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DNA damage plays a causal role in numerous human pathologies including cancer,
premature aging, and chronic inflammatory conditions. In response to genotoxic insults,
the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and
facilitates the removal of DNA lesions. The DDR can also arouse the immune system
by for example inducing the expression of antimicrobial peptides as well as ligands for
receptors found on immune cells. The activation of immune signaling is triggered by
different components of the DDR including DNA damage sensors, transducer kinases,
and effectors. In this review, we describe recent advances on the understanding of the
role of DDR in activating immune signaling. We highlight evidence gained into (i) which
molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage
drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and
pathology in humans.
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THE DNA DAMAGE RESPONSE (DDR)

The DNA damage response (DDR) is a complex signal transduction pathway that is required for
preserving the genetic information encoded by DNA and for ensuring its accurate transmission
through generations. Erroneously repaired DNA lesions can lead to mutations while unrepaired
damage can result in cellular senescence or apoptosis (Welsh et al., 2004; Mendoza et al., 2013;
Ciccia and Elledge, 2010). Dysregulation of DDR and repair systems can cause several human
disorders that are associated with cancer susceptibility, accelerated aging, and developmental
abnormalities (Pan et al., 2016).

The DDR is triggered by a wide variety of physico-chemical aberrations in the genome. Some
DNA aberrations are caused by physiological processes such as base mismatches introduced during
DNA replication and DNA strand breaks caused by malfunctioning activity of topoisomerase I
and II (Jackson and Bartek, 2009). Lesions in the DNA can also arise from the release of reactive
oxygen species (ROS) upon oxidative respiration or through redox-cycling events mediated by
heavy metals (Valko et al., 2006). Other DNA damaging agents are ultraviolet light, ionizing
radiation and a large variety of chemical agents (Hoeijmakers, 2009). Also replication stress
resulting from oncogenic signaling can result in genome instability (Halazonetis et al., 2008).
These endogenous and exogenous factors induce diverse lesions in the DNA such as nucleotide
alterations (substitution, deletion, and insertion), bulky adducts, single-strand breaks (SSBs) and
double-strand breaks (DSBs) (Rodriguez, 2011).

DNA damage recognition is the initial step of DNA damage repair mechanisms and involves a
set of lesion-specific sensing molecules. Damage detection is followed by the recruitment of a set of
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transducers, which are composed of a number of protein kinases.
Finally, different checkpoints and repair systems (effectors)
including cell cycle regulators, nucleases, helicases, polymerases,
ligases are involved in removing the damage, thus maintaining
genome integrity (Pan et al., 2016).

In recent years, several lesion-specific repair mechanisms
have been identified. Non-homologous end joining (NHEJ) and
homologous recombination (HR) repair both remove DSBs
through distinct mechanisms (West, 2003), single-strand break
repair (SSBR) ligates nicked DNA strands (Caldecott, 2008),
mismatch repair (MMR) restores errors that occurred during
replication (Jiricny, 2006), base excision repair (BER) reverses
oxidative base modifications (Lindahl and Barnes, 2000; Bauer
et al., 2015), and nucleotide excision repair (NER) removes helix-
distorting lesions (Hoeijmakers, 2009; Edifizi and Schumacher,
2015).

THE IMMUNE SYSTEM RESPONDS TO
DNA DAMAGE

Immune signaling in response to DNA was reported as early
as 1963 when Isaacs et al. (1963) showed that mouse cells that
had been infected with chick nucleic acid produced cytokines
and interferons (IFNs). Ever since, significant progress has been
made toward understanding the role of DNA in activating the
immune system. As endogenous DNA in eukaryotes is stored
in the nucleus, infectious foreign DNA enters the cytoplasm,
where it is detected and responded upon by the host’s immune
system. Bacterial DNA has been shown to activate the innate
immune system and stimulate inflammatory responses [reviewed
in Krieg (2002)]. Not only DNA, but also RNA injected
by viruses into human cells induces the expression of IFN
encoding genes (Ank et al., 2006). Intriguingly, not only viral
and bacterial pathogen-associated molecular patterns (PAMPs)
such as foreign DNA but also damaged endogenous DNA can
trigger inflammatory gene expression. For instance, treatment
of human cells with etoposide, an anticancer drug promoting
dsDNA breaks by inhibiting the ability of topoisomers II to
re-ligate cleaved DNA (Meresse et al., 2004; Baldwin and
Osheroff, 2005), leads to the induction of IFN-stimulated genes,
primarily IFN-α and IFN-λ genes (Brzostek, 2011). Innate
immune responses to damaged endogenous DNA have been
evidenced in various species including nematodes and fruit flies.
Recent observations in the nematode Caenorhabditis elegans
established that DNA damage in germ cells including meiotic
DSBs triggers the worm’s innate immune response through
ERK1/2 MAPK signaling (Ermolaeva et al., 2013). C. elegans
lacks specialized immune cells or adaptive immunity but has an
ancestral innate immune system that is activated in response to
various pathogens through several immune cascades including
the p38 and ERK MAPK pathway (Ermolaeva and Schumacher,
2014a). Exogenous and endogenous DNA damage in germ
cells mediated a germline DNA damage-induced systemic stress
resistance (GDISR) throughout the somatic tissues of the animal
resulting in elevated resistance to heat and oxidative stress
(Ermolaeva et al., 2013; Ermolaeva and Schumacher, 2014b).

FIGURE 1 | DNA sensing and activation of immune signaling. Nuclear
DNA damage is recognized by a set of diverse sensors including: the protein
complex of replication protein A (RPA) detecting single-strand breaks, the
Mre11-Rad50-Nbs1 (MRN) complex sensing double-strand breaks and the
MutS proteins recognizing mismatched bases. Single-stranded endosomal
DNA activates TLR9 signaling. TLR9 recruits the myeloid differentiation marker
88 (MyD88) inducing the transcription of nuclear factor kappa B (NF-κB)
and/or IFN-regulatory factor (IRF) by engaging with TANK-binding kinase 1
(TBK1). Cytosolic DNA can be detected by diverse DNA sensors including:
(A) Ku70 activating IRF response. (B) DNA-PK mediating IRF response
through engaging with TBK1/STING. (C) MRE-11 inducing IFN response by
initiating STING-dependant signaling. (D) The innate immune adaptor CARD9
activating NF-κB. (E) RNA polymerase III inducing NF-κB activation. (F) The
DNA-dependent activator of IFN regulatory factors (DAI), the interferon
gamma-inducible protein 16 (IFI16), the DExD/H-box helicase 41 (DDX41) and
the cGMP-AMP synthase (cGAS), all activating IFN response through
TBK1/STING signaling.

The understanding of how DDR induces immune responses
has remained a challenging question (Pateras et al., 2015; Ribezzo
et al., 2016). How can cytoplasmic immune sensors detect nuclear
DNA? How are nuclear DNA sensors linked to immune signaling
in the cytoplasm? It seems that the activation of immunity can
be triggered by different components of the DDR including DNA
damage sensors, transducer kinases, and effectors.

DNA damage responses are initiated upon recognition of
DNA lesions by specialized set of DNA sensors. These sensors
specifically bind to diverse types of DNA lesions. Single-stranded
DNA are recognized by a protein complex of replication protein
A (RPA; Zou and Elledge, 2003), DSBs are detected by the Mre11-
Rad50-Nbs1 (MRN) complex (Grenon et al., 2001), mismatched
bases are recognized by MutS proteins (Pluciennik and Modrich,
2007), whereas damaged bases are sensed by DNA glycosylases
(Lu et al., 1997; Hazra et al., 2003; Figure 1).

The role of DNA damage sensors in detecting aberrant
DNA structures is not only restricted to the nucleus. Several
studies showed that some DNA damage sensors play a role in
the detection of foreign DNA in the cytoplasm leading to the
activation of immune signaling. For instance, the DNA repair
proteins, Ku70 and the DNA dependent protein kinase (DNA-
PK), known to be involved in the detection of dsDNA breaks and
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the initiation of NHEJ (Ciccia and Elledge, 2010), act as pathogen
recognition receptors (PRRs) for DNA in the cytoplasm. In
response to cytosolic DNA, Ku70 induces the production of IFN-
λ1 via the activation of IFN regulatory factor (IRF)-1 and IRF-7
(Zhang et al., 2011) (Figure 1A), while DNA-PK induces the
expression of IFN-β, cytokine, and chemokine genes through the
activation of IRF-3, TBK1, and STING (Ferguson et al., 2012)
(Figure 1B). Additional evidence supporting a link between DNA
damage and immunity revealed that the DNA damage sensor
MRE11 recognizes cytosolic dsDNA but not viral DNA and
initiates STING-dependent signaling leading to the induction of
type I IFN (Kondo et al., 2013; Figure 1C). Moreover, the DNA-
damage sensor Rad50 was shown to form a signaling complex
with the innate immune adapter CARD9 in dendritic cells (DCs)
upon their transfection with dsDNA or infection with viral DNA.
The formation of dsDNA-Rad50-CARD9 signaling complexes
induces NF-κB activation and pro-IL-1β generation (Roth et al.,
2014; Figure 1D).

The Poly(ADP-ribose) polymerase-1 (PARP-1) has been
implicated in multiple cellular processes such as DNA replication,
transcription, DNA repair, apoptosis, and genome stability
(reviewed in Bouchard et al. (2003)]. In addition, PARP-1
impacts the expression of NF-κB-dependent proinflammatory
mediators such as TNFα, IL-6, and iNOS by inducing the
translocation of NF-κB into the nucleus upon genotoxic stress
(reviewed in Mangerich and Bürkle (2012)]. The enzyme called
mutY Homolog (MUTYH) not only repairs oxidative DNA
damage but has also been associated with circulating levels
of IL-1 in healthy people (Sun et al., 2010) and levels of IL-
1β and IL-6 in patients undergoing chronic hemodialysis (Cai
et al., 2012). The 8-Oxoguanine DNA glycosylase-1 (OGG1)
is a DNA glycosylase functioning in BER (Ba et al., 2014).
OGG1-KO mice show a decrease in cytokine and chemokine
production (Mabley et al., 2005), and a decrease in expression
and translocation of STAT6 and NF-κB (Li et al., 2012).
Another glycosylase involved in the BER-mediated removal of
DNA lesions, the Apurinic/apyrimidinic endonuclease 1 (APE1),
has been associated with the activation of immune signaling
(Fung and Demple, 2005). APE-1 regulates transcription factors
involved in inflammatory responses including NF-κB (Nishi
et al., 2002), AP-1 (Xanthoudakis and Curran, 1992), HIF-
1α (Huang et al., 1996, and p53 (Gaiddon et al., 1999). The
transcriptional regulation of NF-κB and HIF-1α through APE-
1 is thought to be necessary for the expression of TLR2-mediated
inflammatory mediators, including TNF-α, CXCL8/IL-8, and LL-
37, in human keratinocytes (Lee et al., 2009).

The DDR involves the PI3 kinase-like protein kinases ataxia
telangiectasia mutated (ATM) and ataxia telangiectasia Rad-
3 related (ATR). These kinases coordinate a DDR network
when they are recruited to sites of DSBs and RPA (Shiloh,
2003). ATM and ATR signaling mediates DNA repair by
inducing transcription of repair proteins and by recruiting repair
factors to the site of DNA damage (Abraham, 2001). Within
the context of DDR-mediated immune signaling, and after
induction of DSBs, NF-kB essential modulator (NEMO), the
regulatory subunit of IkB kinase (IKK) associates with ATM. This
association activates IκB kinases and triggers NF-κB-dependent

gene expression. Irradiated ATM knockout mice failed to induce
canonical IKK activation compared to WT mice (Li et al.,
2001).

The DDR does not only induce the production of
proinflammatory signals such as IFNs, but also ligands that
have the ability to bind to immune receptors. Examples of these
receptors are the NKG2D, a member of the C-type lectin-like
superfamily, and DNAX Accessory Molecule-1 (DNAM-1).
NKG2D binds to the ligand MICA, MICB, ULBP1-6, a MHC
class I-like protein. Whereas DNAM1 binds PVR/CD155 and
Nectin-2/CD112 belonging to the Ig-like superfamily. These
ligands are known to be induced by stress conditions such as
cell divisions, viral infections and cancer reviewed in (Cerboni
et al., 2015). NKG2D can activate NK cells, CD8+ T cells and
γδ T cells (Champsaur and Lanier, 2010). Genotoxic stress and
stalled DNA replication forks induced the expression of ligands
for the NKG2D receptor in mouse and human cell lines (Gasser
et al., 2005). Ligands’ upregulation required the activation of
ATM or ATR protein kinases and DNA damage checkpoint
pathways such as the Chk1 (a downstream transducer kinase
in the pathway). Whereas exposure of cells to pharmacological
or genetic inhibition of ATR, ATM or Chk1 prevented ligand
upregulation. Moreover, siRNA knock-down of ATM in tumor
cell lines abrogated NKG2D ligand expression (Gasser et al.,
2005). Ligand expression of DNAM-1 was as well enhanced
upon DDR. The treatment of multiple myeloma (MM) cells with
low doses of chemotherapeutic drugs triggered the expression
not only of NKG2D, but also of DNAM-1 ligands in an
ATM/ATR-dependent manner promoting cellular adhesion to
cells expressing DNAM-1 ligands including CD155 and CD112
(Bottino et al., 2003; Soriani et al., 2009). Taken all together, these
findings demonstrate the ability of DNA damage sensors and
DDR to activate immune signaling.

IMMUNE STIMULATORY EFFECTS OF
NUCLEIC ACID

Viral infections impose a challenging threat on human health.
Unlike other microorganisms such as bacteria and fungi,
viruses do not display microbe-specific patterns. Therefore, the
repertoire of PRRs responsible for virus detection has evolved
the ability to detect nucleic acids, a common pattern for all
viruses. In vertebrates, foreign DNA can be recognized by two
complementary nucleic acid detection systems: membrane bound
PRRs (endosomal sensors) and cytoplasmic PRRs, both activating
antiviral defense accounting essentially for type I interferon
(IFNs) production (Stetson and Medzhitov, 2006).

So far TLR9 is the only known endosomal DNA
sensor (Figure 1). This PRR is expressed in plasmacytoid
DCs (Kadowaki et al., 2001) and responds to microbial
oligodeoxynucleotides containing unmethylated CpG motifs
(CpG-ODNs) derived from bacteria and viruses (Hemmi et al.,
2000). The activation of TLR9 by its microbial ligand requires
the internalization and endosomal maturation of CpG-DNA
(Ahmad-Nejad et al., 2002). TLR9 activation is initiated by its
transport and localization from the endoplasmic reticulum to
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the endolysosomes in dendritic cells where its ectodomains are
cleaved (Ewald et al., 2008). Truncated TLR9 recruits the TLR
adaptor myeloid differentiation marker 88 (MyD88) thus leading
to the induction of inflammatory genes through the transcription
of nuclear factor kappa B (NF-κB) and IFN-regulatory factor
7 (IRF-7). Details on TLR9 dependent induction of IFN
regulatory factors is reviewed in (Takeuchi and Akira, 2010). The
presence of DNA sensors and the restriction of their activity in
recognizing nucleic acid and initiating signal transduction in
intracellular compartments must have a protective effect against
autoimmunity caused by recognition of self nucleic acids. TLR9
is one of the best examples in this respect as only the cleaved
form of TLR9 recruits MyD88 (Ewald et al., 2008).

In contrast to endosomal sensing of DNA, cytosolic DNA
sensing involves a diverse set of proteins acting as PRRs for
nucleic acids. The recognition of cytosolic DNA by such sensors
triggers signaling through TANK binding kinase 1 (TBK1) and
its downstream transcription factor 3 (IRF3), leading to the
production of type I IFN. Activation of TBK-1/IRF-3 signaling
axis upon cytosolic DNA sensing is mediated by the stimulator
of IFN genes (STING), a transmembrane protein acting as a
signaling adaptor (Ishikawa et al., 2009).

The first discovered cytoplasmic sensor was the DNA-
dependent activator of IFN regulatory factors (DAI), a Z-DNA
binding protein named previously DLM-1. DAI’s expression
was shown to be greatly up-regulated in the peritoneal lining
tissue of tumor-bearing mice. The up-regulation of DAI was
stimulated in macrophages by INF-γ or LPS suggesting that
this protein plays a role in host defense (Fu et al., 1999).
Later, it was shown that DAI binds to dsDNA enhancing its
association with the IRF3 transcription factor and the TBK1
serine/threonine kinase and regulating the type I IFN response
(Takaoka et al., 2007; Figure 1F). Another DNA sensor involved
in innate immune responses is the RNA polymerase III. This
polymerase recognizes AT rich dsRNA. By doing so, it activates
RIG-1 and induces the production of type I interferon and the
activation of the transcription factor NF-κB (Ablasser et al., 2009;
Figure 1E). Inhibition of RNA pol III led to the abrogation of
IFN-β induction upon infection with Legionella pneumophila and
enhancement of bacterial growth (Chiu et al., 2009).

Cytosolic DNA can also be sensed by the interferon gamma-
inducible protein 16 (IFI16). IR-induced DNA damage leads to
nuclear localization of IFI16 and the formation of BRAC-1-IFI16
complex at genomic sites of DNA damage. This complex engages
in the p53-mediated transmission of DNA damage signals and
apoptosis (Aglipay et al., 2003). IFI16 functions as a DNA sensor
in both the nucleus and the cytoplasm (Li et al., 2012) and as a
nuclear pathogen sensor upon infection with Kaposi Sarcoma-
associated herpesvirus (Kerur et al., 2011; Figure 1F). DExD/H-
box helicase 41 (DDX41) also recognizes cytosolic DNA and
DNA virus. DDX41 was found in the cytosol of myeloid dendritic
cells (mDCs) together with STING. Upon its knockdown by
shRNA mDCs failed to mount type I interferon and cytokine
responses to DNA. Moreover, its KD blocked the activation of
TBK1 and the transcription factors NF-κB and IRF3 (Zhang
et al., 2011; Figure 1F). Another cytosolic DNA sensor is the
cGMP-AMP synthase (cGAS). It was shown that cGAS has a

second messenger function allowing its binding to STING, thus
the induction of type I IFN response (Burdette et al., 2011;
Figure 1F).

Taken together, the various cytosolic sensors play an integral
role in the DNA-mediated activation of immune responses.

The detection of nucleic acids can be harmful for the host
when it results in an excessive activation of immune cascades
that can be costly in terms of energy, cause tissue damage
and promote autoimmune diseases. Thus, cells have evolved
in parallel fast and effective mechanisms for degrading DNA
coming from pathogens, apoptotic cells or DNA replication
byproducts. To rapidly degrade nucleic acids, cells utilize a set
of DNases. Among these cellular DNases are DNases II that
are present in macrophages. These enzymes degrade DNA of
apoptotic cells engulfed by macrophages when the apoptotic
enzyme caspase-activated DNase (CAD) failed to sufficiently
digest chromosomal DNA (Kawane et al., 2003). Other DNases
are the three prime repair exonuclease 1 (TREX1). These
enzymes are found in the cytoplasm where they degrade DNA
coming from endogenous retroviruses and DNA replication by-
products. Cells deficient in TREX1 accumulate endogeneous
single-stranded DNA (Yang et al., 2007; Stetson et al., 2008).
Moreover, a loss of function mutation in the human Trex1
gene cause Aicardi–Goutieres syndrome (AGS), an autoimmune
disorder (Crow et al., 2006).

CHRONIC INFLAMMATION AS AN
OUTCOME OF THE DDR – IMMUNE
SIGNALING CROSS TALK

An inflammation is a protective response mediating the
elimination of injurious agents, the removal of necrotic cells
and the initiation of tissue repair. Despite its beneficial effects,
a prolonged inflammatory response can cause harm such as
injuries in bystander normal tissues and promote inflammatory
diseases. As a paradigm of the interplay between DDR and
immunity, a prolonged or elevated inflammation can be an
outcome of a persisting DDR or an accumulation of DNA
damage due to deficiency in repair mechanisms. Mice carrying
a Werner Syndrome (WS) mutation and a simultaneous
knockdown of the RecQ-type DNA helicases exhibited an
increased inflammatory status characterized by expression
changes in HIF-1, IL-6, and components of the NFκB pathway
(Turaga et al., 2009). Other studies showed that DDR can
associate with autoimmune diseases. For instance, Schild-Poulter
et al. (2008) identified in the serum of patients having systemic
autoimmune rheumatic disease (SARD) autoantibodies against
Ku, DNA-PKcs, poly (ADP-ribose) polymerase, and against DNA
repair proteins such as Werner and Mre11. Additional studies
reflecting the role of DNA damage in promoting autoimmune
diseases showed that cell lines from patients with systemic lupus
erythematosus (SLE) have a defective DSB repair (Davies et al.,
2012). Moreover, low-density granulocytes (LDGs), an abnormal
population of neutrophils found in SLE patients, have elevated
levels of somatic alterations such as genetic damage compared
to normal-density neutrophils (Singh et al., 2014). In the same
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context, Bawadekar et al. (2015) has demonstrated the presence
of IFI16 in sera of systemic-autoimmune patients associated
to an upregulation of cytokine encoding genes in endotoxin-
free recombinant IFI16 (rIFI16) endothelial cells. IFI16 seemed
to propagate inflammation in endothelial cells through the
activation of p38 MAPK and NF-κB p65 (Bawadekar et al.,
2015). Another example of DNA damage-related autoimmunity
is provided by Karakasilioti et al. (2013) where they showed that
persistent DNA damage signaling in mice, carrying a defective
NER in adipose tissues only, triggers a chronic autoinflammatory
response leading to fat depletion and metabolic abnormalities.

DNA damage driven inflammation can also promote
tumourigenesis. For example, diethylnitrosamine (DEN)-
induced hepatocellular carcinoma depends on IKKβ mediated
inflammation. The carcinogen DEN causes DNA damage and
leads to necrotic hepatocyte death resulting in the activation of
inflammatory responses promoting tumor development (Maeda
et al., 2005). In the same vein a defective DNA repair caused by
a deficiency of the Fen1 exonuclease resulted in cancer initiation
and a chronic inflammation promoting cancer progression
(Zheng et al., 2007).

Persistent DDR triggers senescent cells to secrete growth
factors, proteases, and inflammatory cytokines, termed the
senescence-associated secretory phenotype (SASP; Freund
et al., 2011). Cellular senescence is a tumor-suppressive
mechanism arresting cells at risk for malignant transformation
mediated by the tumor suppressor p53 upon DDR (Reinhardt
and Schumacher, 2012). Despite the tumor-suppressing role
associated with senescence, senescent cells can also induce
deleterious changes in the tissue microenvironment promoting
tumourigenesis (Coppe et al., 2010). Human cells bearing DSBs
had an increase in secretion of inflammatory cytokines such
as IL-6 and IL-8. Elevated cytokine secretion occurred upon
persistent DDR and not upon transient DDR, suggesting that this
increase in secretion is associated with senescence. Initiation and
maintenance of cytokine signaling required the DDR proteins
ATM, NBS1, and CHK2 but was independent of p53 (Rodier
et al., 2009). In addition, the interleukin IL-1 signaling pathway
was shown to be upregulated by senescent cells (Garfinkel and
Brown, 1994). IL-1 can be secreted by senescent endothelial cells
(Maier et al., 1990), fibroblasts (Palmieri et al., 1999), normal
epithelial cells (Coppe et al., 2008) and epithelial cells in which
senescence was induced by chemotherapy (Mantovani et al.,
2001). SASP seems to promote cancer by cytokine-dependent
growth of precancerous cells (Rodier et al., 2009).

CHRONIC INFLAMMATION AS A
DRIVING FORCE IN THE GENESIS OF
DNA DAMAGE AND MALIGNANCY

The majority of DDR studies have focused on physico-
chemically induced aberrations in the genome. Only few studies
have explored the role of in vivo physiological conditions,
such as inflammation, in inducing DNA damage. Chronic
inflammation has recently emerged as an important modulator
of mutation susceptibility. Chronic inflammatory diseases such

as colitis, hepatitis and pancreatitis induce oxidant-generating
enzymes including NADPH oxidase and nitric oxide synthase
(iNOS), thereby generating excessive production of mutagenic
compounds such as ROS and reactive nitrogen species (RNS;
Bartsch and Nair, 2006). ROS/RNS produced by neutrophils and
macrophages (Coussens and Werb, 2002) can cause damage to
nuclear and mitochondrial DNA (Wiseman and Halliwell, 1996).
Damage is induced by nitration, oxidation, methylation and
deamination reactions causing alterations in the DNA structure
that can ultimately lead to mutations, rearrangements, deletions
and insertions and indirectly lead to base alkylation via lipid
peroxidation (LPO; Wiseman and Halliwell, 1996). For example,
an increase in oxidative base damage has been observed in the
case of some chronic inflammatory diseases such as hepatitis
(Hagen et al., 1994) and rheumatoid arthritis (Bashir et al.,
1993). In parallel to causing DNA damage, ROS/RNS can
cause oxidative protein damage modifying the activity of DNA
polymerases, thereby impairing DNA repair pathways (Wink
et al., 1998). ROS/RNS can as well modify the function of proteins
involved in cell proliferation and differentiation (Wiseman and
Halliwell, 1996). Accumulation of DNA damage caused by either
an increase in oxidative damage or a decrease in repair efficiency,
leads to malignant diseases. For instance, oxidative DNA
damage occurring in tumor-suppressor genes, oncogenes and
key regulators of cell proliferation can promote tumourigenesis
(Meira et al., 2008). Cells cultured under oxidative stress
conditions develop malignant transformation (Zimmerman and
Cerutti, 1984; Weitzman and Gordon, 1990) and a defective
MMR causing hereditary non-polyposis colon cancer (Marx,
1994). Taken together, chronic inflammation accompanied by
the generation of ROS/RNS drives the transformation of
normal cells into malignant cells through the production of
oxidative DNA damage and the impairment of DNA repair
pathways.

Reactive oxygen species/RNS-derived DNA lesions are
repaired by BER upon their recognition by specific glycosylases.
A link between glycosylases deficient in removing ROS/RNS-
derived base lesions and cancer development has been
established. For example, mice carrying mutations in the
MYH glycosylase that removes 8-Oxoguanine (8oxoG), a DNA
lesion resulting from ROSs, were reported more susceptible to
oxidative-induced intestinal tumors (Sakamoto et al., 2007).
Moreover, mice deficient in 8-Oxoguanine DNA glycosylase 1
(Ogg1) were found to be more susceptible to lung cancer (Sakumi
et al., 2003). Wild-type alkyladenine DNA glycosylase (Aag)
mice with inflammatory bowel diseases were protected against
colonic epithelial damage and colon tumourigenesis through an
Aag-mediated DNA repair pathway, whereas Aag-deficient mice
with the same colonic inflammation as WT animals had a high
accumulation of ROS/RNS-derived DNA base lesions followed
by severe gastric lesions and colon carcinogenesis (Meira et al.,
2008).

There is growing evidence demonstrating that chronic
inflammation induces ROS/RNS-derived DNA damage
promoting several human cancers. For instance, liver cancer
was related to infection with chronic viral hepatitis B. HBV-
infected patients with chronic hepatitis and liver cirrhosis
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FIGURE 2 | Model illustrating how DNA damage leads to the activation
of innate immunity and how innate immunity causes in return DNA
damage. The DNA damage response leads to apoptosis, transient cell cycle
arrest or cellular senescence. Transient cell cycle arrest has a protective effect
against tumourigenesis as it allows cells to accurately repair DNA damage
before cell cycle progression. Cellular senescence can cause senescent cells
to modify their tissue environment through the senescence-associated
secretory phenotype (SASP) resulting in cytokine secretion that activates the
innate immune system. The innate immune system can suppress
tumourigenesis by clearing senescent cells with oncogene activation or
chronic DNA damage. However, SASP can also cause tumourigenesis
through cytokine signaling promoting the proliferation of tumor cells. The
activation of innate immunity involves the production of reactive oxygen
species (ROS) and reactive nitrogen species (RNS) and can promote chronic
inflammation. The generation of ROS/RNS by innate immunity and chronic
inflammation promotes tumourigenesis through causing mutations in
neighboring cells, thus triggering DNA damage, or impairing DDR.

had a massive increase in DNA repair markers in their urine
compared to asymptomatic HBV-carriers. The induction of
repair of damaged DNA could be related to HBV-induced
chronic inflammation causing DNA lesions through an excessive
production of ROS and RNS (Nair et al., 2002). Gastric cancer
was shown as well to be associated with chronic inflammation
induced by infection with Helicobacter pylori (Correa, 1994).
This could be explained by the observed increase in iNOS
expression and oxidative damage in gastric mucosa cells with
H. pylori infection (Iacopini et al., 2003). Chronic intestinal
inflammation manifested by Crohn’s disease (CD) can promote
colorectal cancer. Levels of ROS/RNS were reported to be
elevated in colonic mucosa of CD patients and correlated
with disease severity (Bartsch and Nair, 2006). Additionally,
chronic bladder inflammation upon infection with Schistosoma
haematobium has been associated with increased cancer.
Patients with bladder cancer showed genetic alterations in
chromosome 11 and insertion of a normal chromosome 11
promoted protection of cells against bladder carcinoma (Rosin
et al., 1994). Consistently, an increase in ROS-mediated DNA
damage has been observed in tissues with ductal carcinoma
compared to control tissues (Malins and Haimanot, 1991) and
in cases of breast inflammatory diseases (Jaiyesimi and Buzdar,
1992). Another example revealed that cholangiocarcinoma, a
cancer arising from cells within the bile ducts was shown to be

associated with inflammatory responses. Exposure of human
cholangiocarcinoma cell lines to inflammatory cytokines such
as IL-1β, IFN-γ, and TNF-α led to the activation of iNOS and
the excessive production of nitric oxide (NO) which caused
DNA damage and impairment of DNA repair (Jaiswal et al.,
2000). Moreover, exposure to asbestos may cause asbestosis,
which is an inflammatory condition affecting lungs and causing
shortness of breath and coughing. Some asbestos types, such
as crocidolite induce release of ROS from neutrophils and
macrophages, increasing then level of oxidative DNA damage
in human promyelocytic leukemia cell line (HL60; Takeuchi and
Morimoto, 1994). Inflammation has been shown as well to act
synergistically with DNA damage in order to induce mutations
driving cancer development. Induction of DSBs (as assessed by
γH2AX foci) and an increase in cell proliferation were observed
in mice exposed to cerulein, a potent inducer of pancreatic
inflammation. Both, inflammation-induced DNA damage and
inflammation-induced cell proliferation significantly induced
HR (Kiraly et al., 2015).

Nonetheless, chronic inflammation can cause DNA damage
independently from the release of ROS/RNS. Loss of protective
mucus occurring upon chronic inflammation increases intestinal
permeability for toxins and mutagens inducing mutations
and promoting cancer (Sakaguchi and Brand, 2001). The
connection between chronic inflammation and tumourigenesis is
further supported by findings demonstrating that inflammatory
mediators cause genetic instability by leading to accumulation
of random genetic alterations in cancer cells. Examples of
key players of cancer-related inflammation (CRI) include
tumor-infiltrating lymphocytes, tumour-associated macrophages
(TAMs), the secretion of cytokines such as TNF, IL-1, IL-6,
and chemokines such as CCL2 and CXCL8, in addition to
the occurrence of tissue remodeling and angiogenesis (Colotta
et al., 2009). The secretion of cytokines activates the oncogenic
transcription factor NF-κB and STAT3, both inducing the
expression of target genes crucial for tumourigenesis such as
anti-apoptotic genes, stress-response genes and pro-angiogenic
molecules reviewed in (Grivennikov and Karin, 2010). A recent
study showed that chronic inflammation induced by knockout
of the nfkb1 subunit of NF-κB in mice caused premature aging,
reduced regeneration in liver and gut, and stabilized DNA
damage via ROS-mediated exacerbation of telomere dysfunction
and cell senescence (Jurk et al., 2014).

In summary, chronic inflammatory responses caused by
infection, autoimmune diseases or exposure to irritants in
selected organs promote cancer through an increase in DNA
damage and inhibition of DNA repair pathways (Figure 2).
Yet deeper insight into the intricate connections between
inflammatory responses and tumourigenesis is required for
developing efficient therapies aiming at suppressing pro-
tumourigenic pathways and enhancing anti-tumor immunity.

CONCLUDING REMARKS

The interplay between DDR and immune signaling has important
implications for the organisms’ response to genome aberrations.
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A tight functional connection and coordination between
DDR and immune defense promotes protection from
infectious microorganisms and surveillance against tumors.
Considerable progress has been made in deepening our
knowledge on the role of DDR in the function of the
immune system. Recent experimental data demonstrated
a role of DNA damage sensors in inducing inflammatory
responses, triggering processes linked to host defense
against microbial infection, and in promoting autoimmune
diseases upon detection of both nuclear and cytosolic DNA
products.

Further studies are required to improve our understanding
on the interaction or redundancy between the diverse proposed
DNA sensors and on how the DNA sensing machinery
discriminates foreign from self-damaged DNA. Deeper insight
into this machinery might also impact the development of
DNA virus-based vaccine vectors. Moreover, the mediators
linking the activation of immunity in the cytosol upon DNA
damage recognition in the nucleus await their investigation.
The characterization of these mediators should aid finding
therapeutic strategies that facilitate the recognition of cells with

genomic aberrations such as cancer cells. Finally, research in
this area is likely to reveal new therapeutic interventions against
diseases such as cancer, age-related pathologies, autoimmune and
chronic inflammatory diseases.
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