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Aim. We aimed to develop a prediction model for the diagnosis of gestational diabetes and to evaluate the performance of published
prediction tools on our population.Methods. We conducted a cohort study on nondiabetic women< 26 weeks gestation at a level 1
clinic in Johannesburg, South Africa. At recruitment, participants completed a questionnaire and random basal glucose and HbA1c
were evaluated. A 75 g 2-hour OGTT was scheduled between 24–28 weeks gestation, as per FIGO guidelines. A score was derived
using multivariate logistic regression. Published scoring systems were tested by deriving ROC curves. Results. In 554 women, RBG,
BMI, and previous baby≥ 4000 g were significant risk factors included for GDM, which were used to derive a nomogram-based
score. The logistic regression model for prediction of GDM had R2 0.143, Somer’s Dxy rank correlation 0.407, and Harrell’s
c-score 0.703. HbA1c did not improve predictive value of the nomogram at any threshold (e.g,. at probability> 10%, 25.6% of
cases were detected without the HbA1c, and 25.8% of cases would have been detected with the HbA1c). The 9 published scoring
systems performed poorly. Conclusion. We propose a nomogram-based score that can be used at first antenatal visit to identify
women at high risk of GDM.

1. Introduction

Gestational diabetes mellitus (GDM) is regarded as glucose
intolerance with first onset in pregnancy. The diagnosis of
GDM infers an increased risk of both short- and long-term
adverse outcomes for the mother and fetus [1]. The current
guidelines of the International Federation of Gynecology
and Obstetrics (FIGO) recommend universal screening of
pregnant women for GDM with a 75 g 2-hour oral glucose
tolerance test (OGTT) [2]. The lower thresholds recom-
mended by FIGO are derived from the findings of the Hyper-
glycemia and Adverse Pregnancy Outcomes (HAPO) study.
The HAPO study found that the adverse events associated
with GDM increase along a continuum with increasing
hyperglycemia [3]. The estimated prevalence of GDM based
on the FIGO guidelines varies between 11.1–44.3% [4, 5].

Universal screening for GDM has the advantage that all
pregnant women are screened as part of routine antenatal

care. However, this will place an added burden, both financial
and personnel, on the health care system. Selective screening
based on risk factors such as advanced maternal age, obesity,
family history of diabetes, and previous adverse pregnancy
outcomes such as recurrent or unexplained pregnancy losses,
large-for-gestational-age babies, or congenital abnormalities
has been proposed as a screening strategy for GDM. Selective
screening based on risk factors performs poorly as a screen-
ing tool with up to one-sixth of women with GDM diabetes
being missed [6]. Furthermore, recall of historical risk factors
is poor, medical records are often incomplete or unavailable,
or the recorded history is not often considered by the clinical
staff to trigger screening for GDM. Thus, the current risk
factor-based screening is ineffective.

Whilst the traditional risk factor-based screening pro-
gram performs poorly for the screening of GDM, there are
several published risk-scoring systems that hold promise.
These models combine maternal characteristics and medical
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history into a simple clinical prediction tool. This may assist
in identifying women who require an OGTT with greater
efficacy, accuracy, and efficiency [7–15]. However, these
models were developed on non-African populations in ter-
tiary centres using data obtained from a selective screening
approach in most instances [7–15].

The purpose of this study was to develop a clinical predic-
tion model for GDM in a South African population and to
evaluate the performance of the published prediction tools
on our study population. The introduction of such a predic-
tion tool would reduce the number of OGTTs, hence decreas-
ing the workload and financial burden on an overburdened
healthcare system.

2. Materials and Methods

This paper forms part of a larger study investigating screen-
ing strategies for GDM in a South African population. We
carried out a prospective cohort observational study at a level
1 primary healthcare clinic in Johannesburg. One thousand
consecutive pregnant women that were less than 26 weeks
pregnant were recruited. Patients known with diabetes melli-
tus or greater than 26 weeks pregnant were excluded [16].

At recruitment, each patient completed a questionnaire
including demographic data and an evaluation of risk factors
for GDM. Risk factors considered were obesity, that is, a body
mass index (BMI)≥ 30 kg/m2, age≥ 35 years, a family history
of diabetes mellitus, a history of a delivery of a baby≥ 4000 g
in a prior pregnancy, glycosuria, a history of GDM in a prior
pregnancy or a history of a baby with a congenital abnormal-
ity, and an unexplained stillbirth or recurrent pregnancy
losses. Gestational age was based on the patient’s last normal
menstrual period, ultrasound-determined gestation, or by
measuring of the symphysis to fundal height.

A random blood glucose (RBG) and glycated hemoglobin
(HbA1c) levels were measured at recruitment on a Roche
Accu-check Active point-of-care device and at the labora-
tory. The glucometer was regularly calibrated as per manu-
facturer guidelines, and glucose was measured on whole
capillary blood. Measurements on the glucometer were not
affected by haematocrit. If the random glucose was greater
than 11.1mmol/l or HbA1c was greater than 6.5%, the
patient was referred to the local hospital for further manage-
ment of overt diabetes mellitus. Else, a 75 g two hour oral glu-
cose tolerance test (OGTT) was scheduled for between 24
and 28 weeks gestation. GDM was diagnosed based on the
FIGO criteria [2]. All blood was drawn by a registered nurse
and was stored on ice until it was delivered to the laboratory
on the same day. Point-of-care tests were performed on-site.

We used R version 3.3.0 [17] with packages PredictABEL
[18] and rms [19]. In order to compare the different predic-
tion models, we imputed missing values using multivariate
imputation by chained equations [20]. Because our dataset
is large enough, we used all clinically relevant predictors in
a logistic regression model [17]. Random serum glucose
demonstrated a nonlinear relationship with the log odds of
the outcome, and we used a restricted cubic spline with two
knots in the model. The other continuous variables were
not transformed in the model. In order to determine the

degree of optimism with this model, we validated and cali-
brated the model with 200 bootstrap samples according to
Harrell [19].

To reduce the number of variables for a more parsimoni-
ous model, we used the method of approximation as sug-
gested by Harrell (to remove the variables that would have
the smallest effect on the R2 coefficient of determination of
the linear regression model of variables on the linear predic-
tor of the logistic regression model as the outcome) [19]. We
tested the interaction of HIV with the other variables.

We then investigated the effect of having a model with
and without HbA1c as some centres may and some may
not have HbA1c testing readily available. These models
were compared using Harrell’s c-index, Somer’s Dxy rank
correlation, the Brier score, R2, and the net reclassification
index (NRI) (at probabilities of 10, 50 and 100%) as well
as the integration discrimination improvement (IDI) [17].
Harrell’s c-index (c-index> 0.5 shows good predictive abil-
ity) and Somer’s Dxy (where Dxy=1 when the model is
perfectly discriminating) are measures of the general predic-
tive power of a regression model. In effect, they are a natu-
ral extension of ROC curve areas. The Brier score (where
the best possible score is 0 for total accuracy) measures
the accuracy of probabilistic predictions, that is, it is the
average gap between the calculated probability and the
actual outcome. R2 (where 1 fits the regression line per-
fectly) provides information on the goodness of fit of the
model. The NRI is an index of how well a new model clas-
sifies subjects (in this case how well does our prediction
model identify patients at high risk of GDM). The IDI
similarly is a tool that evaluates the capacity of a marker
or model to predict the outcome (i.e., how well can the pre-
diction model identify patients with GDM).

Categorical NRI equal to x% means that compared
with individuals without outcome, individuals with out-
come were almost x% more likely to move up a category
than down. The function also computes continuous NRI,
which does not require any discrete risk categories and
relies on the proportions of individuals with outcome cor-
rectly assigned a higher probability and individuals with-
out outcome correctly assigned a lower probability by an
updated model compared with the initial model. IDI equal
to x% signifies that the difference in average predicted
risks between the individuals with and without the out-
come increased by x% in the updated model. Finally, for
ease of use, nomograms were generated for the model with
and without HbA1c [19].

Furthermore, nine published risk prediction models for
GDMwere identified [7–15]. The risk prediction model from
each study was applied to our study population, and a
receiver operating curve (ROC) was generated to evaluate
its performance as a screening tool. We thereafter compared
the two ROC curves derived from independent samples to
assess if there was a significant difference in the area under
the curve.

Approval for this study was obtained from the University
of Pretoria, Faculty of Health Sciences Ethics Committee
(Protocol 180/2012) and was performed in accordance with
the 1964 Declaration of Helsinki and its amendments.
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Informed consent was obtained from every patient prior to
entry into the study.

3. Results

One thousand (1000) pregnant women were recruited.
Eighty-two (8.2%) women had fetal losses and did not
continue with the study, 163 (16.3%) women moved away
from the area and were thus lost to follow-up, 194 (19.4%)
women were unreachable, and seven (0.7%) women with-
drew consent for the study. Thus, 554 (55.4%) women had
complete data available for analysis. One hundred and
forty-four (25.8%) women had GDM.

The mean age of the population was 27.2 years (IR
13–42± 5.8), parity 1.1 (IR 0–5± 1), BMI 26.7 kg/m2 (IR
22.7–47.2± 5.4), random glucose 4.5mmol/l (2.9–9.3± 0.7),
and HbA1c 5.2% (33.3mmol/mol) (IR 3.8–6.5%± 0.4; 18–
47.5mmol/mol). One hundred and sixty (28.9%) women
were HIV positive of which 59 (36.9%) were on highly
active antiretroviral therapy (HAART), 78 (14.1%) women
had a positive family history of diabetes mellitus, 55
(9.9%) had a history of a previous stillborn or congenitally
abnormal baby, and 44 (7.8%) women had previously deliv-
ered a baby> 4000 g.

We considered the role of the random glucose (AUROC
0.63, 95% CI 0.58–0.68) as a screening tool. Furthermore, we
included clinically relevant predictors, namely, delivery of a
previous baby≥ 4000 g, random glucose, BMI, family history
of diabetes mellitus, HbA1c, history of a previous stillbirth,
or previous baby with a congenital abnormality and age, in a
logistic regression model [2]. The odds ratio of the full model
is illustrated in Supplementary Figure 1 (S1 odds ratio of full
model (continuous variables: 75th versus 25th percentile)
available online at https://doi.org/10.1155/2017/2849346).
The performance of this model including all clinical variables
is illustrated in Table 1.

The model was then validated and calibrated with 200
bootstrap samples according to Harrell [19]. One can observe
that at higher predicted probabilities the actual probabilities
are less in the optimism-corrected model indicating a fair
degree of optimism as demonstrated in Supplementary
Figure 2 (S2 correcting the model for optimism). At higher
predicted probabilities, the actual probabilities are less in
the optimism-corrected model indicating a fair degree of
optimism. The discriminatory indices for the validated
model are illustrated in Table 1. The quantile absolute error
was 0.029. The slope of the bias-corrected model was 0.870,
it has a 0.130 difference when corrected for optimism.

In order to get a smaller model, we used an approxima-
tion method as suggested by Harrell [19] to remove variables
that would have the smallest effect on R2 of the linear regres-
sion model (Table 2). We removed family history of diabetes
mellitus, history of a previous stillbirth or previous baby
with a congenital abnormality, and age and still maintained
95.7% of R2.

We analysed the interaction of HIV and HAART with
the clinical variables. HIV nor the HAART had any interac-
tion with a history of a delivery of a previous baby greater
than 4000 g (p = 0 066), the random glucose (p = 0 835), or

BMI (p = 0 801). Overall, HIV nor HAART had an effect
on our proposed model (p = 0 974)

We thereafter used a smaller model to determine whether
adding HbA1c would add any predictive value to the model
as demonstrated in Supplementary Figure 3 (S3 comparison
of predictive value of model with and without HbA1c). We
found that adding an HbA1c did not significantly improve
the predictive value of the model (Table 2). The slope of the
bias-corrected model was 0.933, and it has a 0.0.067 differ-
ence when corrected for optimism.

By adding the HbA1c to the model 12%, 4%, and 9% of
patients will be downclassified to being at low risk of GDM
at 10, 50, and 100%, respectively. Similarly, 0%, 4%, and 0%
will be upclassified to being at high risk of GDM at 10, 50,
and 100%, respectively. The integrated discrimination
improvement (IDI) shows that the discrimination slope of
the updated model with the added HbA1c was 10.8% higher
than the original model.

The le Cessie-van Houwelingen-Copas-Hosmer
unweighted sum of squares test for global goodness of fit

Table 1: Discrimination indices of the full predictive model
including all clinical risk factors.

Discrimination index
Full model with
all variables

Validated model

R2 0.143 0.109

Harrell’s c-index 0.703

Somer’s Dxy rank correlation 0.407 0.362

Brier score 0.173 0.178

Table 2: β-Coefficient of predictive variables in the model with and
without HbA1c.

Model without
HbA1c1

Model with
HBA1c1

Previous baby≥ 4 kg 102 1.01

Rgluc2

Rgluc3
1.99/

−2.1709
2.17/
−2.28

BMI4 0.05 0.05

HbA1c1 0.6464

R2 coefficient of determination 0.135 0.122

Somer’s Dxy rank correlation 0.38 0.36

Harrell’s c-index 0.69 0.68

Brier score 0.176 0.174

NRI5

Categorical 0.0355 (p = 0 06034)
Continuous 0.253 (p = 0 01607)

IDI6 0.108 (p = 0 002)
HbA1c1: glycated haemoglobin; Rgluc2: random glucose first spline; Rgluc3:
random glucose second spline; BMI4: body mass index; NRI5: net
reclassification index; IDI6: integrated discrimination improvement.
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for the model with HbA1c gave a p value of 0.87 and for the
model without HbA1c 0.81.

Finally, for ease of use, nomograms were generated for
the model with and without the HbA1c (Figure 1).

We then compared the efficacy of the nomograms
at >10% and >15% probabilities of GDM (Table 3) as we will
need to establish the cutoff risk above which a woman is
deemed at high risk of developing GDM. At a cutoff of
10%, 58 (10.5%) and 50 (9.0%) fewer OGTTs would be

carried out if HbA1c was or was not incorporated into the
nomogram, respectively. Two (0.4%) and one (0.2%) cases
of GDM would be missed if the nomogram with and without
the HbA1c was applied, respectively. Similarly, at a 15%
cutoff, 125 (22.6%) and 103 (18.6%) fewer OGTTs would
be carried out if HbA1c was or was not incorporated into
the nomogram, respectively. Nine (1.6%) cases of GDM
would be missed whether or not HbA1c was incorporated
into the nomogram.
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Figure 1: Nomograms (a) with HbA1c and (b) without HbA1c. The nomograms consider the history of delivery of a previous baby> 4000 g
(prevmacrosomia: 0 = no, 1 = yes), random glucose (gluc: measurement in mmol/l), and BMI (BMI: mass in kilograms/height in metre2). Two
nomograms are illustrated to show the difference with and without and HbA1c measurement being included. The score is derived by aligning
the points on each number line with the “points” line at the top. The total score is then calculated and plotted on the “total points” line. When
this total score is compared to the prob(GDM) line, the probability of developing GDM is derived. For example, a 30-year-old woman who is
now para 2 gravida 3, with a BMI of 35 kg/m2, who previously delivered a 4.3 kg baby, has an HbA1c of 5.8% and now has a random glucose of
6.7mmol/l will have a score of 155 and thus a 50% chance of developing GDM in this pregnancy based on the nomogram without the HbA1c.
Her score is 182 and thus a 52% risk of developing GDM if the HbA1c is incorporated into the prediction model. Prevmacrosomia: history of
delivering a baby> 4000 g; gluc: random glucose; BMI: body mass index; HbA1c: glycated hemoglobin; Prob(GDM): probability of developing
gestational diabetes.

Table 3: Comparison of the efficacy of nomograms at probabilities of 10 and 15%.

Nomogram
With HbA1c1 Without HbA1c1

High risk Low risk High risk Low risk
Probability of GDM2 GDM2 No GDM2 GDM2 No GDM2 GDM2 No GDM2 GDM2 No GDM2

>10% 142 (25.6%) 354 (63.9%) 2 (0.4%) 56 (10.1%) 143 (25.8%) 361 (62.5%) 1 (0.2%) 49 (8.8%)

>15% 135 (24.3%) 304 (54.9%) 9 (1.6%) 115 (20.8%) 135 (24.3%) 316 (57.0%) 9 (1.6%) 94 (17%)

HbA1c1: glycated haemoglobin; GDM2: gestational diabetes.
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Table 4 demonstrates the performance of each published
prediction model for GDM once it was applied to our study
population as compared to the population that it was
derived from.

4. Discussion

This study aimed to evaluate the use of risk indicators to
develop a statistical prediction model for GDM. Traditionally
identified risk factors such as BMI, age, or family history of
diabetes mellitus have been associated with GDM in other
populations [21–24]. Data on GDM in Africa, especially
since the introduction of the FIGO criteria, is scant. Available
data found an association with GDM and obesity, family his-
tory of diabetes mellitus, previous stillbirth, previous macro-
somic child, and age> 30 years in some sub-Saharan African
populations [23].

The fasting glucose appears to be a very attractive tool for
screening pregnant women for GDM. However, this would
necessitate that all pregnant women present in a fasted state
for screening, thus this can only take place on the second
antenatal visit and would require all pregnant women to be
tested. While this may not seem unrealistic, it can prove to
be challenging in a low-income country where women have
to travel a great distance to the healthcare facility and they
often do not have funds for transport. Thus, we investigated
an alternate screening tool that could be used easily on the
first antenatal visit to stratify a women’s risk for GDM in
the current pregnancy.

We found that a previous history of delivering a baby
weighing ≥ 4000 g and an elevated random blood glucose
were independent predictors of developing GDM. Church
et al. and Meek et al. found that the random glucose was a
promising screening tool for GDM with AUROC of 0.8 and
0.86, respectively [25, 26]. By comparison, these retrospective
studies employed a 2-stage screening protocol for GDM and
did not use the currently widely accepted FIGO diagnostic
criteria. By comparison, the basal random glucose alone
was a poor predictor of women likely to develop GDM in
our study. Thus, we propose that our scoring system, by
adding other variables to the random blood glucose, will
better identify women at risk at GDM compared to the
random blood glucose alone. This premise requires pro-
spective validation.

Other studies have also identified risk factors [19–24].
Only nine of these studies summarised this into a score or a
clinical prediction model, of which we were able to test eight
on our study population (Table 4). These tests performed
poorly as a screening tool in our study population compared
with their derivation populations. This may be a result of us
testing these scores on a low-risk pregnant population. Risk
factors may play a less significant role in predicting GDM
when universal screening is applied, and the FIGO diagnostic
criteria are used. By contrast, most of the aforementioned
scoring systems used a selective screening approach and used
criteria other than that recommended by FIGO for the diag-
nosis of GDM in the derivation and the validation of their
scores [7–14]. Furthermore, many of these scores use loga-
rithmic equations in their calculations, thus necessitating a

computer in the clinic, which is not always available in South
African antenatal clinics [9, 13–15].

As South Africa is a resource-restricted country that faces
a dual burden of disease, that is, communicable and noncom-
municable diseases, a selective screening approach is an
attractive option for the diagnosis of GDM as it seems the
more cost-effective approach.As a risk-factor-based approach
performs inconsistently, a scoring system that incorporates
the more significant risk factors in a population may be a bet-
ter option. We have proposed a nomogram that incorporates
the significant factors in a South African population. The
BMI and history of previous deliveries are currently part of
routine antenatal practice. The random blood glucose can
easily be tested at the first antenatal visit, making this a clin-
ically applicable tool for early pregnancy. In some settings, an
HbA1c may be available. However, we have demonstrated
that including the HbA1c into the risk stratification tool does
not significantly affect the patient’s risk of GDM. South
Africa has a high burden of HIV. In our study, HIV did not
affect the incidence nor did it contribute as a predictive
marker of GDM.

The risk stratification system proposed by Harrison et al.
performed well in our study population [12]. This score is
based on the patient’s age in years, BMI, race, family history
of diabetes mellitus, a history of GDM in a prior pregnancy,
and fasting plasma glucose. The advantage of this system is
that it is a scoring system rather than a logarithmic equation,
and it incorporates information that is routinely obtained on
the first antenatal visit. However, it will require the patient to
present to the clinic in a fasted state for a second visit before
the risk stratification can be completed. This may be prob-
lematic in our setting of a low-middle income population
that may not live close to the clinic. In addition, this selective
screening approach may not be complied with if it requires
the healthcare worker to recalculate the risk on multiple
visits. Our proposed nomogram incorporates only two his-
torical factors and a random glucose, thus making it quick
and easy to use at the first antenatal visit.

There is an increasing health burden related to obesity
and type 2 diabetes mellitus in sub-Saharan Africa, yet little
is known about the prevalence of GDM [27]. In South
Africa and many other countries worldwide, screening
programs are based on risk factors. However, it has been
demonstrated that this approach shows a low compliance
to guidelines. Hence, many women are not screened and
GDM remains underdiagnosed [28]. The FIGO criteria have
been criticised for its low diagnostic thresholds. Several
studies have shown that women diagnosed with GDM
based on the IADPSG criteria had higher adverse outcomes
such as fetal macrosomia, risk of primary caesarean deliv-
ery, and preeclampsia compared with women with no
GDM [29, 30].

Screening for GDM is necessary as it has both short- and
long-term implications for the mother and child. The FIGO
diagnostic criteria have been adopted almost universally
[2]. We have proposed a simple nomogram that can be used
for predicting the probability of developing GDM at the first
antenatal visit. A limitation of this study is that the prediction
model needs to be tested prospectively in the screening and
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diagnosis of GDM so that it can be validated, and a threshold
of clinical usefulness can be determined before it can be
widely implemented.
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