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Abstract: An effective approach for amino protection and construction of a seven-membered ring has
been developed. The method uses imidazolium chloride to carry out the Michael addition reaction
at low temperatures and perform amino deprotection or construction of a seven-membered ring at
high temperatures.
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1. Introduction

Many pharmaceutical intermediates or active molecules often contain amino groups. However, the
amino groups are unstable and easily oxidized. The protection of amino groups is therefore often needed
in the process of drug synthesis. Methods of amino functional group protection have been reported by
related literatures or patents [1]. Traditionally, functional groups were protected via amines reacting
with CBZ-Cl [2,3], (Boc)2O [4–6], Fmoc-Cl [7], TFA [8,9] and Alloc-Cl [10] in the presence of inorganic
bases. Furthermore, we have found that bases are mainly used as a promoter. Recently, Jadhav et al. [11]
reported the use of microwaves (300 W) for selective tert-butoxycarbonylation of various amines. In
2015, Liguori et al. [12] reported the use of 1-butyl-3-methylimidazolium tetrauoroborate [Bmim][BF4]
as the ionic liquid medium to promote selective Fmoc and Cbz-protection of various structurally amines.
Among the relevant protective groups used for amino function, it would also be necessary to mention
the sulfonamido [13,14] protecting groups. Several protocols have been developed for the protection
of amino groups with substituted sulfonyl chlorides (such as 4-toluolsulfonyl chloride) using various
metal-based catalyst reaction conditions. In 2013, Nardi et al. [15] reported a new and eco-friendly
process for ferrier glycosylation of sulfonamides and amino acids with various N-nucleophiles under
erbium (III) trifluoromethane-sulfonate as a Lewis acid catalyst. However, these catalysts present a lot
of disadvantages. Most of these reactions have limitations such as high cost, corrosiveness, and toxicity.
Although methods for the protection of various amino groups are well known and well documented in
the literature, it is still very important to study the methods of protecting amino groups. Furthermore,
in recent years, a number of researchers have focused on developing greener methods.

When we began to study the reaction of o-phenylenediamine with N,N-dimethylacrylamide
catalyzed by imidazolium chloride to construct a seven-membered ring [16–18], we found that the
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reactants reacted in the form of Michael addition [19,20] reaction at 120 ◦C, firstly. However, when
the temperature was raised to 150 ◦C, the reaction product did not contain any seven-membered ring.
After identification, it was one of the raw materials that was formed by the C-N bond cleavaging.
In the next study, we find that reaction of o-phenylenediamine with acrylamide in the presence of
imidazole hydrochloride resulted in the formation of 1,3,4,5-tetrahydro-2H-benzo[b][1,4]diazepin-2-one.
In 2012, Dabiri, M. et al. [21] reported that [Hmim]TFA catalyzed the hetero-Michael reaction of
2-aminothiophenol and acrylate to construct a seven-membered ring. However, this method only
provided a ring-closing reaction of 2-aminothiophenol and acrylate, but the ring-closing reaction of
substituted phenylenediamine and a variety of Michael acceptors is still not clear.

Michael addition was one of the most important carbon-carbon and carbon-heteroatom
bond-forming strategies in synthetic organic chemistry. In the past few years, a myriad array
of metal-centered Lewis acid catalysts have been developed, including cadmium (II) chloride [22],
ammonium nitrate(V) [23], zirconium(IV) chloride [24], silica-supported aluminum chloride [25],
VO(OTf)2 [26] and lanthanum trichloride (LaCl3) [27]. Recently, green organic chemistry has begun
to attract attention in organic synthesis. For example, metal organic frameworks [28] and basic
alumina [29]. Although these reactions work well, most of these catalysts were non-recyclable
or transition metal salt catalysts. In addition, in some cases, toxic solvents were required, and a
long reaction time was needed. Therefore, it was necessary to explore non-metallic catalysts in
organic synthesis. We recently reported an environmentally-friendly procedure to efficiently obtain
Aza-Michael adducts using imidazolium chloride as a green catalyst.

Based on these results, we propose using imidazolium hydrochloride to catalyze the Michael
addition reaction to protect amino groups and synthesize benzodiazepine derivatives and benzothiazide
derivatives. (Scheme 1).
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2. Results and Discussion

2.1. Optimization of Reaction Conditions

In our initial experiments, we choose aniline with N,N-dimethylacrylamide as a model substrate
and the results for development are displayed in Table 1.
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Table 1. Optimization of conditions for the reaction of the Aza-Michael addition.
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1 - - 120 4 trace
2 Imidazolium chloride (0.3) - 120 4 69
3 Imidazole (0.3) - 120 6 10
4 HCl (0.3) - 120 4 60
5 Imidazolium chloride (0.3) - 90 6 50
6 Imidazolium chloride (0.3) - 120 4 75
7 Imidazolium chloride (0.3) - 130 4 65
8 Imidazolium chloride (0.3) - 140 4 40
9 Imidazolium chloride (0.1) - 120 4 32

10 Imidazolium chloride (0.2) - 120 4 61
11 Imidazolium chloride (0.5) - 120 4 73

12 b Imidazolium chloride (0.3) H2O 100 6 18
13 b Imidazolium chloride (0.3) CH3CN 70 6 NO
14 b Imidazolium chloride (0.3) Toluene 120 4 63
15 b Imidazolium chloride (0.3) Xylene 120 4 66

a Reaction conditions: Unless otherwise noted, all reactions were carried out with 1 (10.8 mmol, 1 equiv), 2 (14.0
mmol, 1.3 equiv), Imidazolium chloride (0.1–0.5 equiv); b All solvents are 2mL; c Yields of products 3. Abbreviations:
NO, no reaction.

Firstly, our investigation commenced with the reaction of aniline 1 and N, N-dimethyl acrylamide
2 with imidazolium chloride (0.3 equiv) at 110 ◦C solvent-free. We obtained product 3 (Table 1, Entry 2)
in a yield of 69%. However, only a trace product was detected in the absence of catalysts (Table 1, Entry
1). On the other hand, when we used 0.3 equiv of HCl and imidazole as catalysts, we obtained products
3 and 4 (Table 1, Entries 3 and 4) in yields of 60% and 10%, respectively. Inspired by the results, the
impact of varying the reaction temperature was investigated (Table 1, Entries 5–8). The best yield
was obtained under solvent-free conditions at 120 ◦C (Table 1, Entry 6). When the temperature was
raised or decreased, the yields lowered (Table 1, Entries 5, 7 and 8). These experiments demonstrated
that the reaction was highly sensitive to temperature. Next, concerning the amount of catalysts, it
was observed that 0.3 eq of imidazolium chloride were sufficient to obtain a good yield. Lowering
the amount of catalyst from 30 mol% to 10 mol% resulted in a yield of 32%, indicating that the yields
were significantly decreased (Table 1, Entries 9 and 10). Increasing the amount of catalysts had little
influence on the yield (Table 1, Entry 11). Finally, we turn our target to the effect of solvents on the
reaction. We had tried various solvents such as water and acetonitrile, but unsatisfactory yields were
obtained, possibly a result from the effect of temperature on the reaction (Table 1, Entries 12 and 13).
However, the reaction was attempted in non-polar media such as toluene and xylene, and a total yield
of 63%–66% was obtained (Table 1, Entries 14 and 15).

Interestingly, our team unexpectedly discovered that imidazolium chloride could catalyze the
C–N bond-cleavaging reactions at 150 ◦C. So, after the amino group was protected, we began to screen
the conditions for amino deprotection. The N, N-Dimethyl-3-phenylamino-propionamide (Tables 2
and 3, 3) was selected as the model reaction for 6 h. The results are listed in Table 2.
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Table 2. Optimization of reaction conditions for the deprotection of amino group a.
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At the beginning of our study, we found that the reaction was performed under the conditions of
0.7 equivalent of imidazolium chloride at 150 ◦C. The expected product was detected (Table 2, Entry
5). However, only a trace product was detected in the absence of catalysts (Table 2, Entry 1). When
0.7 equiv of HCl was used, the yield of the product 1 (Table 2, Entry 3) was 8%. Furthermore, the
impact of varying the reaction temperature was investigated. Compared to the yield of 1 at 150 ◦C
(Table 2, entry 5), the yield of the reaction performed at 120 ◦C was significantly decreased (Table 2,
Entry 4). However, when temperature was increased to 160 ◦C and 180 ◦C for 6h, the yields were
63% and 65%, respectively (Table 2, Entries 6 and 7). The expected product was obtained at a yield
of 23% only when the amount of catalyst was decreased to 10 mol% (Table 2, Entry 8). The yield of
product 1 did not increase significantly when the reaction was carried out at the condition of 1 equiv of
catalyst (Table 2, Entry 10) compared to 0.7 equiv of catalyst (Table 2, Entries 5). When the reaction
was performed in water or benzene, no reaction occurred in the presence of catalyst (Table 2, Entries
11 and 12). The yield of the expected product was 57% when the reaction was conducted in xylene
(Table 2, Entry 13). The optimum yield was obtained when the reaction was carried out under solvent
free conditions (Table 2, Entry 5).

However, the reaction of o-phenylenediamine with acrylamide at 140 ◦C for 5 h to obtain
1,3,4,5-tetrahydro-2H-ben-zo[b][1,4]diazepin-2-one gave a very good yield. Inspired by this result, we
herein tried to synthesize benzodiazepines and benzothiazides derivatives through the further study
of Michael addition reaction. Hence, the o-phenylenediamine (4) and acrylamide (5) were selected as
the substrates for the optimization studies. Gratifyingly, the substrates 4 and 5 could be transformed
into product 6 in a yield of 45% by heating in the presence of imidazole hydrochloride in xylene at
140 ◦C for 5 h (Table 3, Entry 1). Next, a variety of temperatures were explored; it was observed that
the desired yields can be obtained only at 140 ◦C (Table 3, Entries 5–9). Subsequently, several other
solvents such as CH3CN, toluene, and 2-ethoxyethanol were screened, among which none gave the
products in good yields (Table 3, Entries 10–16). Furthermore, yields of 19% and 49% were obtained
when 0.1 eq of imidazolium chloride and 0.5eq of imidazolium chloride were used as the catalysts,
respectively (Table 3, Entries 17 and 18).
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12 Imidazolium chloride(0.3) dioxane 100 9 27
13 Imidazolium chloride(0.3) toluene 110 9 10
14 Imidazolium chloride(0.3) ethylene glycol diethyl ether 120 5 39
15 Imidazolium chloride(0.3) 2-methoxyethanol 125 5 43
16 Imidazolium chloride(0.3) 2-ethoxyethanol 140 5 trace
17 Imidazolium chloride(0.1) xylene 140 5 19
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2.2. Scope of Substituted Substrate

With the optimized reaction conditions on hand, the scope of the Michael addition reactions
was explored using a wide range of amines and acrylamide derivatives, as shown in Table 4. Firstly,
aniline reacted with N,N-dimethylacrylamide to form the corresponding Michael addition product in a
yield of 74% (Table 4, 3a). Aromatic amine substituted with electron-donating groups (e.g., amino,
methoxy, or phenyl) at different positions reacted very well with N, N-dimethylacrylamide, generating
the corresponding products in moderate to good yields (Table 4, 3b–3e). Similarly, aromatic amine
possessing a weak electron-withdrawing group, such as 4-bromoaniline, underwent a smooth reaction
to obtain a medium yield of the corresponding product 3 (Table 4, 3f and 3g). However, it is worth
noting that aromatic amines substituted by a strong electron withdrawing group did not react with
N,N-dimethylacrylamide (Table 4, 3h). Moreover, to further investigate the scope of this reaction
system, the reactions of different substituted amines and acrylamide derivatives (e.g., acrylamide
N,N-dimethylacrylamide, methyl acrylate, ethyl acrylate or tert-butyl acrylate) were also tested.
Aromatic amine bearing either electron-rich or weak electron-deficient substituents all underwent the
reactions smoothly to give the expected products in yields of 33% to 88% (Table 4, 3i–3v). However, the
representative of the heterocyclic aromatic amines such as 2-aminopyridine could be transformed into
the corresponding product in a yield of 33%. The lower yield was ascribed to lower nucleophilicity
of heterocyclic aromatic amines (Table 4, 3s). The reaction of secondary amines with acrylamide
was further tested. The secondary arylamine N-methylaniline was converted into the corresponding
product in excellent yields (Table 4, 3w). Encouraged by these satisfying results, aza-Michael addition
of various aliphatic amines and acrylamide were performed. The aza-Michael addition of pyrrolidine
and 4-methylpiperidine could also proceed smoothly within shorter reaction period, obtaining the
corresponding products in good yields (Table 4, 3x and 3y). The higher yields might be attributed to
the stronger nucleophilicity of aliphatic amines.
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Abbreviations: NO, no reaction. 

However, the reaction of o-phenylenediamine with acrylamide at 140 ℃ for 5 h to obtain 1,3,4,5-

tetrahydro-2H-ben-zo[b][1,4]diazepin-2-one gave a very good yield. Inspired by this result, we herein 

tried to synthesize benzodiazepines and benzothiazides derivatives through the further study of 

Michael addition reaction. Hence, the o-phenylenediamine (4) and acrylamide (5) were selected as 

the substrates for the optimization studies. Gratifyingly, the substrates 4 and 5 could be transformed 

into product 6 in a yield of 45% by heating in the presence of imidazole hydrochloride in xylene at 

140 °C for 5 h (Table 3, Entry 1). Next, a variety of temperatures were explored; it was observed that 

the desired yields can be obtained only at 140 °C (Table 3, Entries 5−9). Subsequently, several other 

solvents such as CH3CN, toluene, and 2-ethoxyethanol were screened, among which none gave the 

products in good yields (Table 3, Entries 10−16). Furthermore, yields of 19% and 49% were obtained 

when 0.1 eq of imidazolium chloride and 0.5eq of imidazolium chloride were used as the catalysts, 

respectively (Table 3, Entries 17 and 18). 

2.2. Scope of Substituted Substrate 

Table 4. Substrate scope of substituted amines and acrylamide derivatives. a. 
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a Reaction conditions: Unless otherwise noted, 1 (5 mmol, 1 equiv), 2 (6.5 mmol, 1.3 equiv), 

imidazolium chloride (0.3 equiv), solvent-free conditions, 2–9 h, at 120 ℃; b Yields after column 

purification; c This reaction was performed at 100 ℃;d This reaction was performed for 0.5 h at rt. e 

This reaction was performed for 10 min at 70 ℃. Abbreviations: NR, no reaction. 

With the optimized reaction conditions on hand, the scope of the Michael addition reactions was 

explored using a wide range of amines and acrylamide derivatives, as shown in Table 4. Firstly, 

aniline reacted with N,N-dimethylacrylamide to form the corresponding Michael addition product 

in a yield of 74% (Table 4, 3a). Aromatic amine substituted with electron-donating groups (e.g., 

amino, methoxy, or phenyl) at different positions reacted very well with N, N-dimethylacrylamide, 

generating the corresponding products in moderate to good yields (Table 4, 3b–3e). Similarly, 

aromatic amine possessing a weak electron-withdrawing group, such as 4-bromoaniline, underwent 

a smooth reaction to obtain a medium yield of the corresponding product 3 (Table 4, 3f and 3g). 

However, it is worth noting that aromatic amines substituted by a strong electron withdrawing group 

did not react with N,N-dimethylacrylamide (Table 4, 3h). Moreover, to further investigate the scope 

of this reaction system, the reactions of different substituted amines and acrylamide derivatives (e.g., 

acrylamide N,N-dimethylacrylamide, methyl acrylate, ethyl acrylate or tert-butyl acrylate) were also 

tested. Aromatic amine bearing either electron-rich or weak electron-deficient substituents all 

underwent the reactions smoothly to give the expected products in yields of 33% to 88% (Table 4, 3i–

3v). However, the representative of the heterocyclic aromatic amines such as 2-aminopyridine could 

be transformed into the corresponding product in a yield of 33%. The lower yield was ascribed to 

lower nucleophilicity of heterocyclic aromatic amines (Table 4, 3s). The reaction of secondary amines 

with acrylamide was further tested. The secondary arylamine N-methylaniline was converted into 

the corresponding product in excellent yields (Table 4, 3w). Encouraged by these satisfying results, 

aza-Michael addition of various aliphatic amines and acrylamide were performed. The aza-Michael 

addition of pyrrolidine and 4-methylpiperidine could also proceed smoothly within shorter reaction 

period, obtaining the corresponding products in good yields (Table 4, 3x and 3y). The higher yields 

might be attributed to the stronger nucleophilicity of aliphatic amines. 

a Reaction conditions: Unless otherwise noted, 1 (5 mmol, 1 equiv), 2 (6.5 mmol, 1.3 equiv), imidazolium chloride (0.3
equiv), solvent-free conditions, 2–9 h, at 120 ◦C; b Yields after column purification; c This reaction was performed at
100 ◦C; d This reaction was performed for 0.5 h at rt. e This reaction was performed for 10 min at 70 ◦C. Abbreviations:
NR, no reaction.

After the amino group was protected, substrate ranges of the deprotection of aromatic amino
groups were investigated and the results were displayed in Table 5. Heating a solution of
N,N-Dimethyl-3-phenylamino-propionamide (3aa) using 0.7 eq of imidazolium chloride at 150 ◦C
without solvent resulted in the formation of aniline in a yield of 63% (Table 5, 1a). The use of substrates
with electron-donating substituents generally resulted in higher yields than the substrates with a weak
electron-withdrawing substituent such as Cl, Br (Table 5, 1b–1f). Next, when the dimethylamino
substituent was replaced by -NH2 or diethylamino, the yields were 35-81% (Table 5, 1g–1j). Meanwhile,
R3 substituents such as ethoxy and Tert-butoxy groups were tolerable under these optimized conditions.
Compound 3bk–3bo gave the corresponding product in medium yields (Table 5, 1k–1o).
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After the amino group was protected, substrate ranges of the deprotection of aromatic amino 

groups were investigated and the results were displayed in Table 5. Heating a solution of N,N-

Dimethyl-3-phenylamino-propionamide (3aa) using 0.7 eq of imidazolium chloride at 150 ℃ without 

solvent resulted in the formation of aniline in a yield of 63% (Table 5, 1a). The use of substrates with 

electron-donating substituents generally resulted in higher yields than the substrates with a weak 

electron-withdrawing substituent such as Cl, Br (Table 5, 1b–1f). Next, when the dimethylamino 

substituent was replaced by -NH2 or diethylamino, the yields were 35-81% (Table 5, 1g–1j). 

Meanwhile, R3 substituents such as ethoxy and Tert-butoxy groups were tolerable under these 

optimized conditions. Compound 3bk–3bo gave the corresponding product in medium yields (Table 

5, 1k–1o). 
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Then, we investigated the functional group tolerance on a seven-membered ring. The
data were presented in Table 6. O-phenylenediamine and acrylamide derivatives reacted well,
leading to the corresponding products in moderate to good yields (Table 6, 6a–6d). It is worth
noting that o-phenylenediamine and N,N-dimethylacrylamide or tert-Butyl acrylate reactions were
not observed under these reaction conditions. The disubstituted o-phenylenediamine (such as
4,5-difluoro-2-phenylenediamine) and acrylamide derivatives were compatible in this reaction,
obtaining the corresponding products in good yields (Table 6, 6e). We explored the reaction of
2-aminothiophenol with acrylamide or methacrylamide under standard reaction conditions, providing
the corresponding product in yields of 34% and 31% (Table 6, 6f and 6g). These low yields might be
attributed to more by-products of the Michael addition reaction.

Table 6. Substrate scope of substituted 1,3,4,5-tetrahydro-2H-1,5-benzodiazepine-2-ones and substituted
2,3-dihydrobenzo[b][1,4]thiazepin-4(5H)-ones a.
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chloride (0.3 equiv), at 140 ℃; b Yields after column purification; c This reaction was performed at 90 ℃ for 5 h 

and then at 140 °C for 8 h. Abbreviations: NR, no reaction. 

Then, we investigated the functional group tolerance on a seven-membered ring. The data were 

presented in Table 6. O-phenylenediamine and acrylamide derivatives reacted well, leading to the 

corresponding products in moderate to good yields (Table 6, 6a−6d). It is worth noting that o-

phenylenediamine and N,N-dimethylacrylamide or tert-Butyl acrylate reactions were not observed 

under these reaction conditions. The disubstituted o-phenylenediamine (such as 4,5-difluoro-2-

phenylenediamine) and acrylamide derivatives were compatible in this reaction, obtaining the 

corresponding products in good yields (Table 6, 6e). We explored the reaction of 2-aminothiophenol 

with acrylamide or methacrylamide under standard reaction conditions, providing the 

corresponding product in yields of 34% and 31% (Table 6, 6f and 6g). These low yields might be 

attributed to more by-products of the Michael addition reaction. 

3. Conclusions 

In conclusion, we have developed a highly efficient and environmentally friendly method for 

amino protection and seven-membered ring construction. The reactions initiated by aza-Michael 

reactions to protect the amino group, followed by deprotection of the amino group or transaminated. 

This method has a wide scope of substrates, providing a wide range of aromatic amines and aliphatic 

amines. Also, the significance of our finding can reduce the number or amount of organic solvents, 

potentially toxicity, and hazardous catalysts. It is most important that we have used non-metallic 

catalysts and compared them with the other metal catalysts. Moreover, the results provide further 

evidence that it is possible to use this method in the synthesis of bioactive compounds. It is 

noteworthy that this method is complementary to the previously reported amino protective reactions. 

4. Materials and Methods 

4.1. Chemicals and Materials 

All reagents were purchased from Meyer Reagent Co., Ltd. (Shanghai, China), Macklin Reagent 

Co., Ltd. (Shanghai, China), Chongqing Chuandong Chemical Co., Ltd. (Chongqing, China), etc., and 

used without further purification. 1H- and 13C-NMR spectra were recorded on a Bruker Avancell 

NMR (600 MHz) instruments. Chemical shifts were reported in ppm and coupling constants (J) in Hz. 
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3. Conclusions

In conclusion, we have developed a highly efficient and environmentally friendly method for
amino protection and seven-membered ring construction. The reactions initiated by aza-Michael
reactions to protect the amino group, followed by deprotection of the amino group or transaminated.
This method has a wide scope of substrates, providing a wide range of aromatic amines and aliphatic
amines. Also, the significance of our finding can reduce the number or amount of organic solvents,
potentially toxicity, and hazardous catalysts. It is most important that we have used non-metallic
catalysts and compared them with the other metal catalysts. Moreover, the results provide further
evidence that it is possible to use this method in the synthesis of bioactive compounds. It is noteworthy
that this method is complementary to the previously reported amino protective reactions.

4. Materials and Methods

4.1. Chemicals and Materials

All reagents were purchased from Meyer Reagent Co., Ltd. (Shanghai, China), Macklin Reagent
Co., Ltd. (Shanghai, China), Chongqing Chuandong Chemical Co., Ltd. (Chongqing, China), etc.,
and used without further purification. 1H- and 13C-NMR spectra were recorded on a Bruker Avancell
NMR (600 MHz) instruments. Chemical shifts were reported in ppm and coupling constants (J) in
Hz. TLC plates were visualized by exposing UV light or by iodine. Purification of crude compounds
and separation of reaction mixtures were carried out by column chromatography using silica gel
(200–300 meshes, Shanghai, China). All substrates are known compounds according to the literature.

4.2. General Procedures for Michael Addition Reaction

The 1 (5.0 mmol) and 2 (6.5 mmol) in a molar ratio of 1:1.3 reacted with stirring in the presence
of imidazolium hydrochloride (1.5 mmol, 0.3 eq). Heating was performed using an oil bath and the
reaction was followed up by TLC until completion. After completion of the reaction, the system was
cooled. The organic layer was extracted using water (15 mL) and ethyl acetate (20 mL) and dried using
anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was subjected to
column chromatography eluting with petroleum ether: ethyl acetate (7:1) mixtures.

4.2.1. Synthesis of 3-(Pyrrolidin-1-yl)propanamide (3x)

To a mixture of pyrrolidine (7.0 mmol, 1 equiv) and acrylamide (9.2 mmol, 1.3 equiv), imidazolium
hydrochloride (2.1 mmol, 0.3 eq) was added. The mixture was stirred at RT and monitored by TLC.
After the reaction completed, the reaction mixture was cooled to allow the products crystallize (ethyl
acetate/methanol (5:1)). The crystallized products were filtered and further washed by ethyl acetate,
dried, and evaluated by spectral analysis (3x).

4.2.2. Synthesis of 3-(4-Methylpiperidin-1-yl)propanamide (3y)

To a mixture of 4-methylpiperidine (5.1 mmol, 1 equiv) and acrylamide (9.2 mmol, 1.3 equiv),
imidazolium hydrochloride (2.1 mmol, 0.3 eq) was added. The mixture was stirred at 70 ◦C and
monitored by TLC. After the reaction completed, the reaction mixture was cooled to allow the products
to crystallize (ethyl acetate/methanol (5:1)). The crystallized products were filtered, and further washed
by ethyl acetate, dried, and evaluated by spectral analysis (3y).

4.3. General Procedure for Amino Deprotection

Placed 3b (1 mmol, 1 equiv) and imidazolium chloride (0.7 mmol, 0.7 equiv) in a tube-type schlenk
flask, stirred at 150 ◦C, and monitored the reaction progress by TLC. After the reaction completed, the
reaction mixture was cooled. The organic layer was extracted using water (15 mL) and ethyl acetate
(20 mL) and dried using anhydrous Na2SO4, then filtered and concentrated under reduced pressure.
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The residue was subjected to column chromatography eluting with petroleum ether: ethyl acetate
(10:1) mixtures.

4.4. General Methods for Synthesis of Substituted 1,3,4,5-Tetrahydro-2H-1,5-benzodiazepine-2-ones and
Substituted 2,3-Dihydrobenzo[b][1,4]thiazepin-4(5H)-ones

To 20 mL of schlenk tube with a magnetic stir bar we successively added 4a (3.0 mmol, 1 eq), 5a
(5.1 mmol, 1.7 eq), and imidazolium hydrochloride (0.9 mmol, 0.3 eq). Then we added xylene (1 mL) to
the reaction mixture. The mixture was stirred at 140 ◦C. The progress of the reaction was monitored by
TLC. After the reaction completed, water (15 mL) was added to the reaction mixture. The solution was
extracted using ethyl acetate (3 × 15 mL) and dried using anhydrous Na2SO4. The crude product was
purified by flash chromatography eluting with petroleum ether: ethyl acetate (5:1) mixtures.

Synthesis of 1,3,4,5-Tetrahydro-2H-benzo[b][1,4]diazepin-2-one (6c)

To 20 mL of schlenk tube with a magnetic stir bar, o-phenylenediamine (4.6 mmol, 0.5 g, 1 eq),
methyl acrylate (7.9 mmol, 0.68 g, 1.7 eq) and imidazolium hydrochloride (1.4 mmol, 0.15 g, 0.3 eq)
were successively added. Then xylene (1 mL) was added to the reaction mixture. The mixture was
stirred at 90 ◦C for 5 h and then at 140 ◦C for 8 h. The progress of the reaction was monitored by TLC.
After the reaction completed, water (15 mL) was added to the reaction mixture. The solution was
extracted with ethyl acetate (3 × 15 mL) and dried using anhydrous Na2SO4. The crude product was
purified by flash chromatography using silica gel to obtain the corresponding product (6c) (Figures
S1–S74).

N,N-Dimethyl-3-phenylamino-propionamide (3a): The product was obtained as a white solid in a yield of
74% (0.34 g), MP: 103–106 ◦C [30]. 1HNMR (600 MHz, CDCl3) δ 7.17 (dd, J = 8.4, 7.4 Hz, 2H), 6.69 (t,
J = 7.3 Hz, 1H), 6.64 (d, J = 7.7 Hz, 2H), 4.33 (s, 1H), 3.48 (t, J = 6.0 Hz, 2H), 2.95 (d, J = 3.5 Hz, 6H),
2.59 (t, J = 6.0 Hz, 2H).13C-NMR (151 MHz, CDCl3) δ 171.62, 147.72, 129.29, 117.57, 113.26, 39.58, 37.09,
35.28, 32.20.

3-(2-Amino-phenylamino)-N,N-dimethyl-propionamide (3b): The product was obtained as a black liquid in
a yield of 72% (0.39 g). 1H NMR (600 MHz, CDCl3) δ 6.84 – 6.75 (m, 1H), 6.75 – 6.64 (m, 3H), 3.59 (s,
2H), 3.46 (t, J = 6.2 Hz, 2H), 2.96 (d, J = 9.6 Hz, 6H), 2.63 (t, J = 6.1 Hz, 2H). 13C-NMR (151 MHz, CDCl3)
δ171.73, 136.94, 135.20, 120.21, 119.03, 116.33, 112.65, 40.06, 37.11, 35.31, 32.44.

2-Amino-N-(2-dimethylcarbamoyl-ethyl)-benzamide (3c): The product was obtained as a white solid in a
yield of 43% (0.23 g). MP: 134–136 ◦C. 1H NMR (600 MHz, CDCl3) δ 8.04 (s, 1H), 7.41 (d, J = 7.9 Hz,
1H), 7.34 (t, J = 7.8 Hz, 1H), 6.80 (d, J = 8.4 Hz, 1H), 6.61 (t, J = 7.5 Hz, 1H), 5.84 (s, 2H), 3.55 (t, J =

7.3 Hz, 2H), 3.00 (s, 3H), 2.96 (s, 3H), 2.68 (t, J = 7.3 Hz, 2H). 13C NMR (151 MHz, CDCl3) δ 172.03,
171.13, 149.76, 133.62, 128.45, 114.89, 113.43, 112.02, 39.16, 37.25, 35.37, 32.86.

N,N-Dimethyl-3-(naphthalen-1-ylamino)-propionamide (3d): The product was obtained as a colorless
liquid in a yield of 73% (0.52 g). 1H-NMR (600 MHz, CDCl3) δ 7.77 (d, J = 7.9 Hz, 1H), 7.69 (d, J =

7.8 Hz, 1H), 7.39 – 7.28 (m, 2H), 7.26 (t, J = 7.8 Hz, 1H), 7.18 – 7.10 (m, 1H), 6.57 (d, J = 7.5 Hz, 1H), 5.64 –
4.87 (m, 1H), 3.56 (t, J = 5.8 Hz, 2H), 2.86 (d, J = 6.3 Hz, 6H), 2.62 (t, J = 5.8 Hz, 2H).13C-NMR (151 MHz,
CDCl3) δ 171.86, 143.27, 134.42, 128.48, 126.53, 125.77, 124.76, 123.87, 120.40, 117.37, 104.31, 39.73, 37.15,
35.36, 31.92.

3-(4-Methoxy-phenylamino)-N,N-dimethyl-propionamide (3e): The product was obtained as a white solid
in a yield of 81% (0.5 g). MP: 85-87 ◦C. 1H-NMR (600 MHz, CDCl3) δ6.78 (d, J = 8.6 Hz, 2H), 6.64 (d, J =

8.6 Hz, 2H), 3.75 (s, 3H), 3.43 (t, J = 5.9 Hz, 2H), 2.96 (d, J = 6.5 Hz, 6H), 2.59 (t, J = 5.9 Hz, 2H). 13C
NMR (151 MHz, CDCl3) δ 171.72, 152.41, 141.82, 114.92, 114.91, 55.80, 40.83, 37.12, 35.30, 32.18.

3-(2-Chloro-phenylamino)-N,N-dimethyl-propionamide (3f): The product was obtained as a yellow liquid
in a yield of 82% (0.52 g). 1H NMR (600 MHz, CDCl3) δ 7.24 (dd, J = 7.9, 1.5 Hz, 1H), 7.15 – 7.11 (m,
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1H), 6.71 (dd, J = 8.2, 1.1 Hz, 1H), 6.61 (tt, J = 14.6, 7.3 Hz, 1H), 4.92 (s, 1H), 3.54 (t, J = 6.4 Hz, 2H), 2.96
(d, J = 2.3 Hz, 6H), 2.62 (t, J = 6.4 Hz, 2H). 13C NMR (151 MHz, CDCl3) δ 170.16, 142.73, 128.25, 126.74,
118.56, 116.21, 110.12, 38.30, 36.08, 34.30, 31.33.

3-(4-Bromo-phenylamino)-N,N-dimethyl-propionamide (3g): The product was obtained as a white solid in
a yield of 55% (0.47 g). MP: 110–113 ◦C. 1H NMR (600 MHz, CDCl3) δ7.24 (d, J = 8.8 Hz, 2H), 6.52 (d, J
= 8.8 Hz, 2H), 4.65 (s, 1H), 3.44 (t, J = 5.9 Hz, 2H), 2.96 (d, J = 8.4 Hz, 6H), 2.58 (t, J = 5.9 Hz, 2H).13C
NMR (151 MHz, CDCl3) δ 171.46, 146.80, 131.97, 114.83, 109.08, 39.58, 37.11, 35.32, 31.95.

3-Phenylamino-propionamide (3i): The product was obtained as a white solid in a yield of 84% (0.39 g).
MP: 53–56 ◦C [31]. 1H NMR (600 MHz, CDCl3) δ7.18 (t, J = 7.9 Hz, 2H), 6.73 (t, J = 7.3 Hz, 1H), 6.63 (d,
J = 7.9 Hz, 2H), 5.91 (s, 2H), 3.44 (t, J = 6.1 Hz, 2H), 2.49 (t, J = 6.1 Hz, 2H). 13C NMR (151 MHz, CDCl3)
δ 174.26, 147.54, 129.38, 118.09, 113.40, 39.99, 34.91.

3-(4-Bromo-phenylamino)-propionamide (3j): The product was obtained as a white solid in a yield of 79%
(0.68 g). MP: 122–125 ◦C. 1H NMR (600 MHz, CDCl3) δ7.29 – 7.28 (m, 1H), 7.27 (d, J = 2.1 Hz, 1H),
6.64 – 6.47 (m, 2H), 5.57 (d, 2H), 3.48 – 3.41 (m, 2H), 2.59 – 2.50 (m, 2H). 13C NMR (151 MHz, CDCl3) δ
173.48, 146.05, 132.10, 115.26, 110.16, 40.19, 34.28.

N,N-Diethyl-3-phenylamino-propionamide (3k)[32]: The product was obtained as a yellow liquid in a
yield of 83% (0.39 g). 1H NMR (600 MHz, CDCl3) δ 7.21 – 7.11 (m, 2H), 6.68 (t, J = 7.3 Hz, 1H), 6.64 –
6.61 (m, 2H), 4.10 (m, 1H), 3.46 (t, J = 6.2 Hz, 2H), 3.36 (q, J = 7.1 Hz, 2H), 3.23 (q, J = 7.2 Hz, 2H), 2.57
(t, J = 6.2 Hz, 2H), 1.10 (td, J = 7.1, 5.6 Hz, 6H). 13C NMR (151 MHz, CDCl3) δ170.75, 148.04, 129.25,
117.35, 113.18, 41.90, 40.13, 39.75, 32.00, 14.16, 13.11.

N,N-Diethyl-3-p-tolylamino-propionamide (3l): The product was obtained as a white solid in a yield of
72% (0.39 g). MP: 52–55 ◦C. 1H NMR (600 MHz, CDCl3) δ6.98 (d, J = 8.3 Hz, 2H), 6.57 (d, J = 8.3 Hz,
2H), 3.45 (t, J = 6.1 Hz, 2H), 3.37 (q, J = 7.1 Hz, 2H), 3.25 (q, J = 7.2 Hz, 2H), 2.58 (t, J = 6.1 Hz, 2H), 2.23
(s, 3H), 1.11 (td, J = 7.1, 3.1 Hz, 6H). 13C NMR (151 MHz, CDCl3) δ170.77, 145.45, 129.78, 126.96, 113.66,
41.87, 40.41, 40.09, 31.96, 20.41, 14.17, 13.11.

3-(2-Amino-phenylamino)-N,N-diethyl-propionamide (3m): The product was obtained as a black liquid in
a yield of 63% (0.34 g). 1H NMR (600 MHz, CDCl3) δ 6.82 – 6.77 (m, 1H), 6.75 – 6.69 (m, 3H), 3.85 (s,
2H), 3.47 (t, J = 6.2 Hz, 2H), 3.39 (q, J = 7.1 Hz, 2H), 3.29 (q, J = 7.2 Hz, 2H), 2.65 (t, J = 6.2 Hz, 2H), 1.14
(dt, J = 13.9, 7.1 Hz, 6H). 13C NMR (151 MHz, CDCl3) δ170.87, 136.52, 135.44, 120.22, 119.48, 116.43,
113.28, 41.94, 40.62, 40.17, 32.06, 14.21, 13.12.

3-(3-Chloro-phenylamino)-N,N-diethyl-propionamide (3o): The product was obtained as a white solid in a
yield of 76% (0.48 g). MP: 58–61 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.04 (t, J = 8.0 Hz, 1H), 6.65 – 6.61
(m, 1H), 6.59 (t, J = 2.1 Hz, 1H), 6.49 (dd, J = 8.2, 2.2 Hz, 1H), 4.58 (m, 1H), 3.49 – 3.41 (m, 2H), 3.37 (q, J
= 7.1 Hz, 2H), 3.25 (q, J = 7.2 Hz, 2H), 2.57 (t, J = 6.0 Hz, 2H), 1.18 – 0.99 (m, 6H). 13C NMR (151 MHz,
CDCl3) δ 171.73, 136.94, 135.20, 120.21, 119.03, 116.33, 112.65, 40.06, 37.11, 35.31, 32.44.

3-Benzylamino-N,N-diethyl-propionamide (3p): The product was obtained as a white solid in a yield of
84% (0.45 g). MP: 119–121 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 9.44 (s, 1H), 7.68 – 7.51 (m, 2H), 7.51 –
7.37 (m, 3H), 4.26 – 4.04 (m, 2H), 3.27 (q, J = 7.1 Hz, 4H), 3.05 (t, J = 7.1 Hz, 2H), 2.83 (t, J = 7.2 Hz, 2H),
1.11 (t, J = 7.1 Hz, 3H), 1.02 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, DMSO-d6) δ 168.78, 132.51, 130.46,
129.32, 129.12, 50.27, 43.13, 41.74, 40.38, 40.24, 40.11, 29.02, 14.40, 13.47.

3-Phenylamino-propionic acid methyl ester (3q): The product was obtained as a white solid in a yield of
88% (0.41 g). MP: 32–35 ◦C [33]. 1H NMR (600 MHz, CDCl3) δ 7.17 (t, J = 7.6 Hz, 2H), 6.71 (t, J = 7.3 Hz,
1H), 6.61 (d, J = 8.1 Hz, 2H), 4.02 (s, 1H), 3.68 (s, 3H), 3.43 (t, J = 6.4 Hz, 2H), 2.60 (t, J = 6.4 Hz, 2H). 13C
NMR (151 MHz, CDCl3) δ 172.85, 147.60, 129.52, 129.35, 129.15, 117.91, 117.75, 117.54, 113.24, 113.06,
112.83, 99.99, 51.78, 39.43, 33.73.
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3-p-Tolylamino-propionic acid ethyl ester (3r) [34]: The product was obtained as a yellow liquid in a yield
of 82% (0.44 g). 1H NMR (600 MHz, CDCl3) δ 7.02 – 6.91 (m, 2H), 6.58 – 6.51 (m, 2H), 4.14 (qd, J = 7.5,
2.3 Hz, 2H), 3.85 (s, 1H), 3.41 (td, J = 6.4, 1.0 Hz, 2H), 2.58 (td, J = 6.4, 0.8 Hz, 2H), 2.23 (d, J = 2.3 Hz,
3H), 1.25 (ddd, J = 7.1, 4.5, 1.8 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 172.44, 145.32, 129.96, 129.78,
126.92, 113.30, 60.56, 60.52, 39.83, 33.92, 20.37, 20.19, 14.19.

3-(Pyridin-2-ylamino)-propionic acid ethyl ester (3s): The product was obtained as a grey solid in a yield
of 33% (0.15 g). MP: 46–48 ◦C [35]. 1H NMR (600 MHz, CDCl3) δ 8.08 (dd, J = 4.8, 0.9 Hz, 1H), 7.45 –
7.31 (m, 1H), 6.56 (dd, J = 6.7, 5.4 Hz, 1H), 6.40 (d, J = 8.4 Hz, 1H), 4.96 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H),
3.64 (d, J = 5.1 Hz, 2H), 2.63 (t, J = 6.2 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ
172.61, 158.22, 147.93, 137.37, 112.94, 107.64, 60.60, 37.36, 34.23, 14.20.

3-p-Tolylamino-propionic acid tert-butyl ester (3t): The product was obtained as a yellow liquid in a yield
of 82% (0.44 g). 1H NMR (600 MHz, CDCl3) δ6.91 (d, J = 7.9 Hz, 2H), 6.48 (d, J = 8.2 Hz, 2H), 3.83
(s, 1H), 3.29 (t, J = 6.3 Hz, 2H), 2.43 (t, J = 6.3 Hz, 2H), 2.16 (s, 3H), 1.37 (s, 9H). 13C NMR (151 MHz,
CDCl3) δ 170.79, 144.49, 128.74, 125.82, 112.29, 79.75, 39.02, 34.08, 28.67, 27.09, 26.95, 19.35.

3-Phenylamino-propionic acid tert-butyl ester (3u) [36]: The product was obtained as a yellow liquid in a
yield of 80% (0.37 g). 1H NMR (600 MHz, CDCl3) δ 7.16 (dd, J = 11.1, 4.2 Hz, 2H), 6.69 (t, J = 7.3 Hz,
1H), 6.60 (d, J = 7.9 Hz, 2H), 4.03 (s, 1H), 3.37 (t, J = 6.3 Hz, 2H), 2.50 (t, J = 6.3 Hz, 2H), 1.44 (s, 9H).
13C NMR (151 MHz, CDCl3) δ 171.79, 147.88, 129.33, 129.30, 117.62, 117.59, 113.10, 113.07, 80.86, 39.69,
35.17, 28.17, 28.14.

3-(4-Chloro-phenylamino)-propionic acid tert-butyl ester (3v): The product was obtained as a white solid in
a yield of 83% (0.53 g). MP: 33–36 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.13 (d, J = 8.7 Hz, 2H), 6.57 (d, J =

8.7 Hz, 2H), 4.41 (s, 1H), 3.37 (t, J = 6.3 Hz, 2H), 2.52 (t, J = 6.3 Hz, 2H), 1.45 (s, 9H). 13C NMR (151
MHz, CDCl3) δ 171.60, 146.03, 129.13, 122.51, 114.40, 81.07, 39.98, 34.76, 28.11.

3-(Methyl-phenyl-amino)-propionamide (3w): The product was obtained as a white solid in a yield of 80%
(0.43 g). MP: 88–90 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 7.38 (s, 1H), 7.21 – 7.10 (m, 2H), 6.85 (s, 1H),
6.70 (d, J = 8.0 Hz, 2H), 6.65 – 6.54 (m, 1H), 3.56 – 3.49 (m, 2H), 2.84 (s, 3H), 2.29 – 2.09 (m, 2H). 13C
NMR (151 MHz, DMSO-d6) δ 173.82, 149.12, 129.54, 116.60, 116.13, 112.78, 112.43, 48.84, 38.13, 32.50.

3-(pyrrolidin-1-yl)propanamide (3x) [37]: The product was obtained as a yellow liquid in a yield of 96%
(0.48 g). 1H NMR (600 MHz, CDCl3) δ 8.21 (s, 1H), 5.88 (s, 1H), 2.79 (s, 2H), 2.62 (s, 4H), 2.45 (s, 2H),
1.82 (t, J = 3.5 Hz, 4H). 13C NMR (151 MHz, CDCl3) δ 175.51, 53.84, 53.43, 51.62, 34.13, 23.50, 22.75.

3-(4-methylpiperidin-1-yl)propanamide (3y): The product was obtained as a white solid in a yield of 95%
(0.47 g). MP: 116–117 ◦C [38]. 1H NMR (600 MHz, CDCl3) δ 8.24 (s, 1H), 5.43 (s, 1H), 2.93 (d, J=11.7,
2H), 2.61 (td, J = 6.4, 3.8, 2H), 2.40 (t, J = 6.2, 2H), 2.00 (t, J = 11.0, 2H), 1.68–1.56 (m, 2H), 1.48–1.30 (m,
1H), 1.21 (ddd, J = 15.6, 12.5, 3.7, 2H), 0.88 (d, J = 6.5, 3H). 13C NMR (151 MHz, CDCl3) δ 174.94, 53.92,
53.27, 42.62, 37.18, 33.88, 31.92, 30.49, 21.63.

Phenylamine (1a) [39]: The product was obtained as a colorless liquid in a yield of 63% (0.12 g). 1H
NMR (600 MHz, CDCl3) δ 7.11 (dd, J = 8.4, 7.4 Hz, 2H), 6.72 (t, J = 7.4 Hz, 1H), 6.58 (dd, J = 8.5, 1.0 Hz,
2H), 3.49 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 146.69, 129.47, 118.61, 115.29.

o-phenylenediamine (1b): The product was obtained as a colorless solid in a yield of 82% (0.17 g). MP:
100–102 ◦C [40].1H NMR (600 MHz, CDCl3) δ 6.87 – 6.50 (m, 4H), 3.35 (s, 4H). 13C NMR (151 MHz,
CDCl3) δ 134.71, 120.22, 116.70.

1-Aminonaphthalene (1c): The product was obtained as a white solid in a yield of 85% (0.2 g). MP:
45–48 ◦C [41]. 1H NMR (600 MHz, CDCl3) δ 7.79 (tt, J = 7.0, 4.2 Hz, 2H), 7.51 – 7.37 (m, 2H), 7.37 – 7.24
(m, 2H), 6.76 (dd, J = 7.1, 1.2 Hz, 1H), 4.12 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 142.10, 134.43, 128.59,
126.38, 125.89, 124.90, 123.69, 120.83, 119.02, 109.72.
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4-Methoxy-phenylamine (1d): The product was obtained as a brown solid in a yield of 72% (0.16g). MP:
56–59 ◦C [42]. 1H NMR (600 MHz, CDCl3) δ 6.86 – 6.68 (m, 2H), 6.68 – 6.57 (m, 2H), 3.85 – 3.61 (m, 3H),
3.39 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 152.78, 139.92, 116.41, 114.79, 55.72.

2-Chloro-phenylamine (1e) [43]: The product was obtained as a colorless liquid in a yield of 40% (0.09 g).
1H NMR (600 MHz, CDCl3) δ 7.31 – 7.19 (m, 1H), 7.04 (dd, J = 10.2, 4.2 Hz, 1H), 6.68 (dd, J = 16.0,
6.6 Hz, 2H), 4.00 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 143.12, 129.53, 127.82, 119.32, 119.12, 116.06.

4-Bromo-phenylamine (1f): The product was obtained as a grey solid in a yield of 70% (0.19 g). MP:
59–62 ◦C [44]. 1H NMR (600 MHz, CDCl3) δ 7.29 – 7.09 (m, 2H), 6.61 – 6.42 (m, 2H), 3.66 (d, J = 36.7 Hz,
2H). 13C NMR (151 MHz, CDCl3) δ 145.41, 131.95, 116.68, 110.09.

Phenylamine (1g): The product was obtained as a colorless liquid in a yield of 73% (0.12 g). 1H NMR
(600 MHz, CDCl3) δ7.11 (dd, J = 8.4, 7.4 Hz, 2H), 6.72 (t, J = 7.4 Hz, 1H), 6.58 (dd, J = 8.5, 1.0 Hz, 2H),
3.49 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 146.69, 129.47, 118.61, 115.29.

4-Bromo-phenylamine (1h): The product was obtained as a grey solid in a yield of 70% (0.17 g). MP:
59—-62 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.29 – 7.09 (m, 2H), 6.61 – 6.42 (m, 2H), 3.66 (d, J = 36.7 Hz,
2H). 13C NMR (151 MHz, CDCl3) δ 145.41, 131.95, 116.68, 110.09.

o-phenylenediamine (1i): The product was obtained as a colorless solid in a yield of 81% (0.19 g). MP:
100–102 ◦C. 1H NMR (600 MHz, CDCl3) δ 6.87 – 6.50 (m, 4H), 3.35 (s, 4H). 13C NMR (151 MHz, CDCl3)
δ 134.71, 120.22, 116.70.

3-Chloro-phenylamine (1j) [45]: The product was obtained as a colorless liquid in a yield of 35% (0.09 g).
1H NMR (600 MHz, CDCl3) δ 7.01 (t, J = 8.0 Hz, 1H), 6.69 (dd, J = 7.9, 1.1 Hz, 1H), 6.59 (t, J = 2.1 Hz,
1H), 6.47 (dd, J = 8.1, 2.2 Hz, 1H), 3.65 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 147.85, 134.82, 130.47,
118.42, 114.97, 113.36.

p-Tolylamine (1k): The product was obtained as a colorless solid in a yield of 72% (0.17 g). MP:
43–45 ◦C [46]. 1H NMR (600 MHz, CDCl3) δ 7.07 – 6.83 (m, 2H), 6.58 (d, J = 8.0 Hz, 2H), 3.46 (s, 2H),
2.23 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 143.91, 129.82, 127.80, 115.32, 20.52.

p-Tolylamine (1l): The product was obtained as a colorless solid in a yield of 76% (0.18 g). MP: 43–45 ◦C.
1H NMR (600 MHz, CDCl3) δ 7.07 – 6.83 (m, 2H), 6.58 (d, J = 8.0 Hz, 2H), 3.46 (s, 2H), 2.23 (s, 3H). 13C
NMR (151 MHz, CDCl3) δ 143.91, 129.82, 127.80, 115.32, 20.52.

Phenylamine (1m): The product was obtained as a colorless liquid in a yield of 72% (0.16 g). 1H NMR
(600 MHz, CDCl3) δ7.11 (dd, J = 8.4, 7.4 Hz, 2H), 6.72 (t, J = 7.4 Hz, 1H), 6.58 (dd, J = 8.5, 1.0 Hz, 2H),
3.49 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 146.69, 129.47, 118.61, 115.29.

Chloro-phenylamine (1o): The product was obtained as a white solid in a yield of 82% (0.21 g). MP:
65–67 ◦C [47]. 1H NMR (600 MHz, CDCl3) δ 7.09 (d, J = 8.6 Hz, 2H), 6.60 (d, J = 8.6 Hz, 2H), 3.64 (s,
2H). 13C NMR (151 MHz, CDCl3) δ 144.97, 129.14, 123.16, 116.25.

2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one (6a, 6b and 6c): The products were obtained as a tan solid
in yields of 74% (0.24 g), 68% (0.22 g) and 34% (0.17 g), respectively. MP: 138–140 ◦C [48,49]. 1H NMR
(600 MHz, CDCl3) δ 8.36 (s, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.82 (t, J = 7.5 Hz, 1H),
6.74 (d, J = 7.9 Hz, 1H), 3.70 – 3.63 (m, 2H), 2.80 – 2.69 (m, 2H).13C NMR (151 MHz, CDCl3) δ 174.06,
138.75, 126.36, 125.36, 122.19, 120.57, 119.89, 45.55, 36.19.

4-Methyl-4,5-dihydro-1H-benzo[b][1,4]diazepin-2(3H)-one (6d): The product was obtained as a white solid
in a yield of 93% (0.30 g). MP: 182–184 ◦C [50,51]. 1H NMR (600 MHz, CDCl3) δ 8.60 (s, 1H), 7.01 – 6.97
(m, 1H), 6.95 (dd, J = 7.7, 1.0, 1H), 6.88 (t, J = 7.5, 1H), 6.78 (d, J = 7.8, 1H), 4.03 (dt, 1H), 3.55 (s, 1H),
2.64 (dd, J = 13.6, 4.0, 1H), 2.45 (dd, J = 13.7, 7.9, 1H), 1.33 (d, J = 6.3, 3H). 13C NMR (151 MHz, CDCl3)
δ 173.07, 138.25, 128.00, 125.64, 122.19, 121.41, 121.00, 54.14, 41.44, 23.62.
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7,8-difluoro-2-methyl-1,2,3,5-tetrahydro-1,5-benzodiazepin-4-one (6e): The product was obtained as a white
solid in a yield of 90% (0.29 g). MP: 193.5–195 ◦C. 1H NMR (600 MHz, CDCl3) δ 8.46 (s, 1H), 6.82 (dd, J
= 10.6, 7.9, 1H), 6.64 (dd, J = 11.0, 7.5, 1H), 4.05 (dd, J = 12.1, 6.3, 1H), 3.38 (s, 1H), 2.63 (dd, J=13.5, 4.5,
1H), 2.40 (dd, J = 13.5, 7.6, 1H), 1.72 (s, 1H), 1.33 (d, J = 6.3, 3H).13C NMR (151 MHz, CDCl3) δ = 172.99,
148.33, 148.24, 146.69, 146.60, 145.90, 145.84, 144.30, 144.21, 134.80, 124.80, 111.04, 110.91, 109.69, 109.56,
55.07, 40.76, 23.43.

2,3-dihydro-1,5-benzothiazepine-4(5H)-one (6f): The product was obtained as a brown solid in a yield of
34% (0.11 g). Mp: 215–216◦C[52]. 1H NMR (600 MHz, CDCl3) δ 8.55 (s, 1H), 7.61 (d, J = 7.7, 1H), 7.37
(td, J = 7.7, 1.2, 1H), 7.17 (t, J = 7.6, 1H), 7.14 (d, J = 7.8, 1H), 3.46 (t, J = 6.9, 2H), 2.65 (t, J = 6.9, 2H).13C
NMR (151 MHz, CDCl3) δ 173.71, 141.41, 135.51, 129.83, 126.97, 126.49, 123.30, 34.29, 33.54.

3-Methyl-2,3-dihydrobenzo[b][1,4]thiazepin-4(5H)-one (6g): The product was obtained as a white solid in
a yield of 31% (0.10 g). Mp: 176–178 ◦C [53]. 1H NMR (600 MHz, CDCl3) δ 8.32 (s, 1H), 7.60 (d, J = 7.6,
1H), 7.36 (t, J = 6.9, 1H), 7.17 (t, J = 8.2, 1H), 7.13 (d, J = 7.8, 1H), 3.49 (dd, J = 11.3, 6.0, 1H), 3.05 – 2.98
(m, 1H), 2.79 (dt, J = 12.6, 6.3, 1H), 1.19 (d, J = 6.6, 3H).13C NMR (151 MHz, CDCl3) δ 175.74, 141.12,
135.15, 129.72, 127.72, 126.46, 123.47, 41.51, 36.33, 15.47.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/23/4224/s1.
Figures S1–S74: C-NMR and H-NMR spectra of the products.
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