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Abstract

Cox regression is commonly used to predict the outcome by the time to an event of interest and in addition, identify
relevant features for survival analysis in cancer genomics. Due to the high-dimensionality of high-throughput genomic data,
existing Cox models trained on any particular dataset usually generalize poorly to other independent datasets. In this paper,
we propose a network-based Cox regression model called Net-Cox and applied Net-Cox for a large-scale survival analysis
across multiple ovarian cancer datasets. Net-Cox integrates gene network information into the Cox’s proportional hazard
model to explore the co-expression or functional relation among high-dimensional gene expression features in the gene
network. Net-Cox was applied to analyze three independent gene expression datasets including the TCGA ovarian cancer
dataset and two other public ovarian cancer datasets. Net-Cox with the network information from gene co-expression or
functional relations identified highly consistent signature genes across the three datasets, and because of the better
generalization across the datasets, Net-Cox also consistently improved the accuracy of survival prediction over the Cox
models regularized by L2{norm or L1{norm. This study focused on analyzing the death and recurrence outcomes in the
treatment of ovarian carcinoma to identify signature genes that can more reliably predict the events. The signature genes
comprise dense protein-protein interaction subnetworks, enriched by extracellular matrix receptors and modulators or by
nuclear signaling components downstream of extracellular signal-regulated kinases. In the laboratory validation of the
signature genes, a tumor array experiment by protein staining on an independent patient cohort from Mayo Clinic showed
that the protein expression of the signature gene FBN1 is a biomarker significantly associated with the early recurrence after
12 months of the treatment in the ovarian cancer patients who are initially sensitive to chemotherapy. Net-Cox toolbox is
available at http://compbio.cs.umn.edu/Net-Cox/.
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Introduction

Survival analysis is routinely applied to analyzing microarray

gene expressions to assess cancer outcomes by the time to an

event of interest [1–3]. By uncovering the relationship between

gene expression profiles and time to an event such as recurrence

or death, a good survival model is expected to achieve more

accurate prognoses or diagnoses, and in addition, to identify

genes that are relevant to or predictive of the events [4,5]. The

Cox proportional hazard model [6] is widely used in survival

analysis because of its intuitive likelihood modeling with both

uncensored patient samples and censored patient samples who

are event-free by the last follow-up. Due to the high dimension-

ality of typical microarray gene expressions, the Cox regression

model is usually regularized with penalties such as L2 penalty in

ridge regression [7–10], L1 Lasso regularization [11–16] and L2

regularization in Hilbert space [17]. While those penalties were

designed as a statistical or algorithmic treatment for the high-

dimensionality problem, these Cox models are still prone to noise

and overfitting to the low sample size. An important prior

information that has been largely ignored in survival analysis is

the modular relations among gene expressions. Groups of genes

are co-expressed under certain conditions or their protein

products interact with each other to carry out a biological

function. It has been shown that protein-protein interaction

network or co-expressions can provide useful prior knowledge to

remove statistical randomness and confounding factors from

high-dimensional data for several classification and regression

models [18–21]. The major advantage of these network-based

models is the better generalization across independent studies

since the network information is consistent with the conserved

patterns in the gene expression data. For example, previous

studies in [18,20] discovered that more consistent signature genes

of breast cancer metastasis can be identified from independent

gene expression datasets by network-based classification models.

The observations also motivated several graph algorithms for
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detecting cancer causal genes in protein-protein interaction

network [22,23].

In this article, we propose a network-based Cox proportional

hazard model called Net-Cox to explore the co-expression or

functional relation among gene expression features for survival

analysis. The relation between gene expressions are modeled by a

gene relation network constructed by co-expression analysis or

prior knowledge of gene functional relations. In the Net-Cox

model, a graph Laplacian constraint is introduced as a smoothness

requirement on the gene features linked in the gene relation

network. Figure 1 illustrates the general framework of Net-Cox for

utilizing gene network information in survival analysis. In the

framework, the cost function of Net-Cox, shown in the box,

combines the total likelihood of Cox regression with a network

regularization. The total log-likelihood is a function of the linear

regression coefficients b and the base hazard h0(t) on each

followup time ft1,t2,:::,t10g, represented by the likelihood ratios

with the patient gene expression data and the survival information

specified by followup times and event indicators. The gene

network is either constructed with gene co-expression information

or a given gene functional linkage network. The gene network is

modeled as a constraint to encourage smoothness among

correlated genes, for example gene i and j in the network, such

that the coefficients of the genes connected with edges of large

weights are similarly weighted. The cost function of Net-Cox can

be solved by alternating optimization of b and h0(t) by iterations.

An algorithm that solves the Net-Cox model in its dual

representation is also introduced to improve the efficiency. The

complete model is explained in detail in Section Materials and
Methods.

In this study, we applied Net-Cox to identify gene expression

signatures associated with the outcomes of death and recurrence in

the treatment of ovarian carcinoma. Ovarian cancer is the fifth-

leading cause of cancer death in US women [3]. Identifying

molecular signatures for patient survival or tumor recurrence can

potentially improve diagnosis and prognosis of ovarian cancer.

Net-Cox was applied on three large-scale ovarian cancer gene

expression datasets [3,24,25] to predict survivals or recurrences

and to identify the genes that may be relevant to the events. Our

study is fundamentally different from previous survival analysis on

ovarian cancer [3,24–26], which are based on univariate Cox

regression. For example, in [3], gene expression profiles from 215

stage II–IV ovarian tumors from TCGA were used to identify a

prognostic gene signature (univariate Cox p{valuev0:01) for

overall survival, including 108 genes correlated with poor (worse)

prognosis and 85 genes correlated with good (better) prognosis. In

[24], a Cox score is defined to measure the correlation between

gene expression and survival. The genes with a Cox score that

exceeds an empirically optimized threshold in leave-one-out cross-

validation were reported as signature genes. Similarly, in [25] and

[26], a univariate Cox model was applied to identify associa-

tion between gene expressions and survival (univariate Cox

p{valuev0:01). Our study is based on gene networks enriched

by co-expression and functional information and thus identifies

subnetwork signatures for predicting survival or recurrence in

ovarian cancer treatment.

Results

In the experiments, Net-Cox was applied to analyze three

ovarian cancer gene expression datasets listed in Table 1. Net-Cox

(equation (9)) was compared with L2{Cox (equation (6)) and

L1{Cox (equation (7)) with performance evaluation in survival

prediction and gene signature identification for the analysis of

patient survival and tumor recurrence. First, for evaluation with a

better focus on cancer-relevant genes, the expressions of a list of

2647 genes that are previously known to be related to cancer

(Sloan-Kettering cancer genes) are used. On the data of these 2647

genes, Net-Cox, L2{Cox and L1{Cox were evaluated by

consistency of signature gene selection across the three datasets,

accuracy of survival prediction and assessment of statistical

significance. Next, more comprehensive experiments on all 7562

mappable genes were conducted to identify novel signature genes

associated with ovarian cancer. Finally, we further analyzed and

validated ovarian cancer signatures by an additional tumor array

experiment and literature survey. In all the experiments, gene co-

expression networks and a gene functional linkage network were

used to derive the network constraints for Net-Cox. The details of

data preparation and the algorithms are described in Section

Materials and Methods.

Net-Cox identifies consistent signature genes across
independent datasets

To evaluate the generalization of the models, we first measured

the consistency among the signature genes selected from the three

independent datasets by each method. Specifically, we report the

percentage of common genes in the three rank lists identified by a

method. This measurement assumes that even under the presence

of biological variability in gene expressions and patient heteroge-

neities in each dataset, genes that are selected in multiple datasets

are more likely to be true signature genes. Thus, higher

consistency across the datasets might indicate higher quality in

gene selection.

In Figure 2, we plot the number of common genes among the

first k (up to 300) genes in the gene ranking lists from all of the

three datasets for the death event and two datasets (TCGA and

Tothill) for the recurrence event. For the parameter setting of Net-

Cox, we fixed l to be the optimal parameter in the five-fold cross-

validation (see Section Materials and Methods and report the

results with a~0:01 and 0:5. Since the ranking lists of Net-Cox

with a~0:95 are nearly identical to those of L2{Cox, they are

not reported for better clarity in the figure. The first observation is

Author Summary

Network-based computational models are attracting in-
creasing attention in studying cancer genomics because
molecular networks provide valuable information on the
functional organizations of molecules in cells. Survival
analysis mostly with the Cox proportional hazard model is
widely used to predict or correlate gene expressions with
time to an event of interest (outcome) in cancer genomics.
Surprisingly, network-based survival analysis has not
received enough attention. In this paper, we studied
resistance to chemotherapy in ovarian cancer with a
network-based Cox model, called Net-Cox. The experi-
ments confirm that networks representing gene co-
expression or functional relations can be used to improve
the accuracy and the robustness of survival prediction of
outcome in ovarian cancer treatment. The study also
revealed subnetwork signatures that are enriched by
extracellular matrix receptors and modulators and the
downstream nuclear signaling components of extracellular
signal-regulators, respectively. In particular, FBN1, which
was detected as a signature gene of high confidence by
Net-Cox with network information, was validated as a
biomarker for predicting early recurrence in platinum-
sensitive ovarian cancer patients in laboratory.

Network-based Survival Analysis on Ovarian Cancer
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that the gene rankings by Net-Cox are more consistent than those

by L2{Cox and L1{Cox at all the cutoffs. Moreover, Net-Cox

with a~0:01 identified more common signature genes than Net-

Cox with a~0:5. For example, for the tumor recurrence outcome,

Net-Cox (Co-expression) with a~0:01 and 0:5 identified 36 and

29 common genes among the first 100 genes in the gene ranking

lists, Net-Cox (Functional linkage) with a~0:01 and 0:5 identified

49 and 23 common genes, and L2{Cox and L1{Cox only

identified 19 and 6 common genes, respectively. In general,

variable selection by L1{Cox is not stable from high-dimensional

gene expression data, and thus, the overlaps in the gene lists by

L1{Cox are significantly lower than the other methods. It is also

interesting to see the gradient of the overlap ratio from a~0:01 to

a~0:5, and then to a~1 (L2{Cox), which indicates that, when a

gene network plays more an important role in gene selection, the

gene rankings tend to be more consistent. This observation is

consistent with previous studies with protein-protein interaction

network or gene co-expression network [18,20,21]. Note that since

Figure 1. Overview of Net-Cox. The patient gene expression data X and the survival information specified by followup times t and event
indicators d are illustrated on the left. The cost function of Net-Cox given in the box combines the total likelihood of Cox regression with a network
regularization. The gene network shown is used as a constraint to encourage smoothness among correlated genes, i.e. the coefficients of the genes
connected with edges of large weights are similarly weighted.
doi:10.1371/journal.pcbi.1002975.g001

Table 1. Patient samples in the ovarian cancer datasets.

Dataset (GEO ID) TCGA (N/A) Tothill (GSE9899) Bonome (GSE26712)

Death # of Censored 227 160 24

# of Uncensored 277 111 129

Recurrence # of Censored 241 86 N/A

# of Uncensored 263 185 N/A

The number of patients categorized by censoring and uncensoring for the death and recurrent events is reported in each dataset. Note that the Bonome dataset does
not provide information on recurrence.
doi:10.1371/journal.pcbi.1002975.t001

Network-based Survival Analysis on Ovarian Cancer
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the overlaps are across three datasets for the death event and

across two datasets for the recurrence event, the overlaps for the

death event is expected to be lower than those for the recurrence

event. Another important difference is that the same functional

linkage network is always used while the co-expression network is

dataset-specific. Thus, it is also expected that the overlaps by Net-

Cox with the functional linkage network is higher than those by

Net-Cox with the co-expression network. Together, the results

demonstrate that Net-Cox effectively utilized the network infor-

mation to improve gene selection and accordingly, the general-

ization of the model to independent data.

Net-Cox improves survival prediction across independent
datasets

Five-fold cross-validation was first conducted for parameter

tuning for Net-Cox, L2{Cox and L1{Cox on each dataset. The

optimal parameters of Net-Cox are reported in Table S1. To test

how well the models generalize across the datasets, we trained Net-

Cox model, L2{Cox model, and L1{Cox model with the

TCGA dataset, and then predicted the survival of the patients in

the other two datasets with the TCGA-trained models. In training,

we used the optimal l and a from the five-fold cross-validation to

train the models with the whole TCGA dataset. The results are

given in Table 2. In all the cases, Net-Cox obtained more

significant p{values in the log-rank test than L2{Cox and

L1{Cox. To further compare the results, we show the Kaplan-

Meier survival curves and the ROC curves in Figure 3. The first

four columns of plots in the figure show the Kaplan-Meier survival

curves for the two risk groups defined by Net-Cox with co-

expression network and functional linkage network, L2{Cox, and

L1{Cox. The fifth column of plots compare the time-dependent

area under the ROC curves based on the estimated risk scores

(PIs). In Figure 3, in many regions, Net-Cox achieved large

improvement over both L2{Cox and L1{Cox while the

improvement is less obvious in several other regions. Overall,

Net-Cox achieved better or similar AUCs in all the time points in

the three plots. To evaluate the statistical significance of the

differences between the time-dependent AUCs generated by Net-

Cox and the other two methods, in Table S2 we report p{values
at each event time with the null hypothesis that the two time-

dependent AUCs estimated by two models are equal. At many

points of the event time, the time-dependent AUCs generated

from Net-Cox are significant higher.

The cross-validation log-partial likelihood (CVPLs) for the

combinations of (l,a) in the five-fold cross-validation are also

reported in Table S3. In all the cases, the optimal CVPLs of Net-

Cox are higher than those of L2{Cox. L1{Cox was fine-tuned

with 1000 choices of parameters with a very small bin size. In one

of the cases (TCGA: Recurrence), the optimal CVPL of L1{Cox
is higher but in the other cases, the optimal CVPLs of Net-Cox are

higher. Interestingly, the optimal a is often 0:1 or 0:5, indicating

the optimal CVPL is a balance of the information from gene

expressions and the network. The observations prove that the

network information is useful for improving survival analysis. The

left column of Figure S1 shows the average time-dependent area

under the ROC curves based on the estimated risk scores (PI ) of

the patients in the fifth fold of the five repeats, and Table S4A and

S4B show log-rank p{values of the fifth fold of the five repeats.

Net-Cox achieved the best overall survival prediction although the

results are less obvious than those of the cross-dataset analysis.

Statistical assessment
To understand the role of the gene network on the consistency

in gene selection and the contribution to the log-partial likelihood,

we tested Net-Cox with randomized co-expression networks. In

each randomization, the weighted edges between genes were

shuffled. We report the mean and the standard deviation of the

percentage of overlapping genes of 50 randomizations in Figure 4.

Compared with the consistency plots with the true networks, the

overlaps by Net-Cox on the randomized networks are much lower.

We also report the boxplot of the log-partial likelihood in the same

50 randomized co-expression network with a~0:01 in Figure 5.

Compare with the log-partial likelihood with the real co-

expression network, the range of the likelihood generated with

Figure 2. Consistency of signature genes (Sloan-Kettering cancer genes). The x-axis is the number of selected signature genes ranked by
each method. The y-axis is the percentage of the overlapped genes between the selected genes across the ovarian cancer datasets. The plots show
the results for the death outcome (A) and the tumor recurrence outcome (B).
doi:10.1371/journal.pcbi.1002975.g002

Network-based Survival Analysis on Ovarian Cancer
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the randomized networks is again lower by a large margin, which

provides clear evidence that the co-expression network is

informative for survival analysis.

To further understand the role of the network information in

cross-validation, we fixed the optimal parameter l and conducted

the same five-fold cross-validation with randomized co-expression

networks to compute the CVPL with different a in {0.01, 0.1, 0.5.

0.95}. We repeated the process on 20 random networks for each a.

The boxplots of CVPLs with different as are shown in Figure 6. In

all measures, the CVPL with the true gene network is well above

the mean of the 20 random cases. Another important observation

is that, in both plots, when the randomized network information is

more trusted with a smaller a, the variance of the CVPLs is also

getting larger; and the case with a~0:01 gives the worst CVPL

mean and the largest variance. The result indicates that the

randomized networks did not provide any valuable information in

survival prediction. In contrast, with the true gene network,

CVPLs generated from a~0:01 and a~0:1 are much higher than

the ones from a~0:95 and L2{Cox (a~1). Again, these results

convincingly support the importance of using the network

information in survival prediction.

Evaluation by whole gene expression data
Besides the 2647 Sloan-Kettering genes, all the 7562 mappable

genes were also tested to evaluate Net-Cox, L2{Cox and

L1{Cox by consistency of signature gene selection across the

three datasets and accuracy of survival prediction in similar

experiments. For the signature gene consistency, Figure S2 reports

Figure 3. Cross-dataset survival prediction (Sloan Kettering cancer genes). The first four columns of plots show the Kaplan-Meier survival
curves for the two risk groups defined by Net-Cox (co-expression network), Net-Cox (functional linkage network), L2{Cox and L1{Cox. The fifth
column of plots compare the time-dependent area under the ROC curves based on the estimated risk scores (PIs). The plots show the results for the
death outcome by training with TCGA dataset and test on Tothill Dataset (A), the death outcome by training with TCGA dataset and test on Bonome
Dataset (B), the tumor recurrence outcome by training with TCGA dataset and test on Tothill Dataset (C).
doi:10.1371/journal.pcbi.1002975.g003

Table 2. Log-rank test p{values in cross-dataset evaluation (Sloan-Kettering cancer genes).

Test Dataset Net-Cox (Co-exp) Net-Cox (FL) L2{Cox L1{Cox

Death Tothill 1.1178E-06 2.5938E-07 2.9932E-06 0.0011

Bonome 7.6088E-07 3.6039E-06 5.2590E-06 0.1165

Recurrence Tothill 0.0567 0.0786 0.1115 0.4219

The survival prediction performance on Tothill and Bonome datasets using the Cox models trained with TCGA dataset are reported.
doi:10.1371/journal.pcbi.1002975.t002

Network-based Survival Analysis on Ovarian Cancer
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the percentage of common genes identified by each method in the

ranking lists from the datasets. For the cross-dataset validation,

Table S5 shows the log-rank test p{values by training the TCGA

datasets and test on the other two datasets, and Figure S3 shows

the Kaplan-Meier survival curves for the two risk groups defined

by Net-Cox, L2{Cox and L1{Cox and compares the time-

dependent area under the ROC curves. For the five-fold cross-

validation, the right column of Figure S1 shows the average time-

dependent area under the ROC curves based on the estimated risk

scores (PI ) of the patients in the fifth fold of the five repeats, and

Table S4C and S4D report log-rank test p{values of the fifth fold

of the five repeats. Overall, similar observations are made in

experimenting with all the genes, though the improvements are

less significant compared with the results by experimenting with

the Sloan-Kettering cancer genes. One possible explanation is

that, since the genes in the Sloan-Kettering gene list are more

cancer relevant, the gene expressions may be more readily

integrated with the network information.

Signature genes are ECM components or modulators
To analyze the signature genes identified by Net-Cox and

L2{Cox, we created consensus rankings across the three datasets

by re-ranking the genes with the lowest rank by Net-Cox and

L2{Cox in the three datasets. Specifically, for each gene, a new

ranking score is assigned as the lowest of its ranks in the three

datasets, and then, all the genes were re-ranked by the new

ranking score. The top-15 genes selected by Net-Cox and

L2{Cox in the consensus rankings are shown in Table 3. For

the death outcome, nine signature genes, FBN1, VCAN, SPARC,

ADIPOQ, CNN1, DCN, LOX, EDNRA, LPL, known to be

related to ovarian cancer [27–35] are only discovered by Net-Cox.

Among the ten common genes highly ranked by both Net-Cox

and L2{Cox, three are collagen genes, and MFAP5, TIMP3,

THBS2, and CXCL12 are previously known to be relevant to

ovarian cancer [36–39]. For the recurrence outcome, there are

eleven common signature genes detected by both Net-Cox and

L2{Cox. Net-Cox identified six additional ovarian cancer related

signature genes [27–29,40–42].

The intersection of the 60 genes identified by Net-Cox in

Table 3 contains 41 unique genes. We performed a literature

survey of the 41 genes, out of which eighteen are supported by

Figure 4. Consistency of signature genes on randomized co-expression networks. The x-axis is the number of selected signature genes
ranked by each method. The y-axis is the percentage of the overlapped genes between the selected genes across the ovarian cancer datasets. The
red curve reports the mean and the standard deviation of the percentages averaged over the experiments of 50 randomized networks. The plots
show the results for the death outcome (A) and the tumor recurrence outcome (B).
doi:10.1371/journal.pcbi.1002975.g004

Figure 5. Statistical analysis of log-partial likelihood. The
optimal l was fixed and a~0:01 is set to allow better evaluation of
the network information. The log-partial likelihood computed by Net-
Cox on the real co-expression network and on the randomized co-
expression network are reported against tumor recurrence in the TCGA
and Tothill datasets. The stars represent the results with the real co-
expression networks, and the boxplots represent the results with the
randomized networks.
doi:10.1371/journal.pcbi.1002975.g005

Network-based Survival Analysis on Ovarian Cancer
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literature to be related to ovarian cancer shown in Table 4. Most

of the genes whose over-expression is associated with poor

outcome are stromal or extracellular-related proteins. The genes

such as VCAN, TIMP3, THBS2, ADIPOQ, PARC, NPY,

MFAP5, DCN, LOX, FBN1, EDNRA, and CXCL12 are either

components or modulators of extracellular matrix. In particular,

LOX protein is involved in extracellular matrix remodeling by

cross-linking collagens. Extracellular matrix remodeling through

over-expression of collagens has been shown to contribute to

platinum resistance, and platinum resistance is the main factor in

chemotherapy failure and poor survival of ovarian cancer patients.

Therefore, the identification of these extracellular matrix proteins

as biomarkers of early recurrence and poor survival outcome in

patients with ovarian cancer is consistent with the suggested

pathobiological role of some of these proteins in platinum

resistance.

Enriched PPI subnetworks and GO terms
The top-100 signature genes with the largest regression

coefficients by Net-Cox and L2{Cox learned from the TCGA

dataset were mapped to the human protein-protein interaction

(PPI) network obtained from HPRD [43] and also analyzed with

Figure 6. Statistical analysis of cross-validation log-partial likelihood (CVPL). The optimal l was fixed and a is varied from 0:01 to 1. The
CVPL of five-fold cross-validation on the real co-expression network and on the randomized co-expression network are reported against tumor
recurrence in TCGA dataset (A) and Tothill dataset (B). The stars represent the results with the real co-expression networks, and the boxplots
represent the results with the randomized networks.
doi:10.1371/journal.pcbi.1002975.g006

Table 3. Top-15 signature genes.

Death Recurrence

Net-Cox (Co-exp) Net-Cox (FL) L2{Cox Net-Cox (Co-exp) Net-Cox (FL) L2{Cox

FBN1 COL11A1 COL11A1 COL5A2 COL11A1 COL11A1

COL5A2 MFAP4 FABP4 COL1A1 COL10A1 NLRP2

VCAN TIMP3 MFAP4 COL5A1 CRYAB CRYAB

SPARC MFAP5 COMP THBS2 NPY PTX3

AEBP1 COL5A2 BCHE FAP IGF1 COL10A1

AOC3 THBS2 FAP COL3A1 COMP CXCL12

COL3A1 FAP COL5A2 COL11A1 KLK5 THBS2

THBS2 CXCL12 MFAP5 FBN1 THBS2 NPY

PLN AEBP1 TIMP3 VCAN PI3 KLK5

ADIPOQ RYR3 THBS2 INHBA CXCL12 COMP

COL5A1 LOX HOXA5 CTSK MFAP5 FAP

CNN1 COL5A1 NUAK1 COL1A2 VGLL1 MFAP5

COL6A2 EDNRA COL5A1 SPARC CCL11 PI3

COL1A2 NUAK1 SLIT2 AEBP1 EPHB1 PDGFD

DCN LPL CXCL12 SERPINE1 OXTR CHRDL1

The table lists the genes with over-expression indicating higher hazard of death or recurrence, identified by Net-Cox and L2{Cox in the consensus ranking across the
three datasets.
doi:10.1371/journal.pcbi.1002975.t003

Network-based Survival Analysis on Ovarian Cancer
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DAVID functional annotation tool [44]. We report the densely

connected PPI subnetworks constructed from the 100 genes

selected by Net-Cox in Figure 7. Compared with the PPI

subnetworks generated from the 100 genes selected by

L2{Cox, which contain 10 genes in the death subnetwork and

6 genes in the recurrence subnetworks (shown in Figure S4), the

subnetworks are both larger and denser. The subnetworks

identified from the co-expression networks in Figure 7(A) are also

larger than the subnetworks identified by the functional linkage

network in Figure 7(B) although many genes are shared. In the

recurrence subnetworks, DCN, THBS1, and THBS2 are mem-

bers of the TGF{b signaling KEGG pathway, and FBN1

controls the bioactivity of TGFbs and relates to polycystic ovary

syndrome [27]. In addition, ten genes are members of the focal

adhesion KEGG pathway. These results point to a possibility that

extracellular matrix signaling through focal adhesion complexes

may constitute a pathway by which tumor cells escape chemo-

therapy and produce recurrence in chemotherapy [45]. Nine

genes in the death subnetworks are members of the extracellular

matrix(ECM)-receptor interaction KEGG pathway, and eighteen

genes are annotated as ECM component. It was shown that ECM

acts as a model substratum for the preferential attachment of

human ovarian tumor cells in vitro [46]. FOS and JUN constitutes

a nuclear signaling components downstream of extracellular

signal-regulated kinases (ERK1/2) that are mediators of growth

factor and adhesion-related signaling pathways [47]. In addition,

the genes are also enriched by regulation of gene expression,

positive regulation of cellular process, developmental process,

transcription regulator activity, and growth factor binding, all of

which are well-known cancer relevant functions. The significantly

enriched GO functions are listed in Table S6 and Table S7.

Extracellular matrix, extracellular region, and extracellular

structure organization are consistently the most significantly

enriched in the analysis.

Laboratory experiment validates FBN1’s role in chemo-
resistance

FBN1 was ranked 1st and 8th by Net-Cox with co-expression

network in death and recurrence outcomes while L2{Cox only

ranked FBN1 at 27th and 42nd, respectively. It is interesting to

note that in the PPI subnetworks in Figure 7(A), FBN1 is

connected with VCAN and DCN, both of which bear the

annotation of extracellular matrix. The dense subnetwork boosted

the ranking of FBN1 when Net-Cox was applied. We further

validated the role of FBN1 in ovarian cancer recurrence using

tumor microarrays (TMAs) consisting of a cohort of 78 indepen-

dent patients (see Section Materials and Methods). The

expression level of FBN1 in ovarian cancer was scored by one

observer who is blinded to the clinical outcome and described as:

absent (0), moderate (1), and high (2) as illustrated by Figure 8.

In Figure S5A, the Kaplan-Meier survival curve shows the

recurrence for groups by the FBN1 staining scores. At the initial 12

month, there is no difference in the recurrence rate between the

groups with high and low FBN1 staining. After 12 month, the

recurrence rate is lower in the low staining group. The similar

patterns are also observed in the re-examination of the gene

expression datasets in Figure S5B–E. Except the TCGA dataset on

the Affymetrix platform (Figure S5E), the pattern is clearly

observed on the other two platforms, exon arrays and Agilent

arrays. The discrepancy in the Affymetrix data could be related to

data pre-processing or experimental noise. The plots suggest that

FBN1 plays a role on platinum-sensitive ovarian cancer, and it

could be developed as a target for platinum-sensitive patients with

high FBN1 expression after about 12 months of the treatment.

In the context of ovarian cancer treatment, a platinum-sensitive

patient group can be defined as the group of patients who was free

of recurrence or developed a recurrence after k month of the

treatment, where k§14 depends on the treatment plan and the

Table 4. Literature review of the candidate ovarian cancer genes.

Gene Sym Reference Description

ADIPOQ [30] ADIPOQ 45T/G and 276G/T polymorphisms is associated with susceptibility to polycystic ovary syndrome(PCOS).

CCL11 [42] CCL11 signaling plays an important role in proliferation and invasion of ovarian carcinoma cells.

CNN1 [31] CCN1 plays a role in ovarian carcinogenesis by stimulating survival and antiapoptotic signaling pathways.

CRYAB [71] Low expression of lens crystallin CRYAB is significantly associated with adverse ovarian patient survival.

CXCL12 [29] CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers.

DCN [42] Ovarian DCN is an ECM-associated component, which acts as a multifunctional regulator of GF signaling in the primate ovary.

EDNRA [32] Endothelin peptide is produced before ovulation and the contractile action of EDN2 within the ovary is facilitated via EDNRA.

FBN1 [27] FBN1 controls the bioactivity of TGFbs and associate with polycystic ovary syndrome (PCOS).

IGF1 [41] Ovarian follicular growth is controlled by the production of intraovarian growth regulatory factors such as IGF1.

INHBA [40] INHBA is the promoter of TAF4B; TAF4B in the ovary is essential for proper follicle development.

LOX [33] Inhibition of LOX expression portends worse clinical parameters for ovarian cancer.

LPL [35] LPL is differentially expressed between preoperative samples of ovarian cancer patients and those of healthy controls.

MFAP5 [36] MAGP2 is an independent predictor of survival in advanced serous ovarian cancer.

NPY [72] NPY receptor is expressed in human primary ovarian neoplasms.

SPARC [29] SPARC expression in ovarian cancer cells is inversely correlated with the degree of malignancy.

THBS2 [38] In ovarian cancer an aberrant methylation process is responsible for down-regulation of THBS2.

TIMP3 [37] TIMP2 and TIMP3 play functional role in LPA-induced invasion as negative regulators.

VCAN [28] VCAN V1 isoform is overexpressed in ovarian cancer stroma compared with normal ovarian stroma and ovarian cancer cells.

This table reports the citations that describe relevance of the signature genes with over-expression indicating higher hazard of death or recurrence, identified by Net-
Cox across the three datasets.
doi:10.1371/journal.pcbi.1002975.t004
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Figure 7. Protein-Protein interaction subnetworks of signature genes identified by Net-Cox on the TCGA dataset. (A) The PPI
subnetworks identified by Net-Cox on the co-expression network. (B) The PPI subnetworks identified by Net-Cox on the functional linkage network.
doi:10.1371/journal.pcbi.1002975.g007
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follow-up. To better evaluate the role of FBN1, we plot the

Kaplan-Meier survival curve only for the platinum-sensitive

patients in Figure 9, i.e. we removed all the patients who

developed recurrence before k month and considered the follow-

ups up to 72 months after the treatment. Due to the small sample

size of the Mayo Clinic data, we set k~14 while k~20 for the

gene expression datasets. In Figure 9A, the difference between the

survival curves of low FBN1 staining and high staining patient

groups is more significant. Similarly, Figure 9B–E show the

survival curves for the platinum-sensitive patients for groups by the

expression value of FBN1 in gene expression datasets. Compare to

the matched curves in Figure S5, the log-rank test p{values are

more significant except the TCGA dataset on the Affymetrix

platform. Overall, the observations strongly support the hypoth-

esized role of FBN1 in platinum-sensitive ovarian cancer patients.

Discussion

Many methods were proposed for survival analysis on high-

dimensional gene expression data with highly correlated variates

[4,5]. In this paper, we propose Net-Cox, a network-based survival

model, which to our knowledge is among the first models that

directly incorporate network information in survival analysis. The

graph Laplacian constraint introduced in Net-Cox is positive

definite and thus, the Net-Cox model can be solved as efficiently as

solving the L2{Cox model. In the dual form of Net-Cox, the

model is scalable to genomic data with p&n. Net-Cox not only

makes survival predictions but also generate densely connected

subnetworks enriched by genes with large regression coefficients.

Net-Cox is most related to the Lp shrinkage-based Cox models

typically with L1 (Lasso) and L2 (ridge) penalties [5]. The purpose

of applying L1 regularization is to obtain a sparse estimate of the

linear coefficients for solving the high-dimensionality problem. A

Ridge penalty results in small regression coefficients to avoid

overfitting problem with the small sample size. Compared with

Net-Cox, neither Lasso nor ridge regularized Cox regression

models are designed to incorporate any prior information among

genes in the objective function for survival analysis. Another

alternative solution in the literature is to apply dimension

reduction methods to obtain a small number of features for

subsequent survival analysis such as principal components analysis

(PCA) [48–50] and partial least squares (PLS) [51–54]. These

methods first compute the principle components to capture the

maximal covariance with the outcomes or the maximal variance in

the gene expression data, and then project the original high-

dimensional gene expressions into a space of the directions of the

principle components. Typically, these methods do not utilize any

prior information. It is also usually difficult to interpret the results

since the features in the project space are not directly mappable to

any particular gene expression. There are also tree-based

ensemble methods for survival analysis such as bagging of survival

trees and random forests [55,56]. The tree-based methods usually

also require a variable selection step to reduce the dimensionality.

Multiple trees are then built from different samplings of training

data and the results of the individual trees are aggregated for

making predictions. Since the trees are built from random

sampling, the resulted forests consist of different trees. Thus, the

interpretation of the trees can be very difficult [4].

In [57], a supervised group Lasso approach (SGLasso) is

proposed to account for the cluster structure in gene expression

data as prior information in survival analysis. In this approach,

gene clusters are first identified with clustering. Important genes

are then identified with Lasso model within each cluster and

finally, the clusters are selected with group Lasso. More recently,

the method in [58] combined a group Lasso constraint with Lasso

Cox regression (sparse-group Lasso). An additional parameter is

introduced to balance between Lasso and group Lasso constraints.

There are two major discrepancies between Net-Cox and the

graph Lasso methods. First, while group Lasso assumes non-

overlapping cluster structures among gene expressions, the gene

network introduced in Net-Cox captures more global relation

among all the genes. Specifically, beyond the cluster partition of

genes into co-expression groups, a gene network represents pair-

wise relationships between genes, which contain information of

modularities, subgraph structures and other global properties such

as centralities and closenesses. Second, while SGLasso adopts an

unsupervised strategy to cluster genes as predefined groups for

selection, Net-Cox identifies subnetwork signatures in a supervised

manner, in which the selected subnetworks are enriched by genes

with large regression coefficients by the design of the network

constraint. In Table S3(g), we reported the results of group Lasso

and sparse-group Lasso in the five-fold cross-validation with the R

package ‘‘SGL’’ [58]. Compared with the CVPLs by the other

methods in Table S3(a)–(f), the CVPLs in Table S3(g) for group

Lasso and sparse-group Lasso are consistently lowest when 25 or

100 gene clusters are used as groups. Thus, we did not further

compare and analyze other results by the group Lasso models.

The experiments in this paper clearly demonstrated that the

network information is useful for improving the accuracy of

survival prediction as well as increasing the consistency in

discovering signature genes across independent datasets. Since

the signature genes were discovered based on their relation in the

networks, they enrich dense PPI subnetworks, which are useful for

pathway analysis. It is also interesting to note that the PPI

subnetworks of signature genes identified by Net-Cox on the

TCGA dataset is enriched by extracellular matrix proteins such as

collagens, fibronectin, and decorin. Previous gene expression

studies had identified stromal gene signatures in ovarian tumors to

Figure 8. Representative photomicrographs showing various levels of FBN1 expression in ovarian tumor arrays. The brown regions
are stromal area showing expression of FBN1.
doi:10.1371/journal.pcbi.1002975.g008
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be associated with poor survival outcome [24]. Therefore, our

observation that the stromal subnetwork enriched by extracellular

matrix proteins and stromal-related proteins is consistent with the

role of stromal gene signature in poor prognosis. Finally, collagen

matrix remodelling has been linked to platinum resistance, and

ovarian cancer cells grown on collagens are more resistant to

platinum agents than their counterpart grown on non-collagen

substratum [59]. The tumor array validation indicates that FBN1

can serve as a biomarker for predicting recurrence of platinum-

sensitive ovarian cancer.

Materials and Methods

This section describes the data preparation, the Cox models and

the experimental setup. We first describe the construction of the

gene relation networks and the processing of the microarray gene

expression datasets. We then review the Cox regression models

and introduce the regularization framework of Net-Cox by adding

a network constraint to the Cox model. The algorithms to

efficiently estimate the optimal solution for Net-Cox are outlined.

We also describe the procedures for cross-validation and

parameter tuning, and the evaluation measures. At last, tumor

array preparation is explained.

Gene relation network construction
We denote gene relation network by G~(V,W), where V is the

vertex set, each element of which represents a gene, and W is a

DV D|DV D positively weighted adjacency matrix. D is a diagonal

matrix with Dii~
P

j Wij and S~D{1
2WD{1

2 is the normalized

weighted adjacency matrix by dividing the square root of the

column sum and the row sum. Two gene relation networks were

used with Net-Cox, the gene co-expression network and the gene

functional linkage network.
Gene co-expression network. A gene co-expression net-

work was generated from a gene correlation graph model. In the

weighted adjacency matrix W , each Wij is the reliability score

[60] based on the absolute value of the Pearson’s correlation

coefficients between genes vi and vj , calculated as Wij~
1

Ri,j|Rj,i
,

where Ri,j is gene vi’s rank among all the genes with respect to the

correlation with gene vj and Rj,i is gene vj ’s rank with respect to

the correlation with gene vi. Note that the gene co-expression

network is directly inferred from the gene expression dataset.

Thus, a gene co-expression network is specific to the dataset used

for computing the co-expression network.

Gene functional linkage network. A human gene func-

tional linkage network was constructed by a regularized Bayesian

integration system [61]. The network contains maps of functional

activity and interaction networks in over 200 areas of human

cellular biology with information from 30,000 genome-scale

experiments. The functional linkage network summarizes infor-

mation from a variety of biologically informative perspectives:

prediction of protein function and functional modules, cross-talk

among biological processes, and association of novel genes and

pathways with known genetic disorders [61]. Each edge in the

network is weighted between [0,1] to quantify the functional

relation between two genes. Thus, the functional linkage network

provides much more comprehensive information than Human

protein-protein interaction network, which was more frequently

used as the network prior knowledge.

Gene expression dataset preparation
Three independent microarray gene expression datasets for

studying ovarian carcinoma were used in the experiments

[3,24,25]. The information of patient samples in each dataset is

given in Table 1. All the three datasets were generated by the

Affymetrix HG-U133A platform. The raw .CEL files of two

datasets were downloaded from GEO website (Tothill: GSE9899)

and (Bonome: GSE26712) [24,25]. The TCGA dataset was

downloaded from The Cancer Genome Atlas data portal [3]. The

Figure 9. Kaplan-Meier survival plots on FBN1 expression groups. (A) Kaplan-Meier survival curve of recurrence between 14 to 72 month by
FBN1 staining groups on Mayo Clinic dataset. (B) Kaplan-Meier survival curve of recurrence between 20 to 72 month by the expression of FBN1 on Tothill
dataset. (C)–(E) Kaplan-Meier survival curves of recurrence between 20 to 72 month by the expression of FBN1 on TCGA dataset with AgilentG4502A
platform, HuEx-1_0-st-v2 platform, and Affymetrix HG-U133A platform, respectively. In plot(A), the groups with FBN1 staining score 1 and 2 are
combined into the high-expression group. In plots(B)–(E), the patients are divided into two groups of the same size by the expression of FBN1.
doi:10.1371/journal.pcbi.1002975.g009
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raw files were normalized by RMA [62]. After merging probes by

gene symbols and removing probes with no gene symbol, a total of

7562 unique genes were derived from the 22,283 probes and

overlapped with the functional linkage network for this study. Note

that the Bonome dataset does not provide information on

recurrence. Thus, only TCGA and Tothill datasets were used

for studying recurrence while all the three datasets were used for

studying death. In cross-dataset validation, the batch effects

among the three datasets were removed by applying ComBat [63].

Besides testing all the genes, for a better focus on genes that are

more likely to be cancer relevant, we derived a set of 2647 genes

from the cancer gene list compiled by Sloan-Kettering Cancer

Center (SKCC) [64].

The TCGA datasets with AgilentG4502A platform (gene

expression array) and HuEx-1_0-st-v2 (exon expression array)

were used to evaluate the signature gene FBN1 in Figure 9. The

processed level 3 data with expression calls for gene/exon were

downloaded from the TCGA data portal.

Cox proportional hazard model
Consider the Cox regression model proposed in [6]. Given X ,

the gene expression profile of n patients over p genes, the

instantaneous risk of an event at time t for the ith patient with gene

expressions X i~(Xi1,:::,Xip)’ is given by

h(tDX i)~h0(t)exp(X ’ib), ð1Þ

where b~(b1,:::,bp)’ is a vector of regression coefficients, and

h0(t) is an unspecified baseline hazard function. In the classical

setting with nwp, the regression coefficients are estimated by

maximizing the Cox’s log-partial likelihood:

pl(b)~
Xn

i~1

di X ’ib{log
X

j[R(ti )

exp(X ’jb)

2
4

3
5

8<
:

9=
;, ð2Þ

where ti is the observed or censored survival time for the ith

patient, and di is an indicator of whether the survival time is

observed (di~1) or censored (di~0). R(ti) is the risk set at time ti,

i.e. the set of all patients who still survived prior to time ti. The

commonly used Breslow estimator [65] to estimate the baseline

hazard h0(t) is given by

ĥh0(ti)~1=
X

j[R(ti )

exp(X ’j b̂b): ð3Þ

The partial likelihood and the Breslow estimator are induced by

the total log-likelihood

l(b,h0)~
Xn

i~1

{exp(X ’ib)H0(ti)zdi log(h0(ti))zX ’ib½ �f g, ð4Þ

with

H0(ti)~
X

tkƒti

h0(tk): ð5Þ

The optimal regression coefficients b is estimated based on the

maximization of the total log-likelihood by alternating between

maximization with respect to b (with Newton-Raphson) and h0(t)
(by equation (3)).

In the analysis of microarray gene expressions, the number of

gene features p is larger than the number of subjects n by several

magnitudes (p&n). Fitting the Cox regression model will lead to

large regression coefficients, which are not reliable. One possible

solution is to introduce a L2{norm constraint to shrink regression

coefficients estimates towards zero [7,10]. In the L2{Cox model,

the regression coefficients are estimated by maximizing the

penalized total log-likelihood:

lpen(b,h0)~
Xn

i~1

{exp(X0 ib)H0(ti)zdi log(h0(ti))zX0 ib½ �f g

{
1

2
l
Xp

j~1

b 2
j ,

ð6Þ

where l
Pp

j~1 bj
2 is the penalty term and l is the parameter

controlling the amount of shrinkage. Another possibility is to

introduce a L1{norm constraint for variable selection [11,13].

The L1{Cox model penalizes the log-partial likelihood (equation

(2)) by l
Pp

j~1 Dbj D leading to:

plpen(b)~
Xn

i~1

di X ’ib{log
X

j[R(ti )

exp(X ’jb)

2
4

3
5

8<
:

9=
;{l

Xp

j~1

Dbj D: ð7Þ

In our experiments, R package ‘‘glmnet’’ [66] was used in the

implementation of L1{Cox.

Network-constrained Cox regression (Net-Cox)
We introduce a network-constraint to the Cox model as follows,

lpen(b,h0)~l(b,h0){
1

2
lb’ (1{a)LzaI½ �b, ð8Þ

where L is a positive semidefinite matrix derived from network

information, I is an identity matrix, and l is the parameter

controlling the weighting between the total likelihood and the

network constraint. a[(0,1� is another parameter weighting the

network matrix and the identity matrix in the network constraint.

For convenience, we define C~(1{a)LzaI and rewrite the

object function as

lpen(b,h0)~
Xn

i~1

{exp(X0ib)H0(ti)zdi log(h0(ti))zX0ib½ �f g

{
1

2
lb0Cb:

ð9Þ

The term lb’ (1{a)LzaI½ �b in equation (8) is a network

Laplacian constraint to encode prior knowledge from a network.

Given a normalized graph weight matrix S, we assume that co-

expressed (related) genes should be assigned similar coefficients by

defining the following cost term over the coefficients,

Y(b)~
1

2

Xp

i,j~1

Si,j(bi{bj)
2

~b0(I{S)b~b0Lb:

ð10Þ

As illustrated in Figure 1, the Laplacian constraint encourages a

smoothness among the regression coefficients in the network.

Specifically, for any pair of genes connected by an edge, there is a
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cost proportional to both the difference in the coefficients and the

edge weight. Large difference between coefficients on two genes

connected with a highly weighted edge will result in a large cost in

the objective function. Thus, the objective function encourages

assigning similar weights to genes connected by edges of larger

weights. By adding an additional L2{norm constraint to Y(b)
weighted by a, we obtain the network constraint (1{a)b’Lbz

aDbD2 = b’Cb in equation (8) and (9). The L2{norm of b similarly

regularizes the uncertainty in the network constraint, which could

have a singular Hessian matrix, and the a parameter balances

between the L2{norm and the ‘‘Laplacian-norm’’. The smaller

the a parameter, the more importance put on the network

information.

Alternating optimization algorithm
The objective function defined by equation (9) can be solved by

alternating optimization of b and h0(t). The maximization with

respect to b is done by Newton-Raphson method. The derivative

of equation (9) is

Llpen(b,h0)

Lb
~
Xn

i~1

di{exp(X0ib)H0(ti)½ �Xi{lCb

~X0D{lCb,

ð11Þ

where Di~di{exp(X ’ib)H0(ti), and the second derivative is

L2lpen(b,h0)

LbLb
0 ~{

Xn

i~1

exp(X0 ib)H0(ti)XiX
0
i

" #
{lC

~{X0DX{lC,

ð12Þ

where D is the diagonal matrix with Dii~exp(X ’ib)H0(ti). Thus,

the full algorithm to solve the Net-Cox model is given below.

1. Initialization: b~0; Compute L~I{S.

2. Do until convergence

(a) Do Newton-Raphson iteration

i. Compute the first derivative lpen
0(b,h0)~

Llpen(b,h0)

Lb

ii. Compute the second derivative l
00

pen(b,h0)~
L2lpen(b,h0)

LbLb
0

iii. Update b~b{fl 00pen(b,h0)g{1
l
0
pen(b,h0)

(b) Update ĥh0(ti)~1=
P

j[R(ti)
exp(X ’j b̂b)

3. Return b

Using Newton-Raphson method to update b requires inverting

the Hessian matrix, which is time consuming and often inaccurate.

An alternative approach is to reduce the covariant space from p to

n, which relates to singular value decomposition that exploits the

low rank of the gene expression matrix X [10]. The equation

Llpen(b,h0)

Lb
~
Xn

i~1

di{exp(X0ib)H0(ti)½ �Xi{lCb

~X0D{lCb~0

ð13Þ

implies that b~C{1X ’g for some g. Thus, the dual form of

equation (9) with respect to g is

lpen(g,h0)~
Xn

i~1

{exp(Z0 ig)H0(ti)zdi log(h0(ti))zZ0ig½ �f g

{
1

2
lg0Zg

ð14Þ

with Z i~XC{1X i and Z~XC{1X ’. In its dual form, it is clear

that the new object function (14) is equivalent to equation (9) but

the problem dimension is reduced from p to n.

Cross validation and parameter tuning
To determine the optimal tuning parameters l and a, we

performed five-fold cross-validation following the procedure

proposed by [10] on each of the three datasets. In the cross-

validation, four folds of data are used to build a model for

validation on the fifth fold, cycling through each of the five folds in

turn, and then the (l,a) pair that maximizes the cross-validation

log-partial likelihood (CVPL) are chosen as the optimal param-

eters. CVPL is defined as

CVPL(l,a)~
X5

i~1

pl(b̂b
({i)
(l,a)){pl({i)(b̂b

({i)
(l,a))�ð15Þ

h

where b̂b({i) is the optimal b learned from the data without the ith
fold. In the equation, pl() denotes the log-partial likelihood on all

the samples and pl({i)() denotes the log-partial likelihood on

samples excluding the ith fold. We performed a grid search for the

optimal (l,a) maximizing the sum of the contributions of each fold

to the log-partial likelihood in CVPL. In particular, l was chosen

from f1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1g (ls larger than 1 do not

change the ranking of b anymore), and a was chosen from

f0:01,0:1,0:5,0:95g. Note that, when a~1, Net-Cox ignores the

network information and is reduced to L2{Cox. For L1{Cox,

the optimal l was chosen from 1000 ls by the ‘‘glmnet’’ parameter

setting with the largest CVPL.

Evaluation measures
The Log-rank test [67] and time-dependent ROC [68] were

used to evaluate measurements of the prediction performance by a

survival model. For the gene expression profile X in the test set,

the prognostic indexes PI~X ’b̂b is computed, where b̂b is the

regression coefficients of the survival model, to rank the patients by

descending order. We assigned the top 40% of the patients as the

high{ risk group and the bottom 40% as the low{risk group.

The Log-rank test is a statistical hypothesis test for comparison

of two Kaplan-Meier survival curves with the null hypothesis that

there is no difference between the population survival curves, i.e.

the probability of an event occurring at any time point is the same

for each population. The test statistic is compared with a x2

distribution with one degree of freedom to derive the significance

p{value reflecting the difference between two survival curves.

The log-rank test only evaluates whether the patients are assigned

to the ‘‘right group’’ but not how well the patients are ranked

within the group by examining the PI . A more refined approach is

afforded by the time-dependent ROC curves [68,69]. Time-

dependent ROC curves evaluate how well the PI classifies the

patients into high{risk and low{risk prognosis groups. Letting

f (X)~X ’b̂b, we can define time-dependent sensitivity and speci-

ficity functions at a cutoff point c as
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sensitivity½c,tDf (X)�~Pr f (X)wcDd(t)~1f g,
specificity½c,tDf (X)�~Pr f (X)ƒcDd(t)~0f g

with d(t) being the event indicator at time t [69]. The

corresponding ROC curve for any time t, ROC½tDf (X)�, is the

plot of sensitivity½c,tDf (X)� versus 1{specificity½c,tDf (X)� with

different cutoff point c. AUC½tDf (X)� is denoted as the area under

the ROC½tDf (X)� curve. A larger AUC½tDf (X)� indicates better

prediction of time to event at time t, as measured by sensitivity and

specificity evaluated at time t. We plot the AUCs at each time t to

compare the methods.

To select gene variables in the multi-variate scenario by Net-

Cox and L2{Cox, we ranked the genes by the magnitude of the

coefficients b. To justify this simple ranking method, we examined

the relation between the magnitude of the coefficients for each

gene and the contribution of the gene to the log-partial likelihood

in Figure S6. It is clear in the plot that the genes towards the two

tails of the ranking list contributes most of the likelihood, and the

proportion of the contributions are consistent with the ranking.

For L1{Cox, we ranked the genes by the first-time jump into the

active set when decreasing the tuning parameter l in the solution

path.

Tumor array preparation
With approval by the Mayo Clinic Institutional Review Board,

archived ovarian epithelial tumor specimens from patients with

advanced-stage, high-grade serous, or endometrioid tumors

obtained prior to exposure to any chemotherapy were utilized to

construct the TMA array. The array was constructed using a

custom-fabricated device that utilizes a 0.6-mm tissue corer and a

240-capacity recipient block. Triplicate cores from each tumor

were included, as were cores of liver as fiducial markers and

controls for immunohistochemistry reactions. Five-micrometer-

thick sections were cut from the TMA blocks. Immunohistochem-

istry was performed essentially as described in [70]. Sections of

tissue arrays were deparaffinized, rehydrated, and submitted to

antigen retrieval by a steamer for 25 minutes in target retrieval

solution (Dako, Carpinteria, CA, USA). Endogenous peroxide was

diminished with 3% H2O2 for 30 min. Slides were blocked in

protein block solution for 30 min and then blocked with avidin

and biotin for 10 min each, followed by overnight incubation with

1:1000 diluted Anti-FBN1 antibody (HPA021057, Sigma-Aldrich)

at 40C. The sections were then incubated with biotinylated

universal link for 15 min and streptavidin for 25 min at 250C.

Slides were developed in diaminobenzine and counterstained with

hematoxylin.

Supporting Information

Figure S1 Time-dependent AUCs averaged across the
five test folds in five-fold cross-validation. The plots report

the results of using Sloan-Kettering cancer genes (left column) and

all mappables genes (right column). The plots show the results for

the death outcome of TCGA dataset (A), the death outcome of

Tothill dataset (B), the death outcome of Bonome dataset (C), the

tumor recurrence outcome of TCGA dataset (D) and the tumor

recurrence outcome of Tothill dataset (E).

(PDF)

Figure S2 Marker gene consistency (all mappable
genes). The x-axis is the number of selected signature genes

ranked by each method. The y-axis is the percentage of the

overlapped genes between the selected genes across the ovarian

cancer datasets. The results are shown for the death outcome (A)

and the tumor recurrence outcome (B).

(PDF)

Figure S3 Cross-dataset survival prediction (all mappa-
ble genes). The first four columns of plots show the Kaplan-Meier

survival curves for the two risk groups defined by Net-Cox (co-

expression network), Net-Cox (functional linkage network),

L2{Cox and L1{Cox. The fifth column of plots compare the

time-dependent area under the ROC curves based on the estimated

risk scores (PIs). The results are shown for the death outcome by

training with TCGA dataset and test on Tothill Dataset (A), for the

death outcome by training with TCGA dataset and test on Bonome

Dataset (B) and for the tumor recurrence outcome by training with

TCGA dataset and test on Tothill Dataset (C).

(PDF)

Figure S4 Protein-Protein interaction sub-networks of
marker genes identified by Net-Cox and L2{Cox on the
TCGA dataset. (A) The PPI subnetworks identified by Net-Cox

on the co-expression network. (B) The PPI subnetworks identified

by Net-Cox on the functional linkage network. (C) The PPI

subnetwrks identified by L2{Cox.

(PDF)

Figure S5 Kaplan-Meier survival plots on FBN1 expres-
sion groups. (A) Kaplan-Meier survival curve of recurrence by

FBN1 staining groups. The group with low FBN1 expression has a

lower recurrence rate compared with the groups with high

expression after 12 month of treatment. (B) Kaplan-Meier survival

curve of recurrence by the expression of FBN1 on Tothill dataset.

(C)–(E) Kaplan-Meier survival curves of recurrence by the

expression of FBN1 on TCGA dataset with AgilentG4502A

platform, HuEx-1_0-st-v2 platform, and Affymetrix HG-U133A

platform, respectively. In plots(B)–(E), the patients are divided into

two groups of the same size by the expression of FBN1.

(PDF)

Figure S6 Contributions to the log-partial likelihood by
each individual gene by Net-Cox on the Tothill dataset
(Sloan-Kettering cancer genes). The x-axis is the index of the

genes sorted by coefficients.

(PDF)

Table S1 Optimal parameters of Net-Cox. The parame-

ters are selected by CVPLs in five-fold cross-validation. (a) Sloan-

Kettering cancer genes. (b) All mappable genes.

(PDF)

Table S2 Statistical significance of the improvement in
time-dependent AUCs in cross-dataset evaluation
(Sloan-Kettering cancer genes). The R package ‘‘timeROC’’

(the algorithm was described in the paper ‘‘Estimating and

Comparing time-dependent areas under ROC curves for censored

event times with competing risks’’) was used to compute the

p{values. The null hypothesis asserts that two time-dependent

AUCs estimated by two models are equal. The significant

p{values smaller than 0.1 are bold. The tables show the results

for the death outcome by training with TCGA dataset and test on

Tothill Dataset (a), for the death outcome by training with TCGA

dataset and test on Bonome Dataset (b), for the tumor recurrence

outcome by training with TCGA dataset and test on Tothill

Dataset (c).

(PDF)

Table S3 Cross validation partial likelihood (CVPL) in
five-fold cross-validation (Sloan-Kettering cancer
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genes). (a) The death outcome of TCGA dataset. (b) The tumor

recurrence outcome of TCGA dataset. (c) The death outcome of

Tothill dataset. (d) The tumor recurrence outcome of Tothill

dataset. (e) The death outcome of Bonome dataset. (f) L1{Cox.

(g) Group Lasso and Sparse-Group Lasso.

(PDF)

Table S4 Log-rank test p{values of the test folds on five-
fold cross-validation. The most significant p{values across

four models with cut-off 0.05 are bold. (a) Sloan-Kettering cancer

genes and the death outcome. (b) Sloan-Kettering cancer genes

and the tumor recurrence outcome. (c) All mappable genes and the

death outcome. (d) All mappable genes and the tumor recurrence

outcome.

(PDF)

Table S5 Log-rank test p{values in cross-dataset eval-
uation (all mappable genes). The survival prediction

performance on Tothill and Bonome datasets using the Cox

models trained with TCGA dataset are reported.

(PDF)

Table S6 Enriched GO terms by the signature genes of
death outcome. The p{values in {log10 scale are shown for

the enriched GO terms.

(PDF)

Table S7 Enriched GO terms by the signature genes of
recurrence. The p{values in {log10 scale are shown for the

enriched GO terms. A ‘‘X’’ denotes a p{value larger than 0:01.

(PDF)
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