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Abstract

Estimating PMI is of great importance in forensic investigations. Although many methods

are used to estimate the PMI, a few investigations focus on the postmortem redistribution. In

this study, ultraviolet–visible (UV–Vis) measurement combined with visual inspection indi-

cated a regular diffusion of hemoglobin into plasma after death showing the redistribution of

postmortem components in blood. Thereafter, attenuated total reflection–Fourier transform

infrared (ATR–FTIR) spectroscopy was used to confirm the variations caused by this phe-

nomenon. First, full-spectrum partial least-squares (PLS) and genetic algorithm combined

with PLS (GA-PLS) models were constructed to predict the PMI. The performance of GA-

PLS model was better than that of full-spectrum PLS model based on its root mean square

error (RMSE) of cross-validation of 3.46 h (R2 = 0.95) and the RMSE of prediction of 3.46 h

(R2 = 0.94). The investigation on the similarity of spectra between blood plasma and formed

elements also supported the role of redistribution of components in spectral changes in

postmortem plasma. These results demonstrated that ATR-FTIR spectroscopy coupled

with the advanced mathematical methods could serve as a convenient and reliable tool to

study the redistribution of postmortem components and estimate the PMI.

Introduction

Determining the postmortem interval (PMI) is a task of great importance in daily forensic

casework. An accurate determination of the PMI is of great forensic value for the crime scene

investigator in driving investigation direction, setting terms of reference for an alibi, or pin-

pointing a suspect. Progress has been made in exploring new methods focused on the changes

in biomolecules or other regular morphometric, physical, and chemical indices[1–7], exclud-

ing some traditional methods to estimate PMI, such as the evaluation of cooling of the body,

rigor mortis, stomach contents, livor mortis, and insect growth after death [8, 9]. Conversely,

most of these exploratory methods either require sophisticated procedures or are destructive

to the limited forensic sample. Therefore, implementing a quick nondestructive and sample-

saving method would be highly advantageous for determining the PMI at a crime scene.
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Ultraviolet–visible (UV–Vis) spectroscopy is a quantitative analysis tool that can be applied

as a reliable biosensor for detecting hemolysis in plasma and serum samples based on the spe-

cific absorption spectrum of hemoglobin (in particular, on oxyhemoglobin’s absorbance peak

at 414 nm) [10, 11]. The attenuated total reflectance–Fourier transform infrared (ATR–FTIR)

technique is a highly sensitive analytical tool widely used to detect the changes in the func-

tional groups, bonding type, and molecular conformations of biochemical composition, such

as nucleic acids, carbohydrates, proteins, and lipids [12, 13]. Unlike UV-Vis spectroscopy,

nearly every biological molecule absorbs mid-infrared light, leading to characteristic spectra

with multiple distinct peaks [14]. Thus, ATR-FTIR spectroscopy could provide more spectral

information and be more favorable to distinguish the postmortem spectral variations of differ-

ent samples. With the characteristics of minimal sample consumption and low cost, the mea-

surement of the mid-infrared spectrum through ATR is also a direct and nondestructive way

to extract original and plentiful spectral information of samples in a short time [15]. Now, por-

table and handheld FTIR instruments are commercially available [16, 17] and may be used for

determining the PMI in situ at a crime scene in the future. These characteristics make ATR-F-

TIR spectroscopy go especially well with the forensic need for fast and precise determination

of PMI.

Blood is seldom affected by confounding factors such as age, gender, diet, diurnal cycles,

and stress thus making it an ideal candidate to reduce individual differences [18]. Therefore, it

has been used to estimate PMI by measuring different candidate variables [1, 19–23]. As a liq-

uid component of blood, plasma is one of the most common body fluids in the forensic lab

analysis that can provide pathological and toxicological information of the victims, and is eas-

ily accessible even without performing a forensic autopsy. Another advantage is that compli-

cated pretreatments such as homogeneity, freeze-drying, or mixing with KBr are not necessary

for the ATR–FTIR and UV–Vis analyses of the plasma.

The chemical analysis of the plasma using UV–Vis and ATR–FTIR measurements may be a

quick and easy way to provide insights into the postmortem biochemical changes. Previous

studies primarily focused on some substantial organs from humans and animals, and the

results showed that their FTIR spectra changes were highly correlated with PMI [24–27]. The

aim of the present study was to obtain a complete overview of postmortem changes in blood

using UV–Vis and ATR–FTIR spectroscopies and build more accurate and reliable mathemat-

ical models to determine PMI.

Materials and methods

Animal specimens and sample preparation

Male New Zealand White rabbits (n = 96, weight 2.2–2.5 kg), purchased from the Animal Cen-

ter of Xi’an Jiaotong University, were anesthetized by urethane through abdomen, and then

were sacrificed by air embolism at one of the auricular veins. No sample was collected prior to

sacrifice. All of the animal experiments in the present study were specifically approved and

overseen by the Care and Use of Laboratory Animal Committee of Xi’an Jiaotong University.

Cadavers were kept at moderate ambient temperatures (Ta, 25 ± 1˚C) and relative humidity

(RH, 40% ± 5%) in a controlled-environment chamber following sacrifice. For calibration set,

arterial blood samples from 72 rabbits were taken at 0, 6, 12, 18, 24, 30, 36, 42, and 48 h (8 sam-

ples for each time point) after death. The arterial blood samples of other 24 rabbits used as a

prediction set were taken at the postmortem time points of 3, 9, 15, 21, 27, 33, 39, and 45 h (3

samples for each time point). All arterial blood samples were collected from the left ventricle

into tubes containing anticoagulant dipotassium ethylenediaminetetraacetic acid (K2EDTA).

All samples were centrifuged at 4˚C, 3000 rpm, for 15 min. Then, 20 μL of the supernatant
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plasma was collected into a 200-μL microcentrifuge tube. Deposits exclusively from 0-h

samples were subsequently washed five times with 0.9% (w/v) NaCl, and the buffy coat was

remained carefully each time to obtain 0-h formed elements of arterial blood. All samples were

kept frozen at –80˚C until tested.

UV-Vis spectroscopy

A total of 1 μL of plasma was added to 200 μL of 0.01% Na2CO3. After sufficient mixing, UV–

Vis absorbance was measured at 414 nm using the NanoDrop 2000 Spectrophotometer

(Thermo Scientific, MA, USA) by applying 2 μL of the sample on the microvolume pedestal.

ATR–FTIR measurements

A Thermo Nicolet-5700 FTIR spectrometer (Thermo Electron Scientific Instruments Corp.,

WI, USA) equipped with a diamond ATR accessory, a deuterated triglycine sulfate detector,

and a KBr beam splitter was used for spectral acquisition. Infrared spectra analysis software

package OMNIC version 8.2 (Thermo Nicolet Analytical Instruments, WI, USA) was used for

analyzing the FTIR spectra and recording the data from the spectra. Three 1-μL subsamples of

each sample were placed on the diamond ATR crystal and air-dried completely using a blow

dryer to form homogeneous dried films. For each subsample, three replicate spectra were

recorded to ensure the spectral reproducibility and assess analytical precision. All spectra were

recorded in the range of 4000–900 cm-1 using the ATR method with a resolution of 4 cm–1

and 32 scans.

ATR–FTIR spectral pretreatment

In the dataset treatment, the average of nonuplicate spectra of each sample was used. The inter-

est was in researching postmortem changes in the “bio-fingerprint” region, which contained

the fundamental vibrational energy absorbing frequencies of many biomolecules [28]. There-

fore, only the spectral region between 1800 and 900 cm–1 was used for further analysis. Many

preprocessing techniques were developed for raw spectra correction, including standard nor-

mal variate (SNV), multiplicative scatter correction, autoscaling, mean centering, and so on, to

improve the robustness and accuracy of subsequent multivariate analyses. Moreover, the sec-

ond-derivative spectrum served as a widely used preprocessing method in spectroscopic analy-

sis. The negative peaks corresponded to the center of absorbance peaks of nonderivative

spectrum. The method could not only remove baseline and linear trend but also allowed detec-

tion and positive identification of overlapping bands, leading to the improvement in both

qualitative and quantitative perspectives in principle [29, 30]. The second-derivative peaks sep-

arated and observed in the amide region could also reflect secondary structure composition of

proteins, and the relative intensities of these peaks were thereby considered to be related to the

original intensity [30]. The spectra were corrected by SNV and subsequently converted into

second derivatives using a 7-point Savitsky–Golay second-derivative function after checking

several alternatives.

Two samples were classed as outliers and removed based on the leverage values, Q-residu-

als, and Studentized y-residuals [31]. Finally, only 70 samples of the calibration set were

included for variable selection and model development.

Partial least-squares regression

As a recently developed generalization of multiple linear regression, partial least-squares (PLS)

regression is one of the most widely used modeling approaches for high-throughput data,
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particularly for quantitative analysis purposes. The general purpose of PLS is to handle regres-

sion problem by extracting these latent variables (LVs) and modeling the linear relationship

between a set of explanatory variables X (n, p) and a response y (n, 1) [32, 33], such as the spec-

tral data and the PMI values in this case. For PLS algorithm, the determination of LV number

is a critical step which can optimize the predictive ability of the model. In this study, the opti-

mal number of LVs was selected according to the basis of including additional factors only

when the root mean square error (RMSE) of cross-validation (RMSECV) improved at least 5%

[34].

The variable importance in projection (VIP) is a summary of how much a variable contrib-

utes to describe the dependent and independent variables in the PLS model [35]. Spectral vari-

ables with VIP scores above 1.0 were considered as important contributors for full-spectrum

PLS modeling in this study.

Genetic algorithm combined with partial least squares

Genetic algorithm combined with partial least-squares (GA-PLS) is a variable selection

method inspired by natural selection mechanisms [36, 37]. In GA-PLS applied to spectral data,

an individual is described as a chromosome that is a combination of genes (spectral variables).

The most informative chromosomes are most likely chosen to reproduce and generate off-

spring through the process of fitness assessment, cross-over, and mutation In this case the

GA-PLS was executed on 100 separate occasions, and only subsets selected most frequently by

the replicates (greater than 50%) were retained in the final regression model. According to the

advice provided by Leardi et al. [38], spectral variables were reduced from 467 to 156 using the

mean of the absorbance values at 3 contiguous wavenumbers (and the mean of the last 2) to

avoid the efficiency of prediction decrease.

Model evaluation standard

RMSECV was the RMSE calculated from the calibration set (leave-one-out cross-validated

samples) and indicated the error of the proposed calibration models. The RMSE of predic-

tion (RMSEP) was calculated from the prediction set to evaluate the prediction ability of

different PLS models using the samples of the prediction set. Relative error (RE %) was cal-

culated as the percentage ratio of RMSE (RMSECV or RMSEP) and average value. Also, the

ratio RMSEP/RMSECV was adopted to evaluate the robustness of the model. A model with

RMSEP/RMSECV lower than 1.2 was usually considered robust [39, 40]. The squared corre-

lation coefficient (R2) can evaluate the goodness of fitting between actual and predicted val-

ues. The closer (R2) to 1, the better the model fitted.

Similarity index

As a kind of point-to-point similarity index, Euclidean cosine squared (Cos) was used here for

quantitative evaluation of the degree of match of two spectra. The value of Cos was in the inter-

val [0,1], from 0 (no match) to 1 (perfect match).

Analysis of variance

A one-way analysis of variance and post hoc least significant difference/Tamhane test were

used to determine whether A414 values in UV–Vis spectrum or similarity indices (dependent

variable) were significantly different at different PMIs (independent variable). P values less

than 0.05 were considered statistically significant.
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Software

All data analysis was done on MATLAB R2014a (The MathWorks, MA, USA), Unscrambler

Version 9.7 (CAMO Software A/S, Trondheim, Norway), and IBM SPSS Statistics Version 20

(IBM Corporation, NY, USA). GA-PLS was run on Leardi’s GA-PLS Toolbox in Matlab [41].

Result and discussion

Plasma color inspection and UV-Vis spectroscopic analysis

The plasma exhibited the characteristic discoloration (from pale yellow to pink, and then to

dark red with an increase in PMI) after the centrifugation of blood samples (Fig 1). It indicated

that hemoglobin, which gave blood red color, might be involved in this postmortem phenome-

non. UV-Vis measurement was used to further confirm hemoglobin levels in postmortem

plasma samples. It is already known that the main hemoglobin-related peak is located at

λ = 414 nm and the absorbance at 414 nm (A414) is correlated with an increase in free hemo-

globin concentration [42, 43]. Accordingly, we observed that A414 values increased signifi-

cantly with increasing PMI (P< 0.05) and decreased slightly at 48 h (Fig 1) showing the

accumulation of hemoglobin in the plasma. As hemoglobin is an intracellular protein, the

increase in its content in postmortem plasma suggested the presence of the postmortem redis-

tribution of intracellular components caused by the rupturing of blood cells and the release of

their contents into the surrounding plasma.

ATR–FTIR analysis

Spectral comparison among plasma of PMI groups. Fig 2A presents the raw ATR–FTIR

spectra of the plasma in the range of 1800–900 cm–1, and Fig 2B shows the comparison of

Fig 1. Plasma color inspection and the A414 values. A typical change in plasma color was compared with

the average absorbance measured at 414 nm and the standard deviations. *P < 0.05 indicates a significant

difference from the 0-h group.

https://doi.org/10.1371/journal.pone.0182161.g001
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averaged second-derivative spectra obtained from different PMI groups where the negative

peaks corresponded to the center of absorbance peaks of the nonderivative spectrum. Multiple

components in the plasma were discriminated simultaneously based on these peaks; their

assignment is summarized in Table 1. At first glance, several spectral variances, as revealed by

Fig 2. The raw ATR–FTIR spectra and average second-derivative spectra. (A) Raw ATR–FTIR spectra

obtained from postmortem plasma. (B) Average SNV-corrected, second-derivative ATR–FTIR spectra of the

calibration set plasma obtained from different PMIs. Arrows indicate the major change trends in the intensity

of the marked bands with PMI. Inset: local magnification image corresponding to the frame area marked in.

https://doi.org/10.1371/journal.pone.0182161.g002

Table 1. Major band assignments of the FTIR spectrum of plasma and formed elements on the 1800–

900 cm−1 spectral range [44, 46–48, 67–70].

Wavenumber values (cm−1) Band assignment

1650 Amide I: α-helix

1633–1628 Amide I: β-sheet

1541 Amide II: β-sheet

1511 Tyrosine

1480–1430 δas(CH3), δas(CH2), δs(CH3), δs(CH2): proteins, phospholipids, fatty acids

1396 νs(COO-): free amino acids

1315–1313 Amide III

1240 νas(PO2
-): phospholipids, nucleic acids, phosphate

1126–1122 ν(C-O): lactate

1080 νs(PO2
-): phospholipids, nucleic acids, phosphate, saccharides

1040 δ(COH): glucose, polysaccharides

ν, Stretching vibrations (s, symmetric; as, asymmetric); δ, bending (scissoring) vibrations.

https://doi.org/10.1371/journal.pone.0182161.t001
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fluctuating intensities, were identified among PMI groups. The most remarkable changing

band, observed at 1650 cm–1, was related to the α-helix in the Amide I region. Meanwhile, the

other two bands at 1633 cm–1 and 1628 cm–1 in the Amide I region related to the β-sheet also

decreased in intensity. Furthermore, the negative peak in the second-derivative spectra at 1633

cm–1 gradually disappeared and changed to a positive peak over time. The band at 1541 cm–1

represented an increasing tendency, while the bands originating from tyrosine-rich proteins at

1511 cm–1 decreased in the Amide II region. The bands in the region between 1480 cm–1 and

1430 cm–1 displayed the C-H bending (scissoring) vibrations of -CH2 and -CH3 groups from

proteins, phospholipids, and fatty acids [44, 45]. The band at 1396 cm–1, which was due to

COO- stretching, and the band at 1385 cm–1 displayed increase and decrease in intensities,

respectively. The band at 1313 cm–1 in the Amide III region was blue-shifted to a higher value

of 1315 cm–1 and decreased. The asymmetric PO2
- stretching band at 1240 cm–1, which was

mainly associated with phospholipids, nucleic acids, and phosphate, decreased over time. The

band at 1122 cm–1 was correlated with the C-O stretching vibrations mode of lactate, whose

intensity also increased. The bands at 1080 cm–1 and 1040 cm–1, which were assigned to sym-

metric vibration of PO2
- and COH bending vibration respectively, showed the irregularity in

the intensity changes.

PLS models based on the FTIR spectral dataset for PMI estimation. Further investiga-

tion was performed to explore whether these spectral variances could be used for estimating

PMI. Two types of PLS models were constructed based on full-spectrum (spectral range from

1800 to 900 cm–1) and GA-selected variables; the detailed results of their performance are sum-

marized in Table 2. In the full-spectrum PLS model, a relatively satisfactory performance was

made based on 467 variables with a high R2 (cross-validation: 0.91, prediction: 0.85) but large

error margin of RMSE (RMSECV: 4.76 h, RMSEP: 5.31 h), when three latent factors were

determined, explaining 94.82% of total variances. The result is shown in Fig 3A, where most

scattering points from different groups were distributed close to the reference line. RMSEP/

RMSECV ratio of 1.12 demonstrated the robustness of model predictive ability.

In contrast, the GA-PLS model appeared to be better than the full-spectrum PLS model

with a higher R2 (cross-validation: 0.95, prediction: 0.94) and lower error of RMSE (RMSECV:

3.46 h, RMSEP: 3.46 h), and the ratio RMSEP/RMSECV reduced to 1.0. The results of cross-

validation and prediction are presented in Fig 3B. In comparison with the original dataset

composed of 467 variables, only 168 spectral variables were selected by GA algorithm to estab-

lish the PLS model where the data size was reduced by 64%. It demonstrated that the relatively

informative variables were selected, and variables carrying weak useful or even useless infor-

mation were eliminated by GA-PLS. Although the full-spectrum PLS model provided a desir-

able prediction for PMI estimation, a large number of uncorrelated or useless variables were

included, thus increasing model complexity and computational burden.

For information on most informative wavenumbers, the VIP scores of full-spectrum PLS

model and the distribution of selected subsets of GA-PLS model are shown in Fig 4A and 4B,

Table 2. Results of cross-validation and predictive ability of the full-spectrum model and GA-PLS model.

Method Variable number LVs Cross-validation Prediction RMSEP/RMSECV

R2 RMSECV (RE %) Explained variance R2 RMSEP (RE %)

Full-spectrum PLS 467 3 0.91 4.76 (19.90) 94.828 0.85 5.31 (22.12) 1.12

GA-PLS 168 6 0.95 3.46 (14.45) 98.147 0.94 3.46 (14.42) 1.00

LVs, Latent variables; R2, squared correlation coefficient RE %, relative error (%) in cross-validation or prediction; RMSECV, root mean square error of

cross-validation; RMSEP, root mean square error of prediction.

https://doi.org/10.1371/journal.pone.0182161.t002
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respectively. The high VIP scores (above 1.0) in Fig 4A were visible within the spectrum wave-

numbers ranging between 1705 and 1373 cm–1, which were associated with protein conforma-

tions and amino acids. The highest peaks in VIP scores at 1651 cm–1, 1633 cm–1, 1560 cm–1,

1541 cm–1, and 1512 cm–1 belonged to Amide I and II regions, which were correlated with

protein conformation. Wavenumbers in the spectral region 1372–900 cm–1 had low VIP

scores, which were mainly relevant to the saccharides, lactate, nucleic acids, and phospholipids.

Moreover, four unevenly distributed regions had a high degree of stability in the process of

GA-PLS (Fig 4B). The first region (1684–1587 cm–1) was characteristic of the Amide I bands

of proteins. The second region (1539–1309 cm–1) was the combination of Amide II bands, the

C-H bending (scissoring) vibrations in -CH2 and -CH3 groups, and the C = O symmetric

stretching in COO- group. The third region (1140–1122 cm–1) was mainly for the lactate [46–

48]. The wavenumbers selected most frequently in the fourth region (975–958 cm–1) were not

related to any characteristic negative peak of the second-derivative spectra and provided less

valuable information. They were selected possibly because they became more important when

Fig 3. Predicted versus actual PMI from the calibration and prediction sets. (A) Prediction results using the full-

spectrum PLS model and (B) using the GA-PLS model. The green lines are the reference line corresponding to the perfect

prediction.

https://doi.org/10.1371/journal.pone.0182161.g003

Fig 4. The results of VIP scores and GA-PLS. (A) VIP score distribution for the investigated spectral region 1800–900 cm–1. The gray line

shows the average preprocessed spectrum, and the orange line shows the threshold value. (B) Frequency of the selection of different

wavenumbers in the 100 runs of GA-PLS. The average preprocessed spectrum is superimposed on the frequency.

https://doi.org/10.1371/journal.pone.0182161.g004
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added to other more specific regions. On the contrary, spectral regions (1308–1141 cm–1,

1121–976 cm–1, and 957–900 cm–1) carrying less useful information were rarely selected by

GA-PLS. These regions were mainly related to phospholipids, nucleic acids, and saccharides.

As an exception, the region around 1240 cm–1 associated with phospholipids and nucleic acids

seemed to decrease over time visually, but its contribution to the regression model was judged

to be relatively less by GA-PLS.

The two methods of evaluation were different in few aspects. The spectral region from 1417

cm–1 to 1309 cm–1 selected by GA-PLS mostly had low VIP scores. Moreover, the area around

1541 cm–1 with a second highest peak in VIP scores was not selected frequently in GA-PLS.

Each spectral wavenumber in the region from 1417 cm–1 to 1309 cm–1 might become more

contributive when collaborated with some other regions, although they might not be impor-

tant separately in the full-spectrum PLS model. The contrary was the vicinity of 1541 cm–1.

These differences might be caused by the difference in these two algorithms. VIP scores were

proposed to evaluate the importance of each variable (i.e., spectral wavenumber) in the PLS

model [49]. However, GA-PLS was a multivariate approach for variable selection that aimed to

find out the combination producing the best response [50]. In general, the regions selected

mostly by GA-PLS and regions with high VIP scores were largely consistent and might be sup-

ported by each other; more spectrum wavenumbers were selected as informative variables by

GA-PLS than VIP scores.

Spectral comparison between plasma of different PMI groups and formed elements.

The results of visual inspection and UV–Vis spectroscopy demonstrated the presence of post-

mortem redistribution. This phenomenon should also affect the changes in FTIR spectrum. It

might be expected that if the plasma were mixed with the components from formed elements,

the spectrum would become more similar to the latter and the similarity would be closely

related to the concentration ratio. Fig 5 shows the averaged second-derivative spectra obtained

from plasma and formed elements from the 0-h group and clearly revealed the spectral differ-

ences in peak positions and intensities. As expected, these differences visually corresponded

with the spectral variances observed in the averaged second-derivative spectra among PMI

groups (Fig 2b), especially in the GA-selected regions.

It is worth highlighting that signal intensity in a second-derivative spectrum is mainly

caused by a curvature of the absorbance spectrum rather than the concentration of a certain

Fig 5. Comparison of spectra of 0-h plasma and formed elements. Arrows denote the spectral differences

at corresponding bands in Fig 2B and point the direction from 0-h plasma to formed elements. Informative

spectral subsets selected most frequently by GA-PLS (greater than 50%) are represented in gray, and others

are in white.

https://doi.org/10.1371/journal.pone.0182161.g005
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component. Moreover, visual inspection may reveal some similarities and differences in the

spectra, but it is not entirely obvious how the global spectral changes occur. Therefore, the

spectral similarity was investigated, where the spectra from different PMI plasma groups were

compared with the averaged spectrum from 0-h formed elements to further confirm the main

trend of spectral changes. The three regions (full-spectrum, GA-selected, and GA-excluded)

were used separately (Fig 6). For the full-spectrum and the GA-selected subsets, the results

were similar except that the latter with higher similarity indices and less standard deviations

indicating GA indeed screened out most of the sensitive spectral information. Fig 6A and 6B

shows that the similarity increased to a maximum at 36 h (P< 0.05) and then reached a pla-

teau until 48 h (P> 0.05). These results supported the viewpoint that biochemical changes due

to redistribution (i.e., diffusion) of intracellular components, which dominated the main post-

mortem spectral changes in plasma, were time-independent in the first 36 h. It is worth men-

tioning that the similarity indices were variable and showed no significant tendency in the

GA-excluded regions (Fig 6C), indicating less influence of the redistribution of intracellular

components.

Explanation of FTIR spectral changes in postmortem plasma. The role of postmortem

redistribution in forensic lab examination is often neglected, and even generally considered to

disturb the biochemical analyses of blood. Conversely, as this phenomenon affects the contents

of surrounding plasma, it may have the potential to become an indicator of postmortem

changes. Blood plasma is a pale yellow extracellular fluid that normally holds the formed ele-

ments (including the red blood cells, white blood cells, and platelets) in whole blood in suspen-

sion. It is mostly water and contains dissolved proteins, glucose, clotting factors, electrolytes,

hormones, and gases. In fresh blood, formed elements, which are suspended in the plasma,

can be easily separated by centrifugation. The components in formed elements are relatively

isolated from the plasma by membranes in a healthy living body. The diffusion due to the

breakdown of cell membranes is a result of autolysis [51–53]. Its mechanism is similar to that

of the postmortem leakage of potassium from the retina into the center of the globe, which

helps estimate the PMI [51]. A scheme has been generated (Fig 7) to demonstrate in a more

illustrative way what occurs to postmortem blood. Although the cells in blood are deprived of

oxygen after death, the loss of selective membrane permeability, and subsequently the dissolu-

tion of cells, eventually causes the release of intracellular rich components into the plasma and

surrounding tissue spaces [54], as demonstrated in Fig 7.

As a spectroscopic result, the spectral features of plasma are gradually replaced by the ones

of formed elements with the band at 1650 cm–1 most typically. Although hemoglobin, an

abundant component in formed elements, has no characteristic absorption peak in the

Fig 6. Average similarity index and the standard deviations at each PMI point. The spectra from different PMI plasma groups were

compared with the averaged spectrum from 0-h formed elements using (A) full-spectrum subsets, (B) selected subsets, and (C) eliminated

subsets by the GA-PLS model. *P < 0.05 indicates a significant difference from the 0-h group.

https://doi.org/10.1371/journal.pone.0182161.g006
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infrared spectrum, its infrared spectrum is characterized by a great predominance of α-helix

secondary structure absorbance at 1650 cm–1 [30, 55, 56]. The increase in intensity at 1650

cm–1 showed indirectly the increase in free hemoglobin in postmortem plasma, which was

consistent with the results obtained by UV–Vis spectroscopy.

This theory of postmortem redistribution can also explain why the spectral region relevant

to proteins, free amino acids, fatty acids, and lactate had high VIP scores and/or was selected

mostly by GA-PLS. These components had two common traits: (1) they easily diffuse into the

plasma, and (2) corresponding spectral regions have large differences between 0-h plasma and

0-h formed elements. These two traits were both conducive to cause regular changes in corre-

sponding spectral regions.

The regions around 1240 cm–1 and 1080 cm–1, which were mainly assigned to νas(PO2
−)

and νs(PO2
−), respectively, in nucleic acids, phosphate, and phospholipids were selected less

frequently by GA-PLS. It demonstrated that the contribution of PO2
- group to the regression

model was relatively small. Nucleic acids are macromolecules mainly in the nucleus of white

blood cells. Phospholipids mainly exist in cell membranes, and therefore they cannot easily dif-

fuse into the plasma. Moreover, the saccharide-related spectral regions (1200–900 cm–1, but

not including the region around 1126 cm–1) carrying less sensitive information can also be

explained by the characteristics of saccharides. As the main source of saccharides in the blood

in vivo, glucose diffuses across membranes and into the cells through facilitated diffusion [57].

Therefore, no concentration gradient exists to drive the reverse diffusion of saccharides

through the broken cell membranes after death. Furthermore, the concentrations of blood sac-

charides also fluctuate resulting from food intake, which may also lead to the instability of

Fig 7. Order and degree of postmortem changes in blood after death as time progresses. The blue

lines represent cell membranes (solid lines: intact; dotted line: broken-down), and the black arrows represent

the effects of redistribution.

https://doi.org/10.1371/journal.pone.0182161.g007
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their postmortem initial values and go against the robustness of the prediction model. There-

fore, these spectral regions were little influenced by the postmortem redistribution and con-

tributed little to the PLS models.

It is known that decomposition occurs soon after death involving two processes: autolysis

and putrefaction caused by the intracellular enzymes and bacterial intrusion [58–60]. Contrary

to the postmortem redistribution that decreases with the decrease in the concentration gradi-

ent, the decomposition effects increase gradually in the early postmortem period till at some

time point, the previously hidden effect of decomposition begins to appear. According to pre-

vious researches [22, 61–63], the process of decomposition may also degrade the components

in blood, including metabolites, proteins, saccharides, and nucleic acids. Previous studies also

proved that the decomposition process had a significant impact on the FTIR spectra of post-

mortem substantial organs [24, 25, 27]. In this case, the band at 1126 cm–1 was associated with

lactate and selected as an informative region by GA-PLS. The 1126 cm–1 band increased over

time; the possible mechanism was that, as a product of anaerobic glycolysis, lactate accumu-

lated in red blood cells rapidly after death and then gradually diffused into the plasma. Unlike

the proteins, free amino acids, and fatty acids, this was a typical result of autolysis-induced dif-

fusion combined with postmortem metabolism. This result was supported in part by a previ-

ous finding that the lactate concentration in the plasma increased significantly after death [23,

64–66]. The intensities of almost all the other bands in GA-selected regions changed to the lev-

els of the corresponding ones in the spectrum of 0-h formed elements, and their variations

could be explained by the phenomenon of postmortem decomposition. If the components in

postmortem plasma (including the part from formed elements) decomposed significantly to

drive the spectral changes at these time points, the similarity indices (compared with the 0-h

formed elements) would decrease accordingly. Although the similarity indices in both full-

spectrum and GA-selected regions increased in the first 36 h and then remained almost

unchanged (Fig 6A and 6B), the decrease in average similarity index at 42 and 48 h was negligi-

ble (P> 0.05). This result could only indicate that the postmortem redistribution faded away

and the system changed to a relative equilibrium state at 36 h. As no samples were taken

beyond the 48-h time interval, it was not suitable to judge any statistically significant decline in

similarity index after this time point. However, it could be proved at least that the effect of

decomposition in the plasma was masked greatly by the strong effect of postmortem redistri-

bution in spectroscopy within postmortem 48 h.

In general, the effects of redistribution on postmortem plasma in 48 h were observed. The

effect of redistribution dominated the FTIR spectral changes and masked the effect of decom-

position, especially in 36 h after death. This process of PMI-dependent redistribution existed

only after death, and would not occur due to vital/postmortem degradation (metabolic pro-

cess) and redistribution, which was close to the ideal model expected by Claus Henssge and

Burkhard Madea [8]. According to Burkhard Madea [51], this postmortem process of redistri-

bution in blood was also a suitable analyte for estimating the PMI because of the high concen-

tration gradient between plasma and formed element components, especially the level of

hemoglobin (hemoglobin normally accounts for about 90% of erythrocyte proteins and almost

0% of plasma proteins) [45].

Conclusions

In summary, ATR-FTIR spectroscopy achieved the purpose of estimating PMI and monitoring

the postmortem molecular changes using the postmortem arterial blood plasma. By establish-

ing PLS models for PMI estimation, the results showed a satisfactory predictive ability on the

whole with the best RMSECV of 3.46 h (R2 = 0.95) and RMSEP of 3.46 h (R2 = 0.94). Moreover,
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spectral regions related to proteins, free amino acids, fatty acids, and lactate were identified

with regular changes and played an important role in estimating PMI. Furthermore, the results

showed that the redistribution of intracellular components dominated the spectral changes in

postmortem plasma especially in the first 36 h, and the decomposition seemed to contribute

little to the changes. However, these results were valid only under constant environmental con-

ditions. The finding of this study might help to better understand the redistribution of post-

mortem components in blood and provide a new way to estimate the PMI. Further studies

should be conducted to explore the potential effect of changes in temperature, humidity, and

so forth on the PMI to meet the requirement of forensic application.
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44. Petibois C, Déléris G. Analysis and monitoring of oxidative stress in exercise and training by FTIR spec-

trometry. Int J Sports Physiol Perform. 2008; 3(2):119–30. PMID: 19208921
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tion on single microsamples by Fourier-transform infrared spectroscopy. J Lab Clin Med. 2000; 135

(2):210–5. https://doi.org/10.1067/mlc.2000.104460 PMID: 10695667

49. Oussama A, Elabadi F, Platikanov S, Kzaiber F, Tauler R. Detection of Olive Oil Adulteration Using FT-

IR Spectroscopy and PLS with Variable Importance of Projection (VIP) Scores. J Am Oil Chem Soc.

2012; 89(10):1807–12.
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