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Abstract: Hepatocellular carcinoma (HCC) is one of the world’s most widely recognized malignant
tumors that accounts for 90% of all the primary liver cancers and is a major cause of death from
cancer, representing half a million deaths per year. Obesity and associated metabolic irregularities,
particularly diabetes mellitus (DM) and insulin resistance, are important risk factors for the advance-
ment of HCC. Recently, retrospective studies showed that metformin (MET) could protect the hepatic
tissues in pre-existing diabetes mellitus from HCC. The purpose of this study was to assess the role of
MET treatment in the pre-existing diabetic rats before and after HCC induction by diethylnitrosamine
(DEN). Thirty-five male Sprague Dawley albino rats were partitioned into the following groups:
Group 1 (Gp1) was the control. Gp2 was injected intraperitoneally (i.p) with streptozotocin (STZ)
(80 mg/kg) and DEN (50 mg/kg/7 weeks). Gp3, Gp4, and Gp5 were injected as in Gp2 and treated
with MET (150 mg/kg) before and/or after HCC induction. Biochemical parameters including liver
functions, lipid profile, and oxidative stress biomarkers were determined. Furthermore, histological
and immunohistochemical changes were assessed in all groups. Our results illustrated that the
group of rats that were treated with STZ and DEN had significant changes in both liver functions
and were associated with alterations in the liver histopathological architectures. Treatment with
MET before or after HCC induction ameliorated the cellular changes in the liver tissues; however,
the utmost protection was found in a group of rats, which were treated with MET before and after
HCC induction.

Keywords: diabetes mellitus; streptozotocin; hepatocellular carcinoma; diethylnitrosamine; met-
formin

1. Introduction

Uncontrolled diabetes mellitus (DM) leads to several complications that might be risk
factors for the incidence of hepatocellular carcinoma (HCC) [1,2]. HCC is a widespread
kind of primary liver malignancy which has been considered the world’s main cause of
cancer-related death [3]. In fact, HCC was found more frequently in individuals with low
socioeconomic status due to improper access to health care [4]. In developing countries,
including Egypt, there is a high incidence of HCC [5]. Development of HCC depends on
upregulated signals from the insulin-like growth factors (IGFs) [6]. Insulin-dependent
pathway dysregulation has been identified as a risk factor for HCC [7]. The relationship
between diabetes and HCC has been assessed in huge populaces; emerging from this,
preclinical investigations have demonstrated that anti-diabetic medications may alter the
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risk of developing HCC [8–11]. The anti-diabetic medication metformin (MET), which
diminishes insulin resistance, has been reported to play an important role against the
incidence of cancer [12].

Retrospective studies showed that DM individuals receiving MET had a low risk of
developing cancer, while patients receiving sulphonylureas and insulin had an expanded
cancer frequency and mortality rates [13]. Moreover, these consequences highlighted
that the protective impact of MET depended mainly on its dose [14]; moreover, MET has
been shown to have antioxidant, antiaging, and antitumor activities in both vitro and
vivo, which reduce the risk of several solid tumors, such as pancreatic, breast, colorectal,
and prostate cancers [15–18].

Reactive oxygen species (ROS) and their derivatives induce oxidative DNA damage
and abnormal protein expression, which could help in the development of various dis-
eases [19]. During DM, exaggerated ROS production damages the lipids, proteins, and ge-
netic materials via triggering of various signaling cascades, alteration of gene expression
that control cellular proliferation, angiogenesis, and metastasis [20]. Subsequently, ROS
immediate pathophysiological changes prompt the pre-neoplastic initiatory cells’ growth.

The preventive impact of MET on HCC development in DM patients and the direct
anti-HCC effect of MET have been reported [21,22]. The mechanism of MET action in
DM patients on HCC prevention and treatment is supposed to be related to the AMPK
pathway, whereas MET activates AMPK expression by increasing the cellular energy stress,
which triggers insulin/IGF-1 signaling inhibition that is involved in the control of cancer
glycolysis and carcinogenesis [23]. Additionally, MET contributes to an increase in the
glutathione (GSH) content, which protects against oxidative stress. MET promotes the
increase of NAD/NADH ratio, thus increasing the expression of NAD-dependent protein
deacetylase sirtuin-1 (SIRT1) [24]. The target of this study was to investigate the role of
MET treatment under a distinctive setting in the pre-existing diabetic rats induced for HCC.

2. Materials and Methods
2.1. Chemicals

Diethylnitrosamine (DEN) and streptozotocin (STZ) were purchased from Sigma
(St. Louis, MO, USA). Metformin (MET) was purchased from a local pharmacy in Saudi
Arabia. All biochemical kits were purchased from the Bio-Diagnostic company (Cairo,
Egypt). The primary and secondary antibodies for immunohistochemical investigations
were purchased from Dako (Glostrup, Denmark).

2.2. Experimental Design

Thirty-five male Sprague Dawley albino rats (100 ± 5 g) were received from the
National Research Center (NRC, Cairo, Egypt) and housed randomly at seven rats per
cage in 12 h/12 h dark/light cycles under standard temperature and humidity laboratory
conditions. Animals were carefully observed daily, and their body weights were recorded,
while food and water intakes were accurately measured each week to assess any signs of
toxicity or abnormality throughout the experiment.

2.3. DM and HCC Inductions

For diabetes induction, rats were intraperitoneally (i.p.) injected with a single dose
of STZ (80 mg/kg) [25]. For HCC induction, rats were i.p. injected with DEN (50 mg/kg)
(Sigma, St. Louis, MO, USA) once weekly for seven weeks [26]. For MET treatment, rats
were treated by gavage with 150 mg/kg each other day for 102 days. To establish the
diabetic/HCC in rats, STZ was injected, as mentioned above, and after 45 days, DEN was
injected (Figure 1).
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Figure 1. Experimental design showing the different groups under the study with time course
injections of streptozotocin (STZ), diethylnitrosamine (DEN) and metformin (MET). Gp1: received
only saline. Gp2 (STZ/DEN): injected intraperitoneally (i.p.) with a single dose of STZ (80 mg/kg)
and after 45 days were injected i.p with DEN (50 mg/kg). Gp3 (STZ/MET/DEN): injected i.p with
STZ, 3 days later rats were treated by gavage with 150 mg/kg of MET each other day for 102 days,
then at day 45 rats were injected with DEN once weekly. Gp4 (STZ/DEN/MET): injected i.p with
STZ, 45 days later DEN was injected once per week and rats were treated by gavage with 150 mg/kg
of MET. Gp5 (STZ/MET/DEN/MET): injected i.p. with STZ, 3 days later injected with MET, 45 days
later both DEN and MET treatment started.

2.4. Experimental Animals

Rats were divided into five groups (n = 7) as the following: Gp1 was served as the
negative control. Gp2 was injected with STZ/DEN, Gp3 was injected with STZ/MET/DEN,
Gp4 was injected with STZ/DEN/MET, and Gp5 was injected with STZ/MET/DEN/MET.
At the last day of the experiment, day 105, all rats were sacrificed under ethyl ether anesthe-
sia, and cadavers were burned in animal incinerators under the supervision of the Faculty
of Science, Tanta University. Gross examinations were performed macroscopically for all
groups during sacrifice. Blood samples were collected from all groups from arterial blood
vessels and heart chambers for hematological investigations, and sera were separated by
centrifugation for biochemical analysis. Liver tissues were collected and liver homogenates
were prepared in ice-cold phosphate buffer saline (PBS). The resulting supernatants were
used for biochemical analysis. Furthermore, liver tissues were separated and fixed in
buffered formalin for histological and immunohistochemical investigations.

2.5. Haematological and Biochemical Profiling

Hemoglobin (Hb) levels, hematocrit (Hct %), platelet count, total counts of red blood
cells (RBCs), white blood cells (WBCs), and differential leucocyte count were determined
by the usage of auto hematology analyzer (BC-3200, Mindray, Guangdong, China). Serum
aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were detected as
described [27]. Arginase activities were detected by using Bio-Diagnostics kits [28]. Hep-
atic alkaline phosphatase (ALP) and total protein (TP) were assessed as previously de-
scribed [29,30], respectively. Albumin and total bilirubin (TB) were assessed using kits
following the manufacturer’s instructions as previously described [31,32]. Urea and creati-
nine levels were measured using kits as described [33,34].

Serum cholesterol, triglycerides, and HDL-cholesterol were determined using a quan-
titative kit based on the previously described methods [35–37], respectively. Low-density
lipoprotein cholesterol (LDL) was calculated consistent with Friedewald et al. [38] as fol-
lows: LDL = Total cholesterol—HDL—(Triglycerides/5). Superoxide dismutase (SOD)
activity was determined, in accordance with Paoletti and Mocali (1990) [39]. Catalase
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activity was determined according to Aebi (1984) [40]. Reduced glutathione (GSH) determi-
nation was based on the method of Paglia and Valentine (1967) [41]. Finally, Malondialde-
hyde (MDA) levels were determined according to the strategy adopted by Li and Chow
(1994) [42].

2.6. Histopathological Investigations

The tissue of the liver was processed for the light microscopic examination and fixed
in 10% formalin. Paraffin blocks were prepared after rinsing in different grades of alcohol
and xylene. Sectioning of the paraffin blocks into sections (5 µm) and holding on glass
slides for staining with hematoxylin and eosin stain. Examination of the stained tissues was
conducted and photographed with a light microscope (Optica light microscope (B-350)) to
examine gross cellular damage [43].

2.7. Immunohistochemical Staining for PCNA and Caspase-3 Detection

The liver tissues were fixed in 10% buffered formalin for 18–24 h and transferred to
70% ethanol overnight. Tissues were processed in temperature less than 60 ◦C. The tissue
sections were drained, and excess antibodies were wiped. Incubation with the primary
antibody was carried out, and proliferating cell nuclear antibodies (PCNA) (19A2) at a dilu-
tion of 1:400 for 30 min at RT and the rabbit anti-cleaved caspase antibodies were processed
on deparaffinized tissue sections using Vectastain Elite avidin-biotin-immunoperoxidase
kit (Dako, Glostrup, Denmark). From each of the same tissues, the negative control slides
were incubated with control antibody (normal nonimmunized mouse immunoglobulin
in diluent) for 30 min. Washing of the slides was done in two changes of 1× Automation
Buffer, 5 min each. Counterstaining of the tissue sections was carried out with Mayer’s
hematoxylin (Sigma). Negative controls were obtained by leaping the application of the
primary antibody.

2.8. Statistical Analysis

Data were presented as mean± SD. One-way analysis of variance (ANOVA) was used
to determine whether there were any statistically significant differences between the means
of different groups. If there was a significant difference between means, Tukey’s method
for multiple comparisons was used to detect all pairwise differences between group means
to determine specifically which means are different. For all statistical tests, p < 0.05 was
considered to be statistically significant. Data and statistical analysis were performed using
Excel 2016, and Minitab version 19 (LLC, State College, PA, USA). In all tables and figures
means that do not share a letter are significantly different.

3. Results
3.1. Injection with STZ, DEN, and MET Treatment Decreased Rats’ Body Weights

The results showed that STZ and DEN injections decreased the total body weight of
rats starting from week 9. The treatment with MET, however, before and/or after induction
of the pre-existing diabetic rats with DEN was not able to return the body weights to
normal levels until week 14. The groups of rats treated with MET post-STZ injection and
before DEN induction (Gp3) indicated the most extreme decrease in the all-out body weight
when compared with other groups (Figure 2).

3.2. Injection with STZ and DEN Increased the Number of RBCs and WBCs

The total number of leukocytes (WBCs) increased significantly in the group of rats
injected with STZ and DEN (Gp2) (Table 1). The number of WBCs also increased in the
group of diabetic rats which was treated with MET after DEN injection (Gp4) and in
the diabetic rats treated with MET before and after induction with DEN (Gp5) (Table 1).
The percentage of monocytes was increased only in Gp5 when compared to control groups
(data not shown).
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Table 1. Hematological parameters of the groups of rats under study.

Groups Hb (g/dL) Hct (%) Platelets
(×103/µL) RBCs (×106/µL) WBCs (×103/µL)

Negative control 12.5 ± 2.36 39.3 ± 6.19 623.2 ± 168.9 b 5.95 ± 1.54 b 10.3 ± 1.34 b

STZ/DEN 14.64 ± 0.93 43.7 ± 3.16 584.6 ± 122.6 b 9.35 ± 0.78 a 17.02 ± 2.89 a

STZ /MET/DEN 14.12 ± 2.75 46.2 ± 10.8 640.8 ± 78.21 b 10.11 ± 1.65 a 10.08 ± 1.41 b

STZ/DEN/MET 15.82 ± 1.34 44.16 ± 3.13 1718.8± 285 a 8.52 ± 0.49 a,b 15.6 ± 2.81 a,b

STZ/MET/DEN/MET 13.78 ± 1.06 42.02 ± 2.97 793 ± 70.29 b 7.9 ± 0.89 a,b 14.72 ± 2.50 a,b

F-Value 1.31 0.55 25.45 7.60 5.73
p-Value 0.332 n.s. 0.707 n.s. 0.000 0.004 0.012

Hb: hemoglobin; Hct: hematocrit; RBCs: red blood cells; WBCs: white blood cells. Means that do not share a letter are significantly
different. Different lower-case (a, b) letters indicate a significant difference between all the studied groups at p < 0.05 (Tukey’s test). n.s.:
not significant.

Table 2. Serum alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TB), total protein (TP), and
albumin (Alb.) in the groups under study.

Groups ALT (U/L) AST (U/L) TB (mg/dL) TP (g/dL) Alb. (g/dL)

Negative control 60 ± 5.5 d 141 ± 8.5 d 0.35 ± 0.04 b 5.7 ± 0.35 a 2.57 ± 0.28 a

STZ/DEN 122.3 ± 8.7 a 250.3 ± 11.2 a 0.85 ± 0.07 a 3.14 ± 0.48 c 1.053 ± 0.2 c

STZ/MET/DEN 92.3 ± 8.7 b,c 191.3 ± 13.7 b,c 0.47 ± 0.06 b 4.15 ± 0.36 b,c 1.8 ± 0.1 b

STZ/DEN/MET 104.3 ± 8.7 a,b 211.3 ± 10.03 b 0.42 ± 0.05 b 4.24 ± 0.44 b 1.7 ± 0.29 b

STZ/MET/DEN/MET 79.3 ± 7.8 c,d 164.3 ± 11.1 c,d 0.44 ± 0.053 b 4.34 ± 0.32 b 2 ± 0.25 a,b

F-Value 26.57 43.95 37.90 16.05 16.33
p-Value <0.001 <0.001 <0.001 <0.001 <0.001

Different lower-case (a, b, c, d) letters indicate a significant difference between all the studied groups at p < 0.05 (Tukey’s test).

3.3. Effect of MET/DEN on the Liver Functions, Lipid Profile, and the Antioxidant Biomarkers

The results showed that diabetic rats injected with DEN (Gp2) to establish HCC
had a significant increase in the levels of ALT, AST, TB (Table 2), urea, creatinine, ALP,
and arginase levels when compared to control (Figures 3 and 4). Furthermore, the lev-
els of cholesterol, triglycerides, and LDL also increased in this group when compared
to their control (Figure 5). The diabetic rats treated with MET before HCC induction
(Gp3) decreased all these biochemical changes mentioned above (Table 2, Figures 3–5).
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The treatment of diabetic rats with MET before and after DEN induction (Gp5) showed the
maximum improvement as they revealed the lowest levels of ALT, AST, urea, creatinine,
ALP, and arginase when compared to other groups (Table 2, Figures 3–5).
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On the contrary, the results in Gp2 showed that concomitant with the increase of the
previous parameters, a significant reduction in the TP levels, albumin, and HDL was seen
when compared to the control (Table 2, Figure 5).

Furthermore, in this group, there was an elevation in MDA levels that was associated
with decreases in SOD, CAT, and GSH levels. Treatment with MET before or after induc-
tion of HCC increased the previously ameliorated oxidative stress parameters; however,
the maximum improvement was found in the group of rats treated with MET before and
after HCC induction (Gp5) which showed the lowest increase in MDA levels and the lowest
decrease in SOD, CAT, and GSH levels, when compared to other groups (Figure 6).
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Figure 7. Photomicrographs showing liver sections of rats stained by hematoxylin and eosin. (a) Control group (G1)
revealing the hepatic strands (arrows) of the hepatic cells (HC) arising from the central vein (CV), that was lined by
the normal endothelial cells (arrowheads). (b) STZ/DEN treated group (G2) showing primary liver cirrhosis and the
portal veins markedly enlarged within marginal loose connective tissues. The population of small lymphocytes and
inflammatory cells are present (long arrows). The hepatocytes have also eroded, as exhibited by the piecemeal necrosis of
some hepatocytes (thin arrows). (c) STZ/MET/DEN treated group (G3) showing cellular infiltration at the portal tracts (thin
arrows) and apparent marginal loose connective tissues at the central vein (thick arrow). Most of the hepatocytes normally
appear with wide blood sinusoids. (d) STZ/DEN/MET treated group (G4) showing severe necrosis of hepatocytes with
marked pyknotic nuclei (thin arrows) at certain sites, while other sites demonstrate more or less normal hepatocytes with
slight cytoplasmic vacuolation and vesicular nuclei (thick arrows), but the tissue does not show hepatocellular carcinoma.
(e) STZ/MET/DEN/MET treated group (G5) showing the hepatic lobulation. Focal necrotic (thin arrows) and some
apoptotic cells (thick arrows). Additionally, the reduction of the cellular infiltration in the hepatic parenchyma and portal
veins (arrowheads) was observed.
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3.4. Histological and Immunohistochemical Investigations of Liver Tissues

The control untreated tissue sections revealed the liver tissue, which consists of many
anastomosing strands of hepatocytes. The hepatocytes appeared as polyhedral cells with
acidophilic cytoplasm and rounded central vesicular nuclei. The blood sinusoids showed
interlobular spaces surrounding the central vein (Figure 7a). Treatment with STZ for 45 days
followed by DEN for 60 days increased the inflammation of the hepatic tissue and resulted
in induction of the primary liver cirrhosis. The portal veins markedly enlarged and were sur-
rounded by peripheral loose connective tissues. Additionally, many populations of small
lymphocytes and inflammatory cells appeared; the hepatocytes eroded, as exhibited by the
piecemeal necrosis of some hepatocytes (Figure 7b). The apparent disappearance of the hep-
atic cirrhosis revealed in all STZ/MET/DEN, STZ/DEN/MET, and STZ/MET/DEN/MET
treated groups (Gp3, Gp4, and Gp5, respectively). STZ/MET/DEN treated group showed
cellular infiltration at the portal tracts, marked appearance of marginal loose connective
tissues at the central veins, and disappearance of the malignant cells. In STZ/DEN/MET
treated animal group (Gp4) showed apparent severe necrosis of hepatocytes with marked
pyknotic nuclei at particular sites, while many sites demonstrated more or less normal hep-
atocytes with profound degenerative changes (Figure 7c,d). Hepatic tissue regained more
or less the normal architecture of hepatocytes and lobules in STZ/MET/DEN/MET treated
group (Gp5), in which it was recorded that the hepatic lobulation exhibited significant
improvement accompanied with mild infiltration at the portal veins (Figure 7e).
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Liver sections of the control untreated group (Gp1) revealed normal hepatic architec-
ture with negative proliferating cell nuclear antibodies (PCNA) as an immunolabelling
marker (Figure 8a). Treated group STZ/DEN (Gp2) in which the experimental animals
were treated (with DEN and MET) revealed a high expression of PCNA at the pericentral
area of the hepatic tissue (Figure 8b). Pretreatment with MET in STZ/MET/DEN treated
group (Gp3) and in STZ/DEN/MET treated group (Gp4) revealed slight positive expres-
sion of PCNA in the hepatic tissues (Figure 8c,d), while STZ/MET/DEN/MET treated
group (Gp5) revealed weak expression for PCNA (Figure 8e).

The activity of caspase-3 marker for apoptotic cells was examined as an immuno-
labelling marker for the hepatic tissues. The non-treated control group (Gp1) showed
negative expression (Figure 9a). Treated group Gp4 showed reduced expression of caspase-
3 activity in the hepatic tissues as many scattered patches were noticed (Figure 9d) while
treated groups Gp3 and Gp5 demonstrated apparent improvement and reduction of the
immunoexpressed cells with caspase-3 antibodies marker (Figure 9c,e) that appeared
concentrated at the central and portal veins of Gp2 (Figure 9b).
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Figure 9. Immunohistochemical photomicrograph of liver tissues for demonstration of apoptotic cell population marker
caspase-3. Counterstained nuclei of the hepatocytes are negatively expressed for caspase in the control untreated group
(G1) (a). Significantly high expression of the apoptotic marker observed in STZ/DEN treated group (G2). Notably, positive
immunolabelling for caspase-3 is showing at the surrounding of the portal veins (thin arrows) in both STZ/DEN and
STZ/MET/DEN treated groups (G2 and G3) (b,c). Moderate significance of caspase-3 marker is showing in STZ/DEN/MET
treated group (G4) (d). STZ/MET/DEN/MET treated group (G5) showing decline in the immunolabelling cells (e).



Pathogens 2021, 10, 59 11 of 15

4. Discussion

Retrospective studies showed that DM might be a significant cause of HCC. This
may be due to the excessive production of reactive oxygen species (ROS) that alter the
gene structures causing gene mutations which in turn led to the creation of undesired
proteins [44]. Additionally, the previous studies on human showed the impact of metformin
(MET) in decreasing the incidence of hepatocellular carcinoma in diabetic patients [12].
The current study was conducted to manifest a pre-diabetic rat’s model, which was then
stimulated by diethylnitrosamine (DEN) for HCC. The study also aimed to explore the
role of MET treatment in the pre-diabetic rats that were produced with DEN. Different
treatments with MET were applied before and/or after induction with HCC.

As we have mentioned in the results section, the injection with STZ and DEN de-
creased body-weight when resembling their control untreated group. This reduction in
body weight could be due to the toxic effect of STZ and DEN on the rats. Treatment with
MET before and after induction with DEN marginally increased the body-weight, which-
could be due to the protective and therapeutic role of MET. This result was in covenant
with preceding studies showing that MET improved the functions of different organs and
enhanced the body weight in the pre-diabetic rats [45].

Induction of diabetes with STZ, followed by installation with DEN to form HCC,
increased the ALT and AST which indicated the dysfunction of the liver. Also, cholesterol,
triglycerides, and LDL increased in this group of rats. Furthermore, SOD, CAT, and GSH
were decreased while MDA was raised in rats of (Gp2) when matched to their control. Such
alterations in the liver, lipids profile, and oxidative status confirmed the damage of different
organs after administration of both STZ and DEN. The carcinogen-DNA and oxidative DNA
are adducts generated through carcinogen’s activities proposed an interactive role for ROS
in the initiation stage. Thus, ROS has several impacts on the beginning of carcinogenesis by
intermediating carcinogen activation, leading to the DNA injury and interrupting the repair
of DNA. The final step of tumorigenesis (progression) comprises the irreversibility of the
cancer growth from the pre-neoplastic cells of lesions [46]. The findings of the current study
agree with previous studies that recorded liver damage post-injection with STZ [47,48],
with DEN [49], or with both [50]. Since P450 enzyme’s activity is related to the generation
of ROS, then the oxidative stress may have an essential role in the clonal amplification of
these stimulatory cells. So, higher production of ROS has been found in neoplastic nodules
in the liver of rats compared to the surrounding normal cells of the liver’s tissues [51].
Additionally, the oxidation of GSH by y-glutamyl transpeptidase in pre-neoplastic foci
results in the formation of ROS [51]. Moreover, ROS may come from inflammatory cells as
an extracellular origin [52].

Treatment with MET post-HCC induction in the diabetic rats ameliorated the damage
caused by STZ and DEN. Furthermore, the treatment with MET post-HCC induction also
improved the damage caused by both STZ and DEN. Our data came in convention with the
pre-studies that revealed the possible role of MET in enhancing the damage on the liver in
diabetic rats [50]. Treatment with MET pre- and post-induction of the pre-existing diabetes
showed the maximum protection on the liver tissues as shown in the results section. This
finding indicates that the treatment with MET either in diabetic alone or in diabetic/HCC
is vital to decrease the severity of such diseases.

The histopathological changes in the tissues of the liver were consistent with the
hematological and biochemical results. The STZ treated group that received STZ for
45 days followed by DEN for 60 days displayed marked histopathological alterations
in the liver tissues. In the present experimental study, liver cirrhosis accompanied by
the presence of many populations of lymphocytes and inflammatory cells was observed.
On the contrary, MET treated groups displayed less dramatic histopathological changes,
especially Gp5, in which the diabetic animals were treated with pre and post MET doses.
Diethylnitrosamine has been recorded as a well-known hepatotoxin and hepatocarcinogen.
The current study recorded an elevation of the liver enzymes (ALP and Arg) in serum,
which is clear evidence for hepatocellular damage. This result is in agreeance with other
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researchers [53–55]. The liver enzymes are the most important indicators for diagnosis of
the liver injury because they are located in the cytoplasm of the hepatocytes and they are
released into the circulated blood after the incidence of the cellular injury [56,57].

Additionally, GSH has an essential role in many cellular homeostases, as the detox-
ification of endogenous and exogenous substances. Moreover, DEN is an electrophilic
carcinogen that may interact with the sizeable nucleophilic pool of GSH, reducing the
macromolecules and carcinogen interaction [58]. The present study revealed that GSH
recorded a decrease in the DEN treated-group. So, many histopathological changes result
in the STZ/DEN treated group due to the decline in GSH.

On the other hand, GSH elevated in the MET (both pre and post) treated groups,
and there was a significant increase of GSH in the liver when matching with DEN-treated
groups that came harmoniously with the idea of alleviation of DNA carcinogen interac-
tion, thereby preventing a suitable environment for cancer-induction. Cirrhosis is one
of the most common types of liver injury, which can cause HCC. Sufficient exposure to
DEN could create an animal model, which looks like human HCC. Jo et al. (2016) [59]
revealed a significant decrease in the level of p-AMPKα1 in the liver of DEN-treated rats,
compared with control rats or those treated with MET. At low energy, AMPK (5′ adenosine
monophosphate-activated protein kinase) enzyme plays an essential role in cellular energy
homeostasis, to activate glucose and fatty acid uptake and oxidation. In response, AMPK
activation stimulates the hepatic fatty acid oxidation, ketogenesis, glucose uptake, inhibi-
tion of cholesterol synthesis, lipogenesis, and triglyceride synthesis [60]. Our study showed
that the biochemical analysis demonstrated an increase in cholesterol and triglyceride
that was recorded in the STZ/DEN treated-group. The impact of MET on tumor growth
including cellular studies are possibly explained by several mechanisms that are recorded
in several studies [61–64].

Interestingly, numerous studies reported that MET has antiproliferative actions on
untransformed epithelial cells via AMP-kinase dependent pathways, due to the role of
AMP-kinase as an energy sensor that down-regulates processes, such as protein synthesis,
when energy is in short supply. Additionally, there is an indirect mechanism reported that
might be of considerable importance in subjects with high insulin levels and cancers with
high levels of insulin and hybrid insulin/IGF-1 receptors [65,66].

Furthermore, increasing of the leukocytes that were assessed biochemically and con-
firmed histologically by apparent cellular infiltration were primarily diminished by pre/or
post or pre/and post MET administration. According to these visible results, it can be
concluded that MET ameliorates DEN-induced nephric injury through inhibitory apoptosis
and interstitial inflammation.

In fact, it was found that AMPK is the principal target of MET, which acts as the sensor
of cellular energy supplies and controls protein synthesis, apoptosis, and autophagy [67,68].
In most studies, MET has been reported to be associated with antineoplastic activity and
decrease load of many types of tumors [69–71].

5. Conclusions

Taken together, the results of the present study highlight the protective role of MET
when used as a treatment against DM or HCC. MET holds great promise for the improve-
ment of the histology of hepatic tissue and liver function. Our findings offer important
clinical implications for the treatment of DM and HCC, suggesting a role for MET as a
novel therapeutic option to target the oxidative stress induced in DM and HCC. Further
research is needed to endorse our finding, via studying at the molecular level the signaling
pathways involved in the development of tumorigenesis in DM patients by different meth-
ods. This future work is predicted to give deep insight into the main molecular mechanism
responsible for the bad prognosis of HCC in diabetic patients and the effect of MET in the
improvement of such cases.
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