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The cellular and circuit basis for 
evolutionary change in sensory 
perception in mormyrid fishes
Alejandro Vélez1, Tsunehiko Kohashi1,2, Anan Lu1 & Bruce A. Carlson1

Species differences in perception have been linked to divergence in gross neuroanatomical features of 
sensory pathways. The anatomical and physiological basis of evolutionary change in sensory processing 
at cellular and circuit levels, however, is poorly understood. Here, we show how specific changes to a 
sensory microcircuit are associated with the evolution of a novel perceptual ability. In mormyrid fishes, 
the ability to detect variation in electric communication signals is correlated with an enlargement of 
the midbrain exterolateral nucleus (EL), and a differentiation into separate anterior (ELa) and posterior 
(ELp) regions. We show that the same cell types and connectivity are found in both EL and ELa/ELp. 
The evolution of ELa/ELp, and the concomitant ability to detect signal variation, is associated with 
a lengthening of incoming hindbrain axons to form delay lines, allowing for fine temporal analysis of 
signals. The enlargement of this brain region is also likely due to an overall increase in cell numbers, 
which would allow for processing of a wider range of timing information.

The evolution of behavior and perception is related to evolutionary changes in the brain. Evolutionary differences 
in sensory perception have been described in many clades of animals and, in some cases, correlated to differences 
in gross brain anatomy1–10. The anatomical and physiological basis of evolutionary change in sensory processing 
at cellular and circuit levels, however, has received less attention.

We addressed this question in weakly electric fishes of the family Mormyridae. Mormyrids communicate 
using pulse-type electric organ discharges (EODs; Fig. 1). EOD waveform (i.e., the shape of the electric pulse in a 
plot of voltage vs. time) is species-specific, highly stereotyped, and provides information about sender identity11. 
Species from two mormyrid lineages can detect subtle variations in EOD waveform12. One of these lineages is 
represented by only one known extant species in the subfamily Petrocephalinae: Petrocephalus microphthalmus 
(Fig. 1). The other lineage belongs to the subfamily Mormyrinae, is known as “clade A”, and includes over 175 
species12, 13. Interestingly, the perceptual ability to detect EOD waveform variation likely evolved independently 
in both lineages and is associated with changes in peripheral receptor anatomy and physiology, and in the gross 
anatomy of the central electrosensory system12, 14, 15 (Fig. 1). Here, we refer to this perceptual ability and to the 
associated changes in the electrosensory system as the derived states of these traits, as this is the most likely evo-
lutionary scenario given parsimonious reconstructions based on data from extant taxa12.

Knollenorgans, electroreceptors on the surface of the skin that detect electric communication signals, are dis-
tributed throughout the surface of the body in species sensitive to EOD waveform variation12, 14. In these species, 
knollenorgans respond to electrosensory stimulation with a single time-locked spike14, 16. In species unable to 
detect EOD waveform variation, knollenorgans are clustered in three rosettes on both sides of the head13, 14. These 
electroreceptors do not fire spikes but produce spontaneously oscillating potentials. When stimulated, oscillating 
receptors respond with an increase in oscillation amplitude and with a phase reset that results in transient syn-
chrony across receptors14.

In the central electrosensory system, the most likely ancestral state of the midbrain exterolateral nucleus (EL) 
is small and undifferentiated12 (Fig. 1). In contrast, EL is enlarged and subdivided into separate anterior (ELa) 
and posterior (ELp) regions in clade A and P. microphthalmus12 (Fig. 1). Importantly, both EL and ELa/ELp are 
devoted to processing communication signals, as they only respond to the EODs of neighboring fish, not to the 
fish’s own EOD17–21. Studies of clade-A species have provided valuable insight into the processing of electric com-
munication signals in ELa/ELp22 (Fig. 1). Knollenorgans project ipsilaterally to the nucleus of the electrosensory 

1Department of Biology, Washington University in St. Louis, St. Louis, MO, USA. 2Division of Biological Science, 
Graduate School of Science, Nagoya University, Nagoya, Japan. Correspondence and requests for materials should 
be addressed to B.A.C. (email: carlson.bruce@wustl.edu)

Received: 17 February 2017

Accepted: 10 May 2017

Published: xx xx xxxx

OPEN

mailto:carlson.bruce@wustl.edu


www.nature.com/scientificreports/

2Scientific Reports | 7: 3783  | DOI:10.1038/s41598-017-03951-y

lateral line lobe (nELL) in the hindbrain18, 23–27. Cells from nELL project to ELa through the lateral lemniscus; 
most projections are contralateral though some are ipsilateral or bilateral18, 26, 28. These projections synapse onto 
two cell types in ELa: small cells and large cells. Small cells perform the first stage of EOD waveform analysis 
based on a delay-line anti-coincidence detection mechanism28, 29. The circuit includes inhibition from large cells 
onto small cells and excitation from nELL cells onto small cells via axons that follow long and convoluted paths. 
These axons synapse onto multiple small cells along their length, thus establishing delay lines that determine the 
relative timing of inhibition and excitation onto small cells, generating submillisecond sensitivity to variation in 

Figure 1.  The perceptual ability to detect variations in EOD waveform is associated with parallel evolutionary 
changes of the central electrosensory system in mormyrids. Based on a parsimonious reconstruction of 
extant taxa12, the most likely ancestral state of the exterolateral nucleus of the midbrain (EL) is small and 
undifferentiated (green) (a,c). In clade A and P. microphthalmus, however, this nucleus is enlarged and 
subdivided into anterior (ELa) and posterior (ELp) regions (magenta) (a,c). Only species with ELa/ELp are 
sensitive to EOD waveform variation (i.e., the shape of the electric pulses used in communication) (b). In 
clade A, the first stages of EOD waveform analysis are performed in ELa (c). Cells from the hindbrain nucleus 
of the electrosensory lateral line lobe (nELL) project bilaterally to ELa (red and blue). Upon entering ELa, the 
nELL axons synapse onto large inhibitory cells (blue) and then follow a long and tortuous path, synapsing 
onto numerous small cells (purple) throughout their length. Large inhibitory cells project onto small cells, 
establishing a delay-line anti-coincidence detection mechanism by which small cells analyze EOD waveform. 
Small cells then project to multipolar cells (gray) in ELp that are sensitive to inter-pulse intervals (IPIs). 
Cladogram in (a) is based on consensus trees43, 44 and includes genera of the species used in this study, as well as 
the genera Myomyrus and Gymnarchus, which were important for previous reconstructions of the EL-ELa/ELp 
trait12. EOD waveforms in (b) are from species used in the present study (from top to bottom): Gnathonemus 
petersii, Brevimyrus niger, Pollimyrus adspersus, Brienomyrus brachyistius, Petrocephalus tenuicauda, and 
Petrocephalus microphthalmus. Photomicrographs in (c) are from 50-µm horizontal sections of the brain at the 
level of the midbrain and scale bars represent 200 µm. A: anterior. M: medial.
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EOD waveform. Small cells in ELa project to multipolar cells in ELp that are sensitive to the inter-pulse intervals 
(IPIs) between EODs30. IPIs are variable and depend on social context31, 32.

While IPI sensitivity is common across mormyrids, only species with ELa/ELp are sensitive to EOD waveform 
variation12, 14. However, the microcircuitry of this midbrain region has only been studied in clade-A species. To 
understand the underlying physiological and anatomical mechanisms of evolutionary change in sensory percep-
tion, we investigated how the neural circuitry in ELa/ELp of P. microphthalmus and in the small and undifferen-
tiated EL of Petrocephalus tenuicauda relate to the neural circuitry in ELa/ELp of clade A. We used neuronal tract 
tracing, immunohistochemistry, and electrophysiology to compare the anatomy and physiology of the unknown 
EL and ELa/ELp neural circuits of Petrocephalus spp. to the known ELa/ELp neural circuit of clade-A species. 
Specifically, we investigated the neuronal projections from the hindbrain to these midbrain circuits, the types of 
cells found in these neural circuits and their morphology, the synaptic connections among those cells, and the 
processing of electrosensory information within these circuits.

Results
Contralateral bias in projections from hindbrain cells to ELa and to the anterior end of EL.  In 
clade-A species, the only inputs to ELa are from cells in the ipsi- and contra-lateral nELL of the hindbrain18, 26, 28. 
We asked whether the inputs to EL of P. tenuicauda and ELa of P. microphthalmus are similar to those into ELa 
of clade-A species. Injections of neuronal tract tracers into the left ELa of clade-A species and P. microphthalmus, 
and into the anterior end of EL in P. tenuicauda, retrogradely labeled cells in the ipsilateral and contralateral nELL 
(Fig. 2a,b). In all cases, we found more labeled cells in the contralateral nELL (Fig. 2b; clade A: n = 3 species, 5 
subjects, 60–69% of quantified stained cells found contralaterally; P. microphthalmus: n = 2 subjects, 59% and 
68%; P. tenuicauda: n = 3 subjects, 70–75%). Consistent with bilateral projections from the hindbrain to the mid-
brain, we also found labeled axonal projections, but no stained somas, in the right ELa of clade-A species and P. 
microphthalmus and in the anterior end of the right EL of P. tenuicauda (Fig. 2c).

In clade-A species, knollenorgans on each side of the body project ipsilaterally to the nELL14, 16, 33. Thus, the 
greater number of contralateral projections from nELL to ELa result in more sensory information reaching ELa 
from the contralateral side of the fish’s body18, 23, 24, 28, 34. We asked whether this pattern is common across lineages. 
Importantly, knollenorgans respond to inward current transients; thus, knollenorgans on one side of the body 
respond to rising edges of an electrosensory stimulus, whereas knollenorgans on the opposite side of the body 
respond to falling edges14, 16, 33. We obtained in vivo evoked potentials from the left ELa/ELp in clade-A species 
and P. microphthalmus, and from the left EL in P. tenuicauda, in response to artificially long (50ms) monophasic 
square pulses, for which the responses to each edge can be easily separated (Fig. 3). Pulses were delivered with 
normal or reversed polarity. In our experimental setup (see Methods), knollenorgans on opposite sides of the 
body are stimulated by different edges of normal- and reversed-polarity stimuli. With normal-polarity stimuli, 
knollenorgans on the left side of the body (ipsilateral) experienced inward current transients with the leading 
edge of the square pulse, while knollenorgans on the right side of the body (contralateral) did so with the trailing 
edge. Conversely, square pulses delivered with reversed polarity resulted in stimulation of the contralateral side of 
the body by the leading edge, and ipsilateral stimulation by the trailing edge. We asked whether the amplitude of 
the evoked potential in response to each stimulus edge was influenced by the side of body stimulation (contralat-
eral vs. ipsilateral) and by the order of stimulation (leading vs. trailing).

All lineages showed a similar pattern (Fig. 3). Evoked potentials were stronger in response to contralat-
eral stimulation (repeated measures ANOVA clade A: four species, all p < 0.0001; P. microphthalmus: n = 3, 
F1,14 = 322.7, p < 0.0001; P. tenuicauda: n = 7 fish, 10 recordings; F1,30 = 1390.3, p < 0.0001). However, the ampli-
tude of evoked potentials did not depend on which side of the body was stimulated first (repeated measures 
ANOVA clade A: four species, all p > 0.07; P. microphthalmus: n = 3, F1,14 = 0.02, p = 0.88; P. tenuicauda: n = 7 
fish, 10 recordings; F1,30 = 0.45, p = 0.51). These results are consistent with the contralateral bias in hindbrain 
projections to the midbrain and reveal that more sensory input from the contralateral side of the body reaches the 
midbrain in all three lineages.

Large inhibitory cells project to smaller cells within ELa and the anterior end of EL.  EOD 
waveform analysis in clade-A species is mediated by an anti-coincidence detection mechanism in a circuit 
that includes direct inhibition and delayed excitation28, 29. We used GABA immunhistochemistry to identify 
GABAergic neurons and their synaptic targets in the EL and ELa/ELp neural circuits (Fig. 4a). GABAergic cells 
were observed in ELa and ELp of clade-A species and P. microphthalmus. The diameters of inhibitory somas in 
ELa of both lineages were similar (Non-outlier ranges of stained cell diameters in µm: Brienomyrus brachyis-
tius = 6.16–16.77, n = 165; Brevimyrus niger = 4.81–12.61, n = 238; Pollimyrus adspersus = 4.34–12.59, n = 188; 
P. microphthalmus subject 1 = 5.37–17.55, n = 84; P. microphthalmus subject 2 = 4.79–13.67, n = 305; P. microph-
thalmus subject 3 = 4.53–13.78, n = 305) and consistent with previous reports of inhibitory large cells in ELa of 
clade-A species28, 35 (Fig. 4a,c). We found calyx-like GABAergic terminals onto smaller, unstained cells in ELa of 
both lineages (Fig. 4a). Inhibitory somas in ELp generally had smaller diameters than those in ELa (Non-outlier 
ranges of stained cell diameters in µm: B. brachyistius = 4.10–13.07, n = 1023; B. niger = 4.22–11.10, n = 686; P. 
adspersus = 3.55–9.30, n = 314; P. microphthalmus subject 1 = 3.56–13.92, n = 404; P. microphthalmus subject 
2 = 3.94–11.68, n = 1345; P. microphthalmus subject 3 = 4.48–12.59, n = 1303) and were similar in size to the 
somas of multipolar cells in ELp of clade-A species27, 35, 36 (Fig. 4a,c). We found punctate terminals surrounding 
unstained somas in ELp of both lineages, consistent with inhibitory interactions among multipolar cells in ELp 
of clade-A species35.

In P. tenuicauda, we found GABAergic cells throughout EL and the lateral lemniscus (Fig. 4a). The range of 
diameters of these inhibitory somas spanned the range of diameters found throughout ELa and ELp of clade-A 
species and P. microphthalmus (Non-outlier ranges of stained cell diameters in µm: P. tenuicauda subject 
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1 = 4.49–12.90, n = 761; subject 2 = 4.58–12.58, n = 1925; subject 3 = 5.48–15.33, n = 772). Typically, larger 
stained cells were found in the lateral lemniscus and towards the anterior end of EL, while smaller cells were 
found towards the posterior end of EL (Fig. 4a). We found calyx-like GABAergic terminals on the somas of 
smaller, unstained cells in the anterior end of EL and in the lateral lemniscus, and punctate terminals around 
unstained somas towards the posterior end of EL (Fig. 4a).

Small cells in ELa and in the anterior end of EL project to multipolar cells.  The only output from 
ELa of clade-A species is from small cells that synapse onto multipolar cells in ELp28. Here, we investigated the 
projections to ELp in clade-A species and P. microphthalmus and to the posterior end of EL in P. tenuicauda. 
Injections of neuronal tract tracers into ELa of clade-A species and P. microphthalmus labeled axonal projec-
tions into ELp (Fig. 2a). Iontophoretic injections of neuronal tract tracers into ELp of both lineages labeled 
multipolar cells in ELp and retrogradely labeled cells in ELa (Fig. 4b). Backfilled cells in ELa of both lineages 
were adendritic and their somas had similar diameters (Non-outlier ranges of stained cell diameters in µm: B. 
brachyistius = 3.92–6.77, n = 130; B. niger = 4.4–8.01, n = 561; G. peterii = 4.09–6.18, n = 532; P. microphthal-
mus subject 1 = 4.07–5.68, n = 41; P. microphthalmus subject 2 = 3.23–7.32, n = 1303; P. microphthalmus subject 

Figure 2.  Neurons from the hindbrain nELL project bilaterally to the midbrain in all three lineages. 
Iontophoretic injections of neuronal tract tracers in the left ELa of a clade-A species (B. niger, left) and P. 
microphthalmus (center), and in the anterior end of the left EL in P. tenuicuda (right) labeled axonal projections 
through the lateral lemniscus (a) and backfilled somas in the left and right hindbrain nELL (b). The majority of 
backfilled neurons were in the right nELL in the three lineages (Clade A: B. brachyistius n = 61stained cells total, 
60% contralateral; B. niger subject 1: n = 494, 67% contralateral; B. niger subject 2: n = 559, 69% contralateral; 
B. niger subject 3: n = 308, 64% contralateral; G. petersii: n = 204, 67% contralateral. P. microphthalmus subject 
1: n = 156 stained cells total, 59% contralateral; P. microphthalmus subject 2: n = 481, 68% contralateral. 
P. tenuicauda subject 1: n = 10 stained cells total, 70% contralateral; P. tenuicauda subject 2: n = 523, 71% 
contralateral; P. tenuicauda subject 3: n = 21, 75% contralateral). (c) Stained axonal projections in the right 
ELa and anterior end of the right EL show that some projections from the hindbrain are bilateral. Insets in (b) 
show close-ups of stained somas of nELL neurons contralateral to the injection site. All photomicrographs are 
from 50-µm horizontal sections of the brain. Scale bars in the insets in (b) represent 20 µm; all other scale bars 
represent 200 µm. Arrowheads point to labeled axonal projections in the contralateral EL of P. tenuicauda. All 
photomicrographs were taken from the same subject in each lineage. The injection sites are not visible in these 
sections. With respect to the photomicrographs in (a), injection sites were: 250 µm dorsal and towards the 
lateral edge of ELa in clade A; 400 µm dorsal and towards the anterior edge of ELa in P. microphthalmus; 250 µm 
dorsal and towards the anterolateral edge of EL in P. tenuicauda. A: anterior. M: medial.
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3 = 3.84–6.22, n = 145). These cells were smaller than GABAergic cells in ELa and ELp (Fig. 4c) and similar in size 
to the small cells previously described in clade-A species28, 29, 34, 37.

In P. tenuicauda, iontophoretic injections of neuronal tract tracers into the anterior end of EL labeled axonal 
projections into the posterior end of EL (Fig. 2a). Neuronal tract tracers injected into the posterior end of EL 
revealed multipolar cells throughout EL and adendritic cells toward the anterior end of EL and in the lateral lem-
niscus (Fig. 4b). The sizes of labeled adendritic cells in P. tenuicauda (Non-outlier ranges of stained cell diameters 
in µm: subject 1 = 3.76–6.35, n = 63; subject 2 = 3.43–7.77, n = 156; subject 3 = 4.10–10.05, n = 204) were similar 
to those found in ELa of clade-A species and P. microphthalmus and tended to be smaller than the GABAergic 
cells (Fig. 4c).

Figure 3.  Sensory input to the midbrain is biased towards stimulation of electroreceptors on the contralateral 
side of the body in all three lineages. (a) Representative mean evoked potentials (n = 10 traces) from the left 
ELa (red traces) of a clade A species (G. petersii, left) and P. microphthalmus (center), and from the left EL 
(purple traces) of P. tenuicauda (right) in response to long square pulses delivered with normal polarity (top 
row, stimulus depicted by full lines) and reversed polarity (bottom row, stimulus depicted by dashed lines). 
In our experimental set-up (see Methods), the leading edge of a square pulse with normal polarity stimulates 
knollenorgans on the left side of the body, while the trailing edge stimulates knollenorgans on the right side 
of the body. The opposite is true for square pulses delivered with reversed polarity. Both traces come from the 
same subject for each lineage. (b) We measured the peak-to-peak amplitude of the evoked potential in response 
to each edge of the stimulus and normalized them to the maximum value for each fish tested and each stimulus 
polarity (normal: solid lines, reversed: dashed lines); for clade A and P. microphthalmus, we normalized 
responses separately for ELa (red symbols) and ELp (blue symbols). The amplitude of the evoked potentials 
depended on side of stimulation (Clade A: B. brachyistius: n = 2, F1,7 = 1377.6, p < 0.0001; B. niger: n = 2, 
F1, 7 = 304.1, p < 0.0001; G. petersii: n = 3, F1,14 = 2716.8, p < 0.0001; P. microphthalmus: n = 3, F1,14 = 322.7, 
p < 0.0001; P. tenuicauda: n = 7 fish, 10 recordings; F1,30 = 1390.3, p < 0.0001), but not on order of stimulation 
(Clade A: B. brachyistius: n = 2, F1,7 = 0.071, p = 0.80; B. niger: n = 2, F1, 7 = 0.002, p = 0.97; G. petersii: n = 3, 
F1,14 = 0.002, p = 0.96; P. microphthalmus: n = 3, F1,14 = 0.02, p = 0.88; P. tenuicauda: n = 7 fish, 10 recordings; 
F1,30 = 0.45, p = 0.51). Each symbol in (b) represents the mean normalized amplitude and the error bars 
represent the SEM. Clade A species tested include B. brachyistius (squares), B. niger (triangles), and G. petersii 
(circles).
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Figure 4.  The three same basic types of neurons are found in ELa/ELp of clade-A species and P. 
microphthalmus, and in EL of P. tenuicauda. (a) GABA immunohistochemistry revealed inhibitory neurons 
in ELa and ELp of clade-A species (left) and P. microphthalmus (center), and throughout EL and the lateral 
lemniscus of P. tenuicauda (right). The images on the bottom show enlarged views taken from the boxes and 
show stained somas (open arrowheads) and terminals onto unstained cell bodies (filled arrowheads). (b) 
Iontophoretic injections in ELp of clade-A species and P. microphthalmus, and in the posterior end of EL of P. 
tenuicauda reveal multipolar cells in ELp and the posterior end of EL, and backfilled adendritic small cells in 
ELa and the anterior end of EL. Images on the bottom are enlarged views taken from the boxes and show stained 
somas of backfilled small cells (left), and multipolar cells (right). All photomicrographs in (a) and (b) are from 
50-µm horizontal sections through the midbrain. (c) Cell diameters of GABAergic cells (filled boxes) and 
backfilled cells (open boxes) after injections of neuronal tract tracers in ELp and the posterior end of EL. Cell 
diameters in (c) were measured in ELa (red) and ELp (blue) of clade-A species and P. microphthalmus, and in 
EL (purple) of P. tenuicauda. Data of GABAergic cells were obtained from one B. brachyistius (Bb), one B. niger 
(Bn), and one P. adspersus (Pa) for clade A, from three individuals of P. microphthalmus (Pm1-3),  
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Sensitivity to inter-pulse intervals (IPIs) arises in ELp and towards the posterior end of EL.  In 
clade-A species, the first stage of IPI analysis takes place in ELp30. We asked whether IPI sensitivity also arises in 
ELp of P. microphthalmus and EL of P. tenuicauda. In response to electrosensory stimulation with pulse trains 
having IPIs between 10 ms and 100 ms, the amplitude of in vivo evoked potentials attenuated at short IPIs in ELp, 
but not ELa of clade-A species (repeated measures ANOVA: three species with p < 0.001, one with p = 0.06) and 
P. microphthalmus (repeated measures ANOVA: n = 6, F9,95 = 10.80, p < 0.0001) (Fig. 5a,b). These results are 
consistent with IPI sensitivity arising in ELp30.

In EL of P. tenuicauda, the waveform and latency of in vivo evoked potentials vary depending on the location 
of the recording electrode: evoked potentials are broader and have longer latencies towards the posterior end 
of EL21. The shape and latency of evoked potentials obtained towards the anterior end resemble those of ELa in 
clade-A species and P. micropthalmus, while evoked potentials obtained towards the posterior end resemble those 
of ELp21. To avoid any bias in our analyses, here we used the latency of the evoked potential as a proxy for the 
location of the recording electrode along an anterior-posterior axis of EL. In response to pulse trains with short 
IPIs, evoked potentials obtained towards the posterior end of EL attenuated whereas those obtained towards the 
anterior end showed little to no attenuation (repeated measures ANOVA: n = 8 fish, 11 recordings; F9,83 = 4.38, 
p = 0.0001; Fig. 5a,b).

We also obtained in vitro whole-cell intracellular recordings from ELp neurons in one clade-A species (B. 
niger) and from EL neurons in P. tenuicauda. We measured interval tuning in response to electrical microstim-
ulation of the lateral lemniscus with pulse trains having IPIs from 10 to 100 ms. Out of seven neurons recorded 
in B. niger, five were characterized as high-pass, with strongest responses to short inter-pulse intervals, one as 
band-pass, and one as complex (Fig. 5c,d). In P. tenuicauda, six out of eight neurons were high-pass, one low-pass, 
and one band-pass (Fig. 5c,g). IPI-sensitive neurons of both species were morphologically similar, with extensive 
dendritic arbors (Fig. 5e,f,h,i).

Hindbrain axonal projections to ELa follow a long and convoluted path, but hindbrain axonal 
projections to EL do not.  Long and convoluted axonal projections of hindbrain axons within ELa establish 
delay lines that are critical for the mechanism by which small cells analyze EOD waveform in clade-A species28, 29.  
Here, we asked whether the axonal projections from hindbrain follow a long and convoluted path in all three 
lineages. We examined contralateral labeled axons after injections of neuronal tract tracers in the left ELa of 
clade-A species and P. microphthalmus, and in the anterior end of the left EL of P. tenuicauda (Figs 2 and 6). We 
tract-traced one axon per clade and found that the axons in clade A and P. microphthalmus have more branches, 
are longer, and follow a more convoluted path than the axon traced in P. tenuicauda (Fig. 6a,b; B. brachyistius: 1 
axon with 3 branches of 1.11 mm, 0.77 mm, and 1.07 mm; P. microphthalmus: 1 axon with 3 branches of 0.99 mm, 
1.01 mm, and 1.10 mm, P. tenuicauda: 1 axon without branches of 0.49 mm).

To investigate differences in axonal projections across lineages, we obtained three measurements from labeled 
axonal segments. We calculated a straightness index as the ratio of the Euclidian distance between the endpoints 
of the segment to the total length of the segment38. To compare how convoluted the axonal segments were across 
lineages, we subtracted this index from 1. A value of zero corresponds to a straight segment while values closer 
to one correspond to highly convoluted segments. We also calculated the angle between the line connecting the 
endpoints of the segment and the anterior-posterior axis of the brain (0° anterior, 180° posterior). We predicted 
that if axonal projections are targeted, then the angles of the axonal segments should be clustered around one 
general direction. Conversely, if axonal projections are convoluted, then the angles should be widely distributed. 
We also estimated a branching index as the number of nodes in which an axonal segment bifurcates, divided by 
the total number of axonal segments. The branching index is a relative measure in which a value of zero describes 
no axonal branching whereas values close to one correspond to high levels of branching.

We found differences across lineages in the straightness of the axonal projections (ANOVA: F2,1089 = 5.97, 
p = 0.0026; Fig. 6c–e), with straighter axonal segments in EL of P. tenuicauda (median value of 1-(straightness 
index) = 0.048) and more convoluted axonal segments in ELa of P. microphthalmus (0.075) and clade-A species 
(0.094) (Fisher’s LSD t-test pairwise comparisons: all p < 0.03). The angles of axonal segments also varied across 
lineages (Mardia-Watson-Wheeler: W = 26.32, p < 0.0001) and were restricted to a narrower range in EL of P. 
tenuicauda (Fig. 6c–e). Furthermore, axonal projections from the hindbrain show less branching in EL of P. ten-
uicauda than in ELa of clade-A species and P. microphthalmus (Axon branching indices: B. brachyistius = 0.034; 
B. niger = 0.051; P. microphthalmus subject 1 = 0.032; P. microphthalmus subject 2 = 0.07; P. tenuicauda subject 

and from three individuals of P. tenuicauda (Pt1-3). Data of backfilled cells that project to multipolar cells 
were obtained from one B. brachyistius (Bb), one B. niger (Bn), and one G. petersii (Gp) for clade A, from three 
individuals of P. microphthalmus (Pm1-3), and from three individuals of P. tenuicauda (Pt1-3). In (a) and 
(b), scale bars in top photomicrographs represent 200 µm and scale bars in the enlarged photomicrographs 
represent 20 µm. Clade-A species represented are B. brachyistius (left) and B. niger (right) in (a) and B. 
brachyistius in (b). Photomicrographs in (a) come from one B. brachyistius (left) and one B. niger (right) for 
clade A, one P. microphthalmus, and two P. tenuicauda. Photomicrographs in (b) come from one B. niger, one P. 
microphthalmus, and two subjects of P. tenuicauda. The injection sites are not visible in these sections. Injection 
sites in (b) were: towards the middle of ELp and 350 µm ventral with respect to the top photomicrograph from 
clade A; towards the lateral and posterior edge of ELp and 350 µm ventral relative to the photomicrograph of 
P. microphthalmus; towards the medial and posterior edge of EL and 150 µm ventral with respect to the top 
photomicrograph of P. tenuicauda; and towards the lateral and posterior edge of EL and 150 µm ventral relative 
to the bottom photomicrograph of P. tenuicauda. A: anterior. M: medial.
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Figure 5.  Inter-pulse interval processing arises in ELp of clade-A species and P. microphthalmus, and in the 
posterior end of EL in P. tenuicauda. (a) Representative mean evoked potentials (n = 10 traces) from ELa (red) 
and ELp (blue) of clade A (left) and P. microphthalmus (center), and towards the anterior (top) and posterior 
(bottom) ends of EL in P. tenuicauda (right), obtained in vivo in response to electrosensory pulse trains with inter-
pulse intervals of 10ms. Arrowheads denote stimulus artefacts. (b) We averaged the peak-to-peak amplitude of 
the evoked potential in response to the second through tenth pulses of the stimulus and normalized it to the peak-
to-peak amplitude of the evoked potential in response to the first pulse of the stimulus (see Methods). For clade 
A (left) and P. microphthalmus (center), we normalized responses separately for ELa (red symbols) and ELp (blue 
symbols) and figure symbols represent the mean normalized amplitude and the error bars represent the SEM. The 
amplitude of evoked potentials attenuates at short IPIs in ELp, but not ELa, of clade-A species (B. brachyistius: 
squares, n = 6, F9,95 = 4.29, p < 0.001; B. niger: triangles, n = 4, F9,57 = 11.29, p < 0.0001; P. adspersus: circles, 
n = 3, F9,38 = 11.93, p < 0.0001; G. petersii: inverted triangles, n = 3, F9,38 = 2.00, p = 0.06) and P. microphthalmus 
(n = 6, F9,95 = 10.80, p < 0.0001). In EL of P. tenuicauda, evoked potentials attenuate towards the posterior end 
of EL, but not towards the anterior end. For P. tenuicauda, the color code represents the latency (in ms) to the 
first negative peak of the evoked potential in response to a 0.5-ms bipolar square pulse, from the shortest latency 
in red to the longest in blue. These latencies span those previously reported in ELa and ELp of clade-A species 
(ELa: 3.7 ms, ELp: 8.2 ms) and P. microphthalmus (ELa: 2.8 ms, ELp: 7.4 ms)21. (c) Representative response traces 
of neurons sensitive to inter-pulse intervals in ELp of B. niger (left) and the posterior end of EL in P. tenuicauda 
(right). In vitro whole-cell recordings were obtained in response to electrical stimulation of the lateral lemniscus. 
Traces depict responses to pulse trains with IPIs of 10ms, 70 ms, and 100 ms. Based on the tuning curves (d,g, 
see Methods), neurons were classified as high-pass (dark blue), band-pass (light blue), and low-pass (purple). 
Neurons sensitive to IPIs in B. niger (e,f) and P. tenuicauda (h,i) are morphologically similar and highly dendritic, 
as evidenced by confocal fluorescence imaging (see Methods). Scale bars in photomicrographs represent 50 µm.
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Figure 6.  Axonal projections from hindbrain cells are long and follow a convoluted path after entering ELa, 
but not EL. (a) Representative photomicrographs of 50-µm horizontal sections of the brain at the level of 
ELa of a clade-A species (B. brachyistius, left) and of P. microphthalmus (center), and at the level of EL in P. 
tenuicada (right), depicting stained contralateral axonal projections (arrowheads). (b) Reconstruction of 
individual axons by tract tracing from 50-µm horizontal sections of the brain at the level of ELa of a clade-A 
species (left, B. brachyistius, 7 sections) and of P. microphthalmus (center, 4 sections), and at the level of EL of P. 
tenuicauda (right, 5 sections). Arrowheads in (b) indicate the stained axonal segments depicted in (a) and the 
red segments of the reconstructed axons in (b) were obtained from the corresponding section in (a), whereas 
the black segments were stained axonal segments from adjacent sections. (c) Representative photomicrographs 
and tracings of the axonal segments from one 50-µm horizontal section of the right ELa of a clade-A species 
(B. niger, left) and P. microphthalmus (center), and of the right EL of P. tenuicauda (right) used for calculating 
the angle of axonal projections and how much the axonal segments deviate from a straight line (calculated as 1- 
straightness index; see main text and Methods). Tracings in (c) are shifted to facilitate view of the traces and the 
associated labeled axonal segments. (d) Plots of axonal segments combined from all the photomicrographs in 
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1 = 0.029; P. tenuicauda subject 2 = 0.0). Within lineages, these patterns were consistent regardless of whether 
axonal labeling was sparse or dense (Fig. 6). Together, these results suggest that incoming axonal projections 
follow a relatively long and convoluted path in ELa of clade-A species and P. microphthalmus, but not in EL of P. 
tenuicauda.

To directly test this hypothesis, we investigated whether hindbrain axonal projections to ELa, but not EL, 
establish functional delay lines. We obtained in vitro intracellular whole-cell recordings from multipolar cells, 
and measured responses to electrical microstimulation of the lateral lemniscus in one species with ELa/ELp (B. 
niger) and one species with undifferentiated EL (P. tenuicauda). If inputs to small cells follow delay lines in ELa 
but not EL, then this would result in a wider range of latencies and an overall greater delay in the synaptic inputs 
to multipolar cells in ELp (Fig. 7a).

Patterns of excitatory post-synaptic potentials (EPSPs) varied between species (Fig. 7b). In P. tenuicauda, 
EPSPs of multipolar cells were characterized by one or very few depolarization onsets shortly after the stimulus. 
In clade-A species, however, EPSPs were characterized by multiple onsets at longer and more variable latencies. 
Similarly, EPSPs reached the maximum amplitude at longer and more variable latencies in the clade-A species. To 
quantify these apparent differences, we ran a principal component analysis on six measurements from the EPSPs: 
the median and the standard deviation in the number of depolarization onsets, the median and the standard 
deviation in the latency of the onsets, and the median and the standard deviation in the latency to the maxi-
mum amplitude. Species differed in the first principal component (PC1; ANOVA: F1,13 = 26.31, p < 0.001; Fig. 7c), 
which loaded (>0.4) on the median and standard deviation in the number of onsets, the median latency of the 
onsets, and the standard deviation in the latency to the maximum amplitude of the EPSP. Thus, multipolar cells in 
ELp appear to receive several excitatory inputs at variable and longer latencies, while multipolar cells in EL receive 
only a few inputs at short latencies. The latencies of excitatory inputs to ELp multipolar cells are consistent with 
small-cell first-spike latencies in ELa in response to electrosensory stimulation, which are longer and more vari-
able than first-spike latencies of ELa large cells and nELL cells29, 34. Together, these results support the hypothesis 
that axonal projections act as delay lines in ELa, but not in EL.

Discussion
We show that the neural circuits devoted to processing communication signals in EL and in ELa/ELp of clade-A 
species and P. microphthalmus share the same substrates (Fig. 8). Hindbrain cells project ipsi-, contra-, and 
bi-laterally to the midbrain through the lateral lemniscus with a contralateral bias. Large, GABAergic inhibitory 
cells synapse onto adendritic small cells with large, calyx-like terminals. These small cells project to IPI-sensitive 
multipolar cells. The main anatomical difference between EL and ELa/ELp circuitry appears to be that axonal 
projections from the hindbrain follow a long and convoluted path after they enter ELa, but not EL (Fig. 8). 
Electrophysiology suggests that this anatomical difference establishes functional differences in the timing of syn-
aptic input (Fig. 7). We discuss our results in relation to this anatomical difference in the neural circuit and its 
functional significance for sensory processing of communication signals.

The evolution of ELa/ELp, and the concomitant ability to detect EOD waveform variation, may be partly due 
to the lengthening of incoming axons from the hindbrain. Long and winding axonal projections from the hind-
brain are essential for the temporally precise comparisons of peripheral spike times that allow for EOD waveform 
analysis in clade-A species28, 29. These convoluted axonal projections establish variation in the relative timing of 
excitatory and inhibitory input across the population of small cells and underlie the delay-line anti-coincidence 
detection mechanism by which submillisecond time differences in EOD waveform are processed28, 29. Our results 
suggest that long and convoluted axonal projections from the hindbrain to ELa are also present in the P. microph-
thalmus lineage, thus conferring a similar ability to detect subtle variation in EOD waveform.

Delay lines established by long axonal projections lead to a greater range of timing comparisons being pro-
cessed in ELa, and this likely requires more cells in the circuit. We show that EL and ELa/ELp of clade-A species 

which labeled axonal segments were found, from the most dorsal section (magenta) to the most ventral section 
(cyan), in ELa of one clade-A species (B. niger, left) and P. microphthalmus (center), and in EL of P. tenuicauda 
(right). In (d), the axonal segments corresponding to the photomicrograph in (c) are plotted with a thicker 
line and the tick marks by the color scale represent the number of sections used to create the composite plot. 
(e) Box plots indicating how much axonal segments deviate from straight lines and circular plots of the angles 
of axonal segments in ELa (red) of two clade-A species (left) and two subjects of P. microphthalmus (center), 
and in EL (purple) of two subjects of P. tenuicauda (right). Box plots depict values of 1-straightness index; a 
value of zero represents a straight segment while values close to one represent highly convoluted segments. 
These same values are illustrated in the lengths of the lines in the circular plots, which are all centered on the 
origin at angles relative to the anterior-posterior axis. The two circular plots on top of the box plots for P. 
tenuicauda are close-up versions of the ones in the bottom of the figure. To generate the composite images in 
(d), photomicrographs with axonal segments were aligned by setting one reference line on an anterior-posterior 
axis of the brain through the medial division of the telencephalon, the optic tectum, the corpus cerebelli, and 
the eminentia granularis. A second reference line was set ortogonal to the anterior-posterior axis and placed 
anterior to the thickest part of the optic tectum. The photomicrograph in (c) and the composite plot of axonal 
segments in (d) for P. microphthalmus are from a subject in which a random sample of axonal segments were 
analyzed (see Methods). In (e), data for clade-A species come from one B. brachyistius (left, n = 118 axonal 
segments) and one B. niger (right, n = 236); sample sizes for P. microphthalmus are 310 (left) and 352 (right), 
and for P. tenuicauda are 68 (left) and 8 (right). Scale bars in all photomicrographs and tracings represent 
100 µm. A: anterior. M: medial. D: dorsal. V: ventral. P: posterior.
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Figure 7.  Multipolar cells in ELp receive excitatory inputs at more variable and longer latencies than multipolar 
cells in EL. (a) Schematic of the experiment designed to test whether incoming hindbrain axons act as delay 
lines in ELa, but not in EL. Extracellular stimulation of axons projecting from the hindbrain to the midbrain 
through the lateral lemniscus result in excitatory inputs to large inhibitory cells and to small cells. Small cells 
project to multipolar cells. The cartoon on the left depicts a simple excitatory-inhibitory circuit in which output 
from small cells to multipolar cells come shortly after stimulation of the lateral lemniscus. On the right, the 
circuit includes delay lines in the projections onto small cells. Because delay lines cause inputs to small cells 
to be delayed by different amounts, outputs from small cells to multipolar cells will be delayed by different 
amounts. Therefore, excitatory postsynaptic potentials (EPSPs) of multipolar cells should reveal several 
excitatory inputs at more variable latencies in circuits with delay lines. (b) Three traces of representative EPSPs 
recorded from one multipolar cell in EL of P. tenuicauda (left) and one multipolar cell in ELp of a clade-A 
species (B. niger, right). The EPSPs of the clade-A species do indeed reveal several excitatory inputs with a 
greater range of latencies than the EPSPs of P. tenuicauda. (c) The six variables used to describe the EPSP curves 
(see main text and Methods) can be summarized by two principal components. The first principal component 
(PC1) has an eigenvalue of 4.3, explains 72% of the variation, and loads heavily (>0.4) on the median and 
standard deviation in the number of onsets, the median latency of the onsets, and the standard deviation in the 
latency to the maximum amplitude of the EPSP. The second principal component (PC2) has an eigenvalue of 
0.85, explains an additional 14% of the variation, and loads heavily (>0.45) on the median latency to reach the 
maximum amplitude of the EPSP and the standard deviation in the latencies of the onsets. Scores of the first 
principal component (PC1) were higher in B. niger, the clade-A species (black, n = 7), than in P. tenuicauda 
(red, n = 8). The current pulses used to obtain the traces in (b) were delivered at an amplitude of 160 µA for P. 
tenuicada and 120 µA for clade A (see Methods).
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and P. microphthalmus contain the same three basic types of neurons: small cells, large inhibitory cells, and 
multipolar cells. Because ELa/ELp is more than twice the size of EL12, and the three cell types have similar sizes 
in all three lineages (Fig. 4), the enlarged ELa/ELp likely relates to greater numbers of these cells. We propose 
that the evolution of ELa/ELp and the ability to detect EOD waveform variation is associated with an elonga-
tion of axons to form delay lines and an increase in the number of cells needed to process the resulting timing 
information.

Differences between the microcircuitry in ELa and the anterior end of EL likely reflect differences in the type 
of sensory information processed in these brain regions. The perceptual ability to detect differences in EOD 
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Figure 8.  Schematic of the knollenorgan electrosensory pathway of species with small and undifferentiated EL 
and species with enlarged and subdivided ELa/ELp. (a) Photograph of the brain of P. tenuicauda (a) and B. niger 
(c) with the valvula cerebellum removed to expose the hindbrain and midbrain. Neurons in the electrosensory 
lateral line lobe (nELL) in the hindbrain project bilaterally to the exterolateral nucleus of the midbrain (EL). In 
clade-A species and P. microphthalmus, EL is enlarged and subdivided into anterior (ELa) and posterior regions 
(ELp). Enlarged photograph of EL (b) and ELa/ELp (d) with a schematic of the neural circuits. In species with 
a small and undifferentiated EL (b), axons of nELL cells synapse onto two types of cells in the lateral lemniscus 
and the anterior end of EL: GABAergic cells (large cells) and adendritic small cells. Large cells project onto 
small cells, establishing an excitatory-inhibitory circuit by which small cells in EL likely perform signal location 
analysis based on a subtraction mechanism. Small cells project to multipolar cells in the posterior end of EL that 
perform inter-pulse interval analysis. In species with ELa/ELp (d) nELL axons synapse onto GABAergic cells 
(large cells) upon entering ELa and then follow a long and convoluted path, synapsing on several adendritic 
small cells throughout their length. Inhibitory large cells project onto small cells, establishing a delay-line anti-
coincidence detection mechanism by which small cells in ELa perform EOD waveform analysis. Small cells in 
ELa project to multipolar cells in ELp that perform inter-pulse interval analysis. Scale bars = 1 mm.
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waveform depends on the capacity of the electrosensory system to process submillisecond time differences 
between different edges of the EODs. Knollenorgans on one side of the body respond to rising edges of an EOD, 
while knollenorgans on the opposite side of the body respond to falling edges14, 16, 33. This causes small cells in ELa 
to receive inhibition from large cells elicited by one edge of the EOD and delayed excitation by another edge of 
the EOD22, 28, 29. Variation in the length of excitatory axonal projections onto small cells establishes variation in 
selectivity to the duration between EOD edges, thereby recoding a temporal code into a population code.

In contrast, homogeneity in excitatory axonal projections in EL would establish homogeneity in small-cell 
temporal selectivity. This suggests that small cells in the EL circuit cannot perform EOD waveform analysis. 
Indeed, unlike the spiking receptors of species with an ELa/ELp, the oscillatory receptors of species with an EL do 
not encode EOD waveform into small timing differences14. Instead, small cells in EL may process excitation and 
inhibition to perform signal localization. The oscillating knollenorgans in these species respond to electrosen-
sory stimuli by resetting their phase14. The phase resets of knollenorgans on opposite sides of the body are 180° 
out of phase with each other14. Thus, receptors on one side of the body reset to a peak first, and receptors on the 
opposite side reset to a trough first. This difference in reset phase encodes information about stimulus location. 
Further, if receptors on one side of the body trigger excitation and receptors on the opposite side of the body 
trigger inhibition, small cells in EL could determine signal location through a subtraction mechanism. In one 
hemisphere of the brain, stimuli coming from one direction would elicit maximal excitation from one side of the 
body and minimal inhibition from the opposite side of the body. Stimuli coming from the other side would elicit 
maximal inhibition and minimal excitation. Responses in the other brain hemisphere would presumably mirror 
this pattern. Thus, the ancestral excitatory-inhibitory circuit in EL may have originally evolved to serve signal 
localization, and the addition of axonal delay lines in clade A and P. microphthalmus appears to be an elaboration 
on this basic motif that established the novel ability to analyze signal waveform.

Considering our current understanding about the evolution of this group of fishes12, we show here that (i) 
the ancestral neural circuit devoted to processing communication signals contains all the building blocks nec-
essary to detect signal variation, and (ii) similar changes in this neural circuit occurred in parallel in two line-
ages able to detect signal waveform variation. Thus, our results show that a relatively small change to a simple 
excitatory-inhibitory circuit (axonal elongation) can establish temporally precise computations that underlie the 
evolution of a novel sensory perceptual ability. To the best of our knowledge, this is the first study to elucidate the 
underlying physiological and anatomical substrates for evolutionary change in sensory perception at cellular and 
circuit levels.

Methods
Animals.  Our protocols for housing, handling, and testing animals adhered to the guidelines established by 
the National Institutes of Health and were approved by the Institutional Animal Care and Use Committee at 
Washington University in St. Louis. For details about animal housing and handling, readers are referred to Baker 
et al.14.

In vivo electrophysiology: evoked field potentials.  Our protocols to obtain in vivo evoked field poten-
tials have been previously described and readers are referred to those studies for details not included here21, 30, 39.  
Briefly, we first anesthetized the fish with 300 mg/ml of tricaine methanesulfonate (MS-222, Sigma-Aldrich, 
St. Louis, MO) and paralyzed it with 100–150 µl of a 3 mg/ml solution of gallamine triethiodide (Flaxedil, 
Sigma-Aldrich, St. Louis, MO). Then, we transferred the fish to a recording chamber (20 × 12.5 × 45 cm) filled 
with fresh water, leaving a small region of the left side of the head above the water level. During surgery, we 
maintained general anesthesia by respirating the fish with an aerated solution of 100 mg/ml MS-222 through a 
pipette tip in the mouth. We then applied 0.4% Lidocaine as a local anesthetic on the surgery site and removed the 
skin, secured a post to the skull, and removed part of the skull to expose ELa and ELp in clade-A species and P. 
microphthalmus. Because the smaller EL of P. tenuicauda is not exposed as in the other species, we exposed it by 
separating the medial edge of the optic tectum and lateral edge of the valvula cerebelli with two retractors made 
of borosilicate capillary glass. We brought the fish out of general anesthesia after surgery by switching to aerated 
freshwater respiration. While flaxedil silences the EOD, the EOD command from spinal electromotor neurons 
can be recorded. We monitored the fish’s electromotor output with a pair of electrodes next to the fish’s tail and the 
EOD commands from spinal electromotor neurons were amplified 1000 × (A-M systems, Model 1700) and sent 
to a window discriminator for time-stamping (SYS-121, World Precision Instruments).

After the fish had recovered from anesthesia, we recorded evoked field potentials with electrodes made of 
borosilicate capillary glass (o.d. = 1.0 mm, i.d. = 0.5 mm; A-M Systems, Model 626000). Electrodes were pulled 
on a Flaming/Brown micropipette puller (Sutter Instruments Company, Model P-97), broken to a tip diameter 
of 10–15 µm, and filled with 3 M NaCl. Evoked potentials were amplified 1000× and band-pass filtered between 
0.01 and 5 kHz (A-M systems, Model 1700), digitized at a rate of 97.6 kHz (Tucker Davis, Model RX 8), and saved 
using custom software in Matlab (Mathworks, MA, USA). For each type of stimulus, we recorded responses to 10 
repetitions. The midbrain EL in P. tenuicauda and ELa/ELp in clade-A species and P. microphthalmus are brain 
regions devoted to processing communication signals from other individuals; when an EOD command is gen-
erated, an inhibitory corollary discharge blocks electrosensory responses to the fish’s own EOD in the hindbrain 
nELL18–21, 34. Therefore, we ignored and repeated all repetitions in which a fish produced an EOD command two 
to five milliseconds before the stimulus.

Transverse electrosensory stimuli were delivered through three vertical electrodes on each side of the record-
ing chamber. We generated digital stimuli in Matlab (Mathworks, MA, USA), converted to analog and delivered 
with a Model RX8 signal processor (Tucker-Davis), attenuated with a PA5 attenuator (Tucker-Davis), and isolated 
from ground with a stimulus isolation unit (A-M Systems, Model 2200).
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To investigate whether the contralateral bias in hindbrain projections to the midbrain result in more sensory 
information reaching the midbrain from the contralateral side of the fish’s body, we measured evoked potentials 
in response to long square pulses for which the responses to each edge of the pulse can be separated. Square pulses 
had a duration of 50ms and were delivered with an amplitude of 34.6 mV/cm. The anodal stimulus electrodes 
were set to either the left side or the right side of the fish’s body for stimuli with normal and reversed polarity, 
respectively. When the anodal electrodes were set to the left, knollenorgans on the left side of the fish’s body (ipsi-
lateral to recording electrode in the midbrain) were stimulated with the leading edge of the square pulse, while 
knollenorgans on the right side (contralateral) were stimulated with the trailing edge. When the anodal electrodes 
were set to the right, the right side of the body (contralateral) was stimulated with the leading edge of the square 
pulse and the left side of the body (ipsilateral) with the trailing edge. We measured the peak-to-peak amplitude 
of the mean evoked potential in response to each edge of the square pulse and normalized them to the maximum 
value. In clade-A species and P. microphthalmus, mean evoked potentials were normalized separately for ELa and 
ELp. We used repeated-measures ANOVA in R40 to investigate the effect of the side of the body stimulated with 
respect to the recording electrode (contralateral vs. ipsilateral) and the effect of order of stimulation (leading vs. 
trailing edge of the square pulse).

To examine inter-pulse interval (IPI) processing in the central electrosensory system, we asked whether 
evoked field potentials attenuated in response to pulse trains in ELa and ELp of clade-A species and P. microph-
thalmus and in EL of P. tenuicauda. We obtained evoked potentials in response to trains of 10 bipolar square 
pulses with inter-pulse intervals of either 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 ms. These values are within the 
range of natural variation in IPIs during social interactions32. Bipolar square pulses were 0.5-ms long, had an 
amplitude of 73.6 mV/cm, and were delivered with normal polarity (peak preceding trough) after setting the 
anodal stimulating electrodes to the left of the fish’s body. From the mean evoked potential obtained for each 
pulse train, we measured the peak-to-peak amplitude in response to each of the 10 pulses. For each pulse train, we 
measured attenuation relative to the evoked potential response to the first pulse in the pulse train. Thus, we meas-
ured the average peak-to-peak amplitude of the second to tenth pulse and then normalized it to the peak-to-peak 
amplitude of the evoked potential in response to the first pulse of the pulse train. In clade-A species and in P. 
microphthalmus, we used repeated-measures ANOVA to investigate the effects of inter-pulse interval and nucleus 
(ELa vs. ELp) on the normalized evoked potentials. In P. tenuicauda, we analyzed the effect of inter-pulse interval 
on the normalized amplitude of the evoked potentials and we added the latency to the evoked potential response 
to single stimulus pulses as a covariate in the model as a proxy of where in the anterior-posterior axis of EL the 
recordings were obtained.

In vitro electrophysiology: whole-cell recordings.  We used an in vitro whole-brain preparation 
recently developed in our lab, and readers are referred to those studies for additional details36, 41. Briefly, fish 
were anesthetized in 300 mg/L of MS-222 and then transferred to a container with ice-cold, oxygenated artificial 
cerebrospinal fluid (ACSF; composition in mM: 124 NaCl, 2.0 KCl, 1.25 KH2PO4, 24 NaHCO3, 2.6 CaCl2, 1.6 
MgSO4 × 7H2O, and 20 glucose, pH = 7.45; osmolarity = 310 mOsm) that contained 1 mM kynurenic acid (KA) 
to reduce potential excitotoxicity. We performed a craniotomy and removed the valvula cerebelli by suction. 
We then removed the rest of the brain from the skull and allowed it to equilibrate in oxygenated ACSF con-
taining 0.5 mM KA at room temperature for one hour. The brain was then transferred to a recording chamber 
(Model RC-26GPL,Warner Instruments, Hamden, CT, USA) and secured by two slice anchors (Model SHD-
26GH,Warner Instruments) placed below (ventral) and above (dorsal) the brain. We then placed the chamber on 
a recording platform (Burleigh Gibraltar; EXFO, Mississauga, ON, Canada) where the brain was continuously 
perfused at room temperature with oxygenated ASCF at a rate of approximately 1 ml/min. The brain was perfused 
for one hour before starting recordings, to allow the KA to wash out.

We used a matrix array of stimulus electrodes to stimulate afferent excitatory inputs to EL of P. tenuicauda and 
ELa of one clade-A species. The matrix electrode array (Model MX42ABW, FHC, Bowdin, ME, USA) consisted of 
four channels of bipolar stimulation (eight electrodes total), and was placed in the lateral lemniscus located just 
medial and posterior to EL of P. tenuicauda and ELa of one clade-A species. We stimulated the lateral lemniscus 
with single pulses and with pulse trains of 10 pulses delivered with inter-pulse intervals between 10 and 100 ms, 
in 10 ms steps. Stimuli were bipolar square current pulses of 100 µs in duration and delivered at an amplitude of 
50–200 µA using four separate isolated pulse generators (Model 2100; A-M systems, Sequim, WA, USA). To pre-
vent overstimulation, we found the minimum number of stimulus channels and lowest stimulus amplitude that 
elicited strong and reliable responses for each recording. These stimulus settings were then used for all subsequent 
recordings.

We used transmitted light microscopy in an upright microscope (Model: BX51WI, Olympus, Tokyo, Japan) 
coupled to an EMCCD camera (Model: iXon Ultra 897, Andor, Belfast, Northern Ireland) to visualize neurons 
in ELp of clade-A species (B. niger: n = 2 fish, 7 neurons) and EL of P. tenuicauda (n = 3 fish, 8 neurons). We 
used filamented, borosilicate patch pipettes (o.d. = 1.00 mm, i.d. = 0.58 mm; A-M Systems, Model 601000) with 
tip resistances of 4–8 MΩ. The internal solution in the electrode consisted of (in mM) 130 K gluconate, 5 EGTA, 
10 HEPES, 3 KCl, 2 MgCl2, 4 Na2ATP, 5 Na2 phosphocreatine, and 0.4 Na2GTP, and had a pH of 7.3–7.4 and an 
osmolarity of 280–290 mOsm. In addition, we added 0.1 mM of either Alexa Fluor 488 hydrazide (A10436, Life 
Technologies) or Alexa Fluor 568 hydrazide (A10437, Life Technologies) for fluorescent visualization. Whole-cell 
recordings were amplified (Model: MultiClamp 700B amplifier, Molecular Devices, Union City, CA, USA), dig-
itized at a sampling rate of 60 kHz (Model Digidata 1440 A, Molecular Devices), and saved (Clampex v10.2, 
Molecular Devices). After recordings, we iontophoretically injected Alexa Fluor with hyperpolarizing current 
of −20pA for 2–10 minutes. We visualized neurons labeled with Alexa Fluor using a confocal imager (Model: X 
light, Crest optics, Roma, Italy) coupled to the EMCCD camera and a fluorescence illumination lamp (Model: 
Spectra X, Lumencor, Beaverton, OR, USA). We used Metamorph NX (Molecular Devices) and a motorized stage 
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controller (Model: ProScan III, Prior Scientific, Rockland, MA, USA) to obtain z-stack photographs (in steps of 
1 µm) of labeled neurons. Images of labeled neurons are based on maximum intensity projections of 120 to 212 
photographs.

We used previously described protocols to construct inter-pulse interval tuning curves of single neurons30, 35, 36, 41.  
Briefly, we recorded five repetitions of responses to pulse trains consisting of 10 pulses with inter-pulse intervals 
between 10 and 100 ms (in 10-ms steps). The order in which pulse trains of particular IPIs were delivered was 
chosen at random. Traces in which synaptic stimulation elicited spikes were first filtered with a median filter of 
1.5ms to remove spikes. We obtained the mean response across repetitions of each pulse-train stimulus. From 
the mean response to each IPI, we averaged the maximum depolarizations in response to the 2nd through 10th 
pulses. We then found the maximum value of these averages across all 10 IPIs and used it to normalize the aver-
aged maximum depolarizations for all 10 IPIs. We used a threshold of 85% of the maximum response and linear 
interpolation to categorize the IPI tuning curve of each neuron. If the tuning curve crossed the 85% threshold in 
one point, the neuron was categorized as “low-pass” if long IPIs (i.e., IPIs greater than the IPI at threshold) elicited 
responses above 85%, or as “high-pass” if responses above 85% were elicited by short IPIs (i.e., IPIs lower than the 
IPI at threshold). If tuning curves crossed the 85% threshold in two points, neurons were classified as “band-pass” 
or “band-stop”, depending on whether responses in between both threshold crossings were above or below the 
85% threshold, respectively. In this study, we did not find band-stop neurons. If the tuning curve crossed the 85% 
threshold more than twice, the neuron was classified as “complex”.

To investigate the timing of excitatory inputs onto multipolar cells in EL and ELp, we analyzed excitatory 
post-synaptic potentials (EPSPs) in response to single pulses. We obtained 10–20 repetitions for each neuron. 
From the response trace of each repetition, we measured (i) the latency to the maximum value of the EPSP, (ii) the 
number of onsets of depolarizations, and (iii) the latency to each depolarization onset. To find the depolarization 
onsets in response to the stimulus, we first filtered the trace obtained from each repetition with a median filter 
of 1.5 ms. We then calculated the first derivative of the filtered trace and filtered it with a moving average filter 
of 1.5 ms. Then, we obtained the second derivative of the trace and filtered it again with a moving average filter 
of 1.5 ms. To get an estimate of the baseline noise of the second derivative, we calculated the mean and standard 
deviation of the filtered second derivative during 5 ms before stimulus onset. We defined a depolarization onset as 
each occurrence in which the second derivative crossed, in an ascending manner, a threshold set to three standard 
deviations above the mean baseline noise. For each trace, we obtained (i) the maximum EPSP, (ii) the latency to 
the maximum EPSP, (iii) the number of depolarization onsets, and, with the latency to each onset, we calculated 
(iv) the median and standard deviation of onset latency. For each neuron, we calculated (i) the median number 
of onsets across traces, (ii) the standard deviation in the number of onsets across traces, (iii) the median latency 
to the maximum EPSP across traces, (iv) the standard deviation of the latency to maximum EPSP across traces, 
(v) the median across traces of the median depolarization onset latency of each trace, and (vi) the median across 
traces of the standard deviation of onset latency of each trace. We then ran a principal components analysis on 
these six variables obtained from each neuron and tested whether principal components differed between species 
using ANOVA.

Neuronal morphology and projections.  We used iontophoretic injections of neurobiotin or biocytin to 
investigate neuronal morphology and projections within the electrosensory pathway. Neuronal tract tracers were 
injected after recording evoked potentials in vivo. To inject the neuronal tract tracers, we used electrodes made 
of borosilicate capillary glass (o.d. = 1.0 mm, i.d. = 0.5 mm; A-M Systems, Model 626000) pulled on a micropi-
pette puller (Sutter Instruments Company, Model P-97), broken to a tip diameter of 30–40 µm, and filled with a 
solution of 5% Neurobiotin or Biocytin in 0.01 M NaCl. We injected a DC current of 3–5 µA for 5–15 min (see 
below), using a Model A365 stimulus isolator (World Precision Instruments, Sarasota, FL, USA). Survival time 
after injections varied between 3 hours (for injections in ELp of clade-A species and P. microphthalmus) and 
8 hours (for injections in EL of P. tenuicauda and injections in ELa of clade-A species and P. microphthalmus). 
After the survival period, fish were deeply anesthetized in MS-222 and perfused through the heart with ice-cold 
heparinized Hickman’s Ringer, followed by ice-cold fixative of 4% paraformaldehyde and 1% glutaraldehyde in 
0.1 M phosphate buffer (PB). The brain was then removed from the skull, post-fixed overnight in the same fixative 
at 4 °C, and embedded in a gelatin block. We fixed the gelatin blocks in the same fixative overnight at 4 °C and 
cut them into 50 µm horizontal sections in ice-cold 0.1 M PB using a vibrating microtome (Ted Pella, Inc, D.S.K., 
model DTK-1000). Sections were then rinsed in 0.02 M PBS (2 × 10 min), followed by incubation in 0.05% hydro-
gen peroxide in 0.02 M PBS (1 × 10 min). We then rinsed the sections in 0.02 M PBS (3 × 10 min) and incubated 
them overnight at room temperature with an avidin-biotinylated horseradish peroxidase complex (ABC Elite Kit, 
Vector Laboratories) in 0.3% Triton in 0.02 M PBS. Sections were then rinsed again with 0.2 M PB (4 × 10 min) 
at room temperature. We then used a diaminobenzidine (DAB) reaction of 15 minutes in 0.5 mg/ml DAB in 
0.1 M PB, followed by an additional 5–10 minutes after adding 0.002% H2O2 to visualize the label. Sections were 
then rinsed in 0.1 M PB (4 × 10 min) at room temperature, mounted on slides subbed with chrom-alum, coun-
terstained with Neutral Red, dehydrated in an alcohol series of 50%, 70%, 90%, and 100% EtOH, cleared in three 
steps of xylenes, and coverslipped with Eukitt (Sigma). Using transmitted light microscopy in an upright micro-
scope (Model: BX51WI, Olympus, Tokyo, Japan), we then analyzed the histological preparations as described 
below.

To investigate hindbrain projections to the midbrain, we injected neuronal tract tracers into the left ELa of 
clade-A species (B. brachyistius: n = 1, B. niger: n = 3, G. petersii: n = 1) and P. microphthalmus (n = 2) and into the 
anterior end of the left EL in P. tenuicauda (n = 3). After the iontophoretic injection of the neuronal tract tracer, 
we allowed 8 hours of survival time and proceeded to process the brain as described above. We then counted all 
labeled somas in the left and right nELL of the hindbrain and calculated the proportion of contralateral labeled 
cells. These brains were also used to search for bilateral axonal projections from the hindbrain to the midbrain by 
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looking for labeled axons in the right ELa of clade-A species and P. microphthalmus, and in the right EL of P. ten-
uicauda. By tract-tracing, we reconstructed one contralateral axon per clade (B. brachyistius, P. microphthalmus, 
P. tenuicauda), from the first contact with a large cell to the end of all the axon branches, and we measured the 
length of each branch using the software DP2-BSW (Olympus). In addition, in all samples in which labeled axon 
segments were identified (n = 1 B. brachyistius, 1 B. niger, 2 P. microphthalmus, 2 P. tenuicauda), we tract-traced 
all the labeled segments using the software DP2-BSW (Olympus). For one P. microphthalmus in which over 1000 
axon segments were labeled, we randomly chose 352 segments to measure; for the other 5 specimens, we meas-
ured all the labeled axon segments. We used the software DP2-BSW (Olympus) to measure the total length of 
each segment and the Euclidian distance between the endpoints of each segment. We first calculated the straight-
ness index described by Batschelet (1981)38 as the length between endpoints of the segment divided by the total 
length of the segment. We then subtracted the straightness index from one; thus, a value of zero represents a 
straight line whereas values close to one represent highly convoluted segments. We compared how convoluted the 
axonal segments are across the three lineages (i.e., clade-A species, P. microphthalmus, and P. tenuicauda) using 
ANOVA in R40. We also estimated the direction of the axonal segments by measuring (DP2-BSW; Olympus) the 
angle between the line connecting the endpoints of the segment and the anterior-posterior axis of the brain, with 
0° set to the anterior end of the brain and 180° to the posterior end. We used Mardia-Watson-Wheeler tests in 
Oriana v. 2.02 (Kovach Computing Services, Anglesey, Wales) to compare the distribution of segment direction 
angles across the three lineages. Finally, we searched for nodes in which the axonal segments bifurcate into differ-
ent branches and calculated a branching index as the number of nodes divided by the total number of branches. 
When one stained segment bifurcated, we considered it as two branches, when it did not bifurcate, we considered 
it as one branch.

To investigate projections from ELa to ELp, and projections from the anterior to posterior end of EL, we 
injected neuronal tract tracers into the left ELp of three clade-A species (B. brachyistius: n = 1, B. niger: n = 1, G. 
petersii: n = 1) and of P. microphthalmus (n = 3) and in the posterior end of the left EL in P. tenuicauda (n = 3). 
We allowed a survival time of 3–4 hours before perfusion for clade-A species and P. microphthalmus, and of 
8 hours for P. tenuicauda. In clade-A species and P. microphthalmus, we measured the diameter of all labeled cells 
in ELa. In P. tenuicauda, we measured the diameter of all adendritic labeled cells in EL and the lateral lemniscus. 
All measurements were obtained using transmitted light microscopy in an upright microscope (Model: BX51WI, 
Olympus) and DP2-BSW software (Olympus).

GABA Immunohistochemistry.  We used an antibody that was previously validated by Western blot and 
followed a protocol that has been successful in previous studies with mormyrids. Readers are referred to those 
studies for details not provided here35, 42. We obtained data from three individuals of clade A (n = 1 B. brachyis-
tyius, n = 1 B. niger, n = 1 P. adspersus), three individuals of P. microphthalmus, and three individuals of P. tenui-
cauda. Fish were deeply anesthetized in MS-222 and then perfused through the heart with ice-cold heparinized 
Hickman’s Ringer, followed by ice-cold fixative of 4% paraformaldehyde and 0.3% glutaraldehyde in 0.1 M phos-
phate buffer (PB). After perfusion, the brain was removed from the skull, post-fixed overnight in the same fixative 
at 4 °C, and embedded in a gelatin block. Gelatin blocks were then fixed overnight at 4 °C in the same fixative and 
cut into 50-µm horizontal sections in ice-cold 0.1 M PB. We then incubated the sections for two hours at room 
temperature in a blocking solution of 4.5% normal goat serum, 0.3% Triton-X, and 0.3% bovine serum albumin 
in 0.1 M PB. Sections were then incubated at room temperature for 25 hours in a blocking solution containing 
(1:8000) a primary antibody against GABA coupled to bovine serum albumin with glutaraldehyde (Catalog No. 
20094, Immunostar, Hudson, WI, USA). We then rinsed the sections in 0.02 M PB (4 × 10 min) and incubated 
them in blocking solution with goat anti-rabbit IgG biotinylated secondary antibody (1: 2000) at room tempera-
ture for four hours. Sections were then rinsed in 0.02 M PB (4 × 10 min) at room temperature, incubated with an 
avidin-biotinylated horseradish peroxidase complex (ABC Elite Kit, Vector Laboratories) at 4 °C overnight, and 
rinsed again with 0.2 M PB (5 × 10 min) at room temperature. To visualize the label, we then used a diaminoben-
zidine (DAB) reaction of 30 minutes in 0.5 mg/ml DAB in 0.1 M PB, followed by an additional 5–10 minutes after 
adding 0.002% H2O2. We then rinsed the sections in 0.02 M PB (4 × 10 min) at room temperature, mounted on 
slides subbed with chrom-alum, counterstained with Neutral Red, dehydrated in an alcohol series of 50%, 70%, 
90%, and 100% EtOH, cleared in three steps of xylenes, and coverslipped with Eukitt (Sigma). For each brain, we 
used 3–5 sections as controls in which we did not add the primary antibody and therefore, yielded no cell-specific 
staining. We then used transmitted light microscopy in an upright microscope (Model: BX51WI, Olympus) and 
DP2-BSW software (Olympus) to measure the diameter of all stained cells in ELa and ELp of three clade-A spe-
cies (B. brachyistius: n = 1, B. niger: n = 1, P. adspersus: n = 1) and P. microphthalmus (n = 3), and in EL and lateral 
lemniscus of P. tenuicauda (n = 3).

Data availability.  The datasets generated during the current study are available from the corresponding 
author on reasonable request.
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