B). Comparing to GANPA,
while GOGANPAIEA has down-weighted the differentially expressed BCL2 gene and MAPKAPK2 gene, it has up-weighted the differentially expressed
FAS, TNF, and IL1A genes, and has hence produced a higher pathway test statistic and a smaller q-value for the HSP27 Pathway.
doi:10.1371/journal.pone.0055635.g004

Figure 5. p53 Data - Ceramide Pathway. See caption of Figure 4 for descriptions. The highly differentially expressed BAX gene, considered less
important by GANPA (A), has been strongly up-weighted by GOGANPAIEA (B), allowing GOGANPAIEA to discover the ceramide pathway’s
significance.
doi:10.1371/journal.pone.0055635.g005
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highly co-expressed genes, appears as an almost fully-connected

network. The lack of variation in gene-weights has therefore

disallowed GANPA to discover the significance of the CDC20

Pathway. GOGANPAIEA, on the other hand, only considers GO-

based functional similarity, and is able to provide a much sparser

network for the CDC20 Pathway that highlights the importance of

the highly-differentially expressed UBE2C and CDK1 genes,

leading to the discovery of the CDC20 Pathway’s significance.

We have further explored the conversation ability of GO-

GANPA and GOGANPAIEA under r~0:3 and 0:5 (Table S2).

Upon comparison, GOGANPAIEA at r~0:7, i.e. the r chosen by

the scale-free-fitness test, still performs best by conserving 17 gene

sets, followed by GANPA and GOGANPAIEA at r~0:5 (14

pathways conserved by both methods).

Asthma Data Analysis
We have seen from the above two analyses that the gene

weights, as assigned by GANPA and GOGANPAIEA, will have a

significant impact on the results. To further explore the differences

between GANPA’s and GOGANPAIEA’s weights assignments and

their potential impact on the results, we have further analysed a

data set containing gene expression measurements from seven

healthy and nine asthmatic children [26]. Following [12], multi-

subunit correction was performed for GANPA, GOGANPA and

GOGANPAIEA in this analysis and 10,000 permutations were

performed for the permutation tests.

Among the 620 gene sets (with size between 15 and 500) being

analysed, KS cannot deem any gene sets significant at FDR

threshold 0.1, whilst the other 4 methods have obtained more than

100 significant gene sets at the same FDR threshold. We rank the

significant gene sets by their normalized score Fnorm, and present

the top 10 gene sets, according to their Fnorm ranks, in Table 3.

A fair numbers of gene sets are ranked highly by all four

methods being compared. For example, the renin angiotensin

pathway, the RAC1 pathway, the carbohydrates pathway, and the

CTCF pathway are ranked within top 10 by all four versions of

GSA. On the other hand, GOGANPAIEA highly ranks the VEGF

pathway, a pathway known to be related to asthma [27] (rank 7th),

while GANPA ranks this pathway at 21st. Figure 7 shows the

GANPA network (Figure 7A) and GOGANPAIEA network

(Figure 7B) for the VEGF pathway. The main difference between

the two networks lie in their sparsity; the GANPA network is more

connected, hence although many differentially-expressed genes

have received high gene weights due to their high connectivities,

their importances within the network cannot be emphasized due to

the existence of other highly-connected and highly-weighted

genes. The GOGANPAIEA network, on the other hand, is much

sparser, hence certain differentially-expressed genes, e.g. VEGFA
and PIK3R1, have obtained gene weights much higher than the

Table 2. Breast Cancer Data – Results.

Database Pathway absM GANPA IEAGOGANPA GOGANPA

reactome syn. di/tri-phosph. 1,23,7 4,12,14 1,27,6 1,24,7

reactome metablism nts. 4,81,6 6,54,7 3,56,10 4,78,10

kegg focal adhesion 8,25,54 12,29,59 5,24,37 6,21,48

kegg pathways in cancer 14,17,37 14,18,30 21,18,24 19,19,40

biocarta AGR pathway 20,18,1 33,30,1 37,80,1 20,18,1

kegg melanoma 27,152,101 25,96,77 17,69,35 16,115,80

kegg acute myeloid leukemia 28,28,57 47,42,62 27,30,18 26,29,60

kegg pancreatic cancer 30,39,85 34,36,48 36,67,39 34,39,76

reactome G2/M transition 38,30,90 31,32,58 34,15,108 36,30,89

kegg prostate cancer 39,12,12 37,19,8 62,19,2 45,5,9

kegg p53 signaling pathway 40,9,24 30,5,60 33,6,88 39,9,22

kegg axon guidance 48,8,11 61,9,4 51,8,5 50,10,11

biocarta PDGF pathway 50,96,114 21,58,81 25,40,47 64,114,125

reactome cell cycle checkpoints 55,22,80 35,17,106 44,7,128 55,20,86

kegg renal cell carcinoma 71,55,10 93,55,10 60,72,12 85,56,8

kegg aldo. reg. Na reabs. 76,163,124 90,77,109 58,78,71 90,171,130

reactome APC 80,53,22 65,48,18 30,9,57 82,51,20

kegg reg. actin cyto. 84,87,71 77,61,84 65,90,53 75,71,59

reactome down strm. sig. trans. 87,102,53 53,60,54 56,51,25 70,88,39

reactome CDC20 92,113,15 81,111,12 43,47,33 91,111,15

biocarta longevity pathway 109,154,87 73,112,55 48,76,72 108,149,87

kegg glioma 111,151,77 74,64,37 83,98,27 104,144,66

Total Conserved Pathways 11 14 17 11

Pathways with normalized test-statistics ranked above 80 in all three data sets by at least one method are listed. The rankings of the pathway obtained from the three
breast cancer data sets are recorded. Rankings above 80 across all three data sets are boldfaced. GOGANPAIEA has identified the most number of conserved pathways
across the three data sets. Abbreviation: syn. di/tri-phosph.: synthesis and interconversion of nucleotide di and triphosphates; metabolism nts.: metablism of
nucleotides; aldo. reg. Na. reabs.: aldosterone regulated sodium reabsorption; APC: regulation of APC/C activators between G1/S and early anaphase; reg. actin cyto.:
regulation of actin cytoskeleton; down strm. sig. trans.: down stream signal transduction; CDC20: Cdc20 Phospho-APC/C mediated degradation of Cyclin A.
doi:10.1371/journal.pone.0055635.t002
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Figure 6. Breast Cancer Data: CDC20 Pathway. See caption of Figure 4 for descriptions. (A) In GANPA, a huge amount of co-expressing genes-
pairs form a strongly connected network, and GANPA cannot distinguish the highly differential genes from the other less differentially expressed
genes. (B) GOGANPAIEA , on the other hand, only considers functional relationships, and hence provides a much sparser network that highlights the
importance of the highly differentially expressed UBE2C and CDK1 genes.
doi:10.1371/journal.pone.0055635.g006

Table 3. Asthma Data – Results.

Database Pathway absM GANPA GOGANPA IEAGOGANPA

kegg renin angiotensin 4.83 (1) 4.16 (10) 4.37 (4) 4.1 (6)

biocarta RAC1 4.67 (2) 4.23 (8) 4.67 (2) 4.39 (4)

reactome carbohydrates 4.59 (3) 4.65 (1) 4.75 (1) 4.4 (3)

reactome glucose transport 4.37 (4) 3.7 (22) 4.38 (3) 4.43 (2)

biocarta ECM 4.37 (5) 3.73 (19) 4.37 (5) 3.83 (11)

reactome pyruvate 4.29 (6) 3.6 (28) 4.29 (6) 3.49 (26)

biocarta CTCF 4.26 (7) 4.38 (4) 4.19 (8) 4.22 (5)

reactome basigin 4.19 (8) 4.31 (6) 4.19 (7) 3.31 (41)

reactome telomere ends 4.16 (9) 3.71 (20) 4.08 (14) 3.62 (14)

kegg glycosaminoglycan 4.13 (10) 3.67 (24) 4.13 (9) 3.92 (10)

reactome glycolysis 4.13 (11) 4.55 (2) 4.13 (10) 3.46 (29)

reactome bile acids/salts 4.09 (12) 4.47 (3) 4.09 (13) 3.96 (8)

kegg pentose phosphate 3.58 (30) 4.32 (5) 4.1 (12) 3.62 (15)

reactome gluconeogenesis 3.91 (16) 4.3 (7) 3.9 (17) 3.42 (32)

kegg glycolysis gluc. 3.51 (35) 4.23 (9) 3.51 (34) 3.48 (27)

kegg ARVC 4.05 (13) 3.39 (38) 4.12 (11) 3.95 (9)

biocarta P53 hypoxia 3.6 (28) 4.08 (12) 3.6 (25) 4.67 (1)

biocarta VEGF 3.65 (26) 3.7 (21) 3.57 (28) 3.97 (7)

The pathways’ Fnorm scores and rankings (in brackets) as scored and ranked by the four GSA methods are presented. All pathways presented have q-value ƒ0:1, and
have Fnorm(Sk) ranked within top 10 by at least one of the methods being compared. Abbreviations: carbohydrates: metabolism of carbohydrates; pyruvate: pyruvate
metabolism and TCA cycle; basigin: basigin interactions; telomere ends: packaging of telomere ends; glycosaminoglycan: glycosaminoglycan degradation; bile acids/
salts: metabolism of bile acids and bile salts; glycolysis gluc.: glycolysis gluconeogenesis; ARVC: arrhythmogenic right ventricular cardiomyopathy arvc.
doi:10.1371/journal.pone.0055635.t003
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other genes within the VEGF pathway. Furthermore, the highly

differentially expressed ELAVL1 gene, being un-connected within

the GANPA network, is assigned the basic weight 1 by GANPA,

but has obtained a higher weight from the GOGANPAIEA

network due to its connection with the VEGFA gene. Taken

together, by highlighting the importances of certain differentially

expressed genes, GOGANPAIEA is able to provide the VEGF

pathway a higher ranking than GANPA.

On the other hand, the Basigin Interaction pathway is highly

ranked by GANPA (rank 6), yet lowly ranked by GOGANPAIEA

(rank 41). Figure 8 presents the GANPA network (Figure 8A) and

the GOGANPAIEA network (Figure 8B) for the Basigin Interaction

pathway. For this particular pathway, GANPA can successfully

emphasize the centrality of the BSG gene, while GOGANPAIEA’s

network is extremely sparse. Due to an under-informative

network, GOGANPAIEA is not able to rank the Basigin

Interaction pathway as high as that by GANPA.

We recall here that the GANPA network is a hybrid network

constructed using PPI, gene co-expression, and functional linkage

information. The GOGANPAIEA network, on the other hand,

relies completely on functional linkage information obtained from

the GO database. As a hybrid network, GANPA’s network will be

denser, and will often be unable to distinguish the importance of

certain pathway genes, as demonstrated in the VEGF network. In

contrary, although GOGANPAIEA may be able to better-

distinguish the functional importance of certain genes, the

incompleteness of GO annotations may disallow GOGANPAIEA

from providing informative pathway sub-networks, as illustrated in

the above Basigin Interaction pathway example.

Nonetheless, our analysis here has demonstrated that both

GANPA and GOGANPAIEA can have their unique strengths in

Figure 7. Asthma Data: VEGF Pathway. See caption of Figure 4 for descriptions. (A) The GANPA network. (B) The GOGANPAIEA network.
doi:10.1371/journal.pone.0055635.g007

Figure 8. Asthma Data: Basigin Interaction Pathway. See caption of Figure 4 for descriptions. (A) The GANPA network. (B) The GOGANPAIEA

network.
doi:10.1371/journal.pone.0055635.g008
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identifying the significance of different pathways. Accounting for

the fact that GOGANPAIEA only requires functional annotations

from GO, GOGANPAIEA is necessarily simpler and more general

than GANPA, a method which involves a significantly more

complicated gene network.

Discussion

Our methods differ from most other network-based GSA

approaches in the following aspects: besides the gene-expression

data, our methods only require GO annotations, while other

methods require a combination of different network data sources,

or information regarding network topology. Further, we consider

using GO semantic similarities in our network construction step,

hence allowing us to create a more informative GO functional

network, comparing to the network obtained by naively identifying

genes with shared GO functions.

The results of the p53 and breast cancer data analysis have

demonstrated the superior power of GOGANPAIEA over GANPA

and absM. The breast cancer data analysis has also demonstrated

GOGANPAIEA’s reproducibility across different data sets. Fur-

thermore, the fact that GOGANPAIEA can significantly outper-

form GOGANPA signifies the importance of IEA annotations;

although false annotations may exist within IEA annotations, the

incorporation of IEA annotations allows genes without manually

curated annotations to be considered during network construction,

and will hence provide in a more comprehensive gene functional

network for GSA, leading to the increased power of

GOGANPAIEA over GOGANPA.

The running-time of GOGANPA and its variants will depend

on the sample size, the number of genes, the number of gene sets,

and the number of permutations. For the p53 dataset, with 50

samples, 10,100 genes, and 522 gene sets, 15,000 permutations

took GOGANPA and its variants approximately 9 minutes to

complete on a laptop with an Intel Core i7, 1.90 GHz, 4MB L3

cache processor and 8 GB RAM. Significant speed-up can be

achieved by reducing the number of permutations, but we

recommend running no less than 10,000 permutations for

accuracy and results stability.

At first glance, it may be counter-intuitive to believe that

GOGANPA, which only utilizes GO annotations, can outperform

GANPA, which involves a global network integrated from various

data sources. However, when integrating PPI and gene co-

expression networks into a GO functional network, as done in

GANPA, one assumes that genes with interacting gene-products or

genes being co-expressed are functionally related, without regards

to the possibility that such gene-pairs may not necessarily be

functionally related. In other words, GANPA inherently ignores

the existence of falsely-linked gene-pairs within the integrated

network. The analysis of the CDC20 Pathway (Figure 6), for

example, suggests that integration of gene co-expression and PPI

networks may produce highly-connected sub-networks, hence

masking the importance of the regulatory genes within certain

pathways. Although the gain in performance by GANPA over

absM has demonstrated the usefulness of the integrated network,

the superior performance of GOGANPAIEA, with a much smaller

functional network compared to the integrated network used by

GANPA, suggests that a high-quality functional network, con-

structed using well-curated and computationally predicted anno-

tations, is far more valuable than a large, but noisy, integrated

network.

The choice of the similarity threshold, r, based on the scale-

free-topology criterion may deserve more elaboration on its

appropriateness. Many large-scale networks, such as gene-regula-

tory network and protein-protein interaction (PPI) network, have

been documented in the literature to exhibit an approximate scale-

free-topology (i.e. the degree distribution follows a power-law

distribution) [16]. Though the scale-free-topology criterion for

functional-linkage networks has not been studied to our knowl-

edge, we argue that as co-expression and PPI are correlated to

gene-gene functional similarity, particularly when the similarity is

measure by the Resnik measure with the max mixing strategy [28]

(which we have employed in our paper), functional-linkage

network will also be approximately scale-free, due to the scale-

freeness of gene-regulatory and PPI networks.

We shall add a note of caution for the readers, that many small-

scale networks will unlikely be scale-free. Also, the scale-free

topology of a functional-network can be destroyed if it is

constructed using a biased selection of genes [29]. This may

occur when the experimenters are considering only a small

selection of genes-of-interests for functional network construction,

or if the organism being studied has insufficient functional

annotations. The default network used in GOGANPA and

GOGANPAIEA are genome-wide, and they hence will unlikely

suffer from the issues discussed above.

In summary, we have introduced in this article GOGANPA and

its variant GOGANPAIEA, two GO-functional-network-based

GSA methods. The superior performance of GOGANPAIEA over

GOGANPA, GANPA, and absM in our experiments highlights

the importance of functional-linkages information, the power of

GO IEA annotations, and the usefulness of GO semantic similarity

measures. A natural extension of our current development is to

consider incorporating gene-network information into a more

general GO or pathway enrichment analysis setting, where a set of

significantly differentially-expressed genes, or a set of genes of

interests, is first identified, and gene-weights are then incorporated

into the GO or pathway enrichment tests. Potentially, all the

network construction and weight evaluation procedures described

in this article can still be used in the GO or pathway enrichment

analysis setting, thereby providing biologists an alternative way to

analyze gene sets, while accounting for functional linkages between

genes.

Supporting Information

Figure S1 Goodness-of-fit Measures for the Scale-Free-
Topology Criterion. The goodness-of-fit measure, R2, is

calculated across a range of thresholds r. For the GO network

constructed without considering electronically curated annotation

(No IEA), r~0:9 achieves the maximum R2, while r~0:7 gives

the highest R2 for the network constructed using both manually

and electronically curated annotation (With IEA).

(PDF)

Table S1 p53 Data - Further Results. This table compares

the 5 methods discussed in the main article, plus GOGANPA and

GOGANPAIEA with r~0:3 and 0:5, indicated by the subscripts of

GOGANPA and GOGANPAIEA. Gene sets with q-values ƒ0:16
obtained by one of the methods are listed. Number of significant

pathways discovered at FDR threshold at 0:15 and 0:16 are

presented. q-value ƒ0:15 are boldfaced. Abbreviation: GOG:

GOGANPA; st dictyostelium: st dictyostelium discoideum camp

chemotaxis pathway; rad. sens.: radiation sensitivity; p53 sig.: p53

signalling; st interleukin: st interleukin 4 pathwya; sa trka: Sa trka

receptor; bcl2family: bcl2family and regulatory network; dna dam.

sig.: DNA damage signalling; st wnt ca2: st wnt Ca2 cyclic GMP

pathway; cc: cell cycle; map00910: map00910 nitrogen metabo-

lism. #sig.: number of significant pathways.

(PDF)
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Table S2 Breast Cancer Data - Further Results. Pathways

deemed significant at q-value threshold 0.15, and have Fnorm

ranked above 80 in all three data sets by at least one method are

listed. The rankings of the pathway obtained from the three breast

cancer data sets are recorded. Rankings above 80 across all three

data sets are boldfaced. GOGANPAIEA has identified the most

number of conserved pathways across the three data sets.

Abbreviation: syn. di/tri-phosph.: synthesis and interconversion

of nucleotide di and triphosphates; metabolism nts.: metablism of

nucleotides; aldo. reg. Na. reabs.: aldosterone regulated sodium

reabsorption; APC: regulation of APC/C activators between G1/

S and early anaphase; reg. actin cyto.: regulation of actin

cytoskeleton; down strm. sig. trans.: down stream signal transduc-

tion; CDC20: Cdc20 Phospho-APC/C mediated degradation of

Cyclin A. # cons.: number of conserved pathways.

(PDF)
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