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a b s t r a c t 

The meniscus is a key stabilizing tissue of the knee that facilitates proper tracking and movement of the knee joint 
and absorbs stresses related to physical activity. This review article describes the biology, structure, and func- 
tions of the human knee meniscus, common tears and repair approaches, and current research and development 
approaches using modern methods to fabricate a scaffold or tissue engineered meniscal replacement. Meniscal 
tears are quite common, often resulting from sports or physical training, though injury can result without specific 
contact during normal physical activity such as bending or squatting. Meniscal injuries often require surgical in- 
tervention to repair, restore basic functionality and relieve pain, and severe damage may warrant reconstruction 
using allograft transplants or commercial implant devices. Ongoing research is attempting to develop alternative 
scaffold and tissue engineered devices using modern fabrication techniques including three-dimensional (3D) 
printing which can fabricate a patient-specific meniscus replacement. An ideal meniscal substitute should have 
mechanical properties that are close to that of natural human meniscus, and also be easily adapted for surgi- 
cal procedures and fixation. A better understanding of the organization and structure of the meniscus as well 
as its potential points of failure will lead to improved design approaches to generate a suitable and functional 
replacement. 
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. Introduction 

The medial and lateral menisci of the knee are fibrocartilage tissues
hat serve important functions for knee stabilization, load distribution
nd cushioning of mechanical impact forces [1-4] . Tears of the meniscus
re common and can impair physical activities involving the knee, and
ill lead to the onset of osteoarthritis if left untreated or unrepaired

5-8] . This review describes the development, structure, and function
f the meniscus along with meniscal tears and repair approaches. Fi-
ally, the literature describing progress in current approaches to de-
elop improved or novel treatments and meniscal replacement devices
sing tissue engineering and 3D printing is summarized with an em-
hasis on research published in the last 10 years, though older relevant
esearch is included. The goal of developing improved functional hu-
an meniscal replacement devices and FDA-approved tissue therapies
ay come from combining an understanding of the biology, biochem-

stry and biomechanics of the meniscus with modern biofabrication
echniques. 
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.1. Meniscus developmental biology and maturation 

Development of the meniscus begins in utero, with the condensation
f mesenchymal cells forming the bulk of the tissue [1] . The immature
eniscus is completely vascularized, though the presence of antiangio-

enic factors may potentially prime the tissue for the development of the
ifferent vascular zones [9] . As the tissue develops the collagen content
ncreases, particularly in the circumferential direction. However, unlike
he organized collagen network seen in adult menisci, the fetal meniscus
ollagen arrangement is essentially random [10] . Movement of the fe-
us in utero is well documented, and the resulting biomechanical forces
re believed to be critical for musculoskeletal development and matu-
ation [11-13] . The importance of biomechanical stress and strain for
ormal fetal meniscal development is supported by embryonic immo-
ilization studies in chicks that have revealed failure of later meniscal
evelopment and ultimately degradation [14] . Over the course of gesta-
ion, meniscal cellularity and vascularization continue to decrease [15] .
fter birth, vasculature can still be observed throughout the meniscus,
J. Klarmann). 
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Fig. 1. Knee menisci (Gray’s illustrations). Case cour- 
tesy of Assoc. Prof. Craig Hacking, Radiopaedia.org, 
rID: 84971. 
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ut is noticeably less present in the inner tissue. As the knee joint devel-
ps through childhood, the meniscus increases in size and extracellular
atrix (ECM) complexity, particularly as the collagen matrix becomes
ore organized [16] . By early adulthood, tissue vascularization is lim-

ted to the peripheral one-third of the tissue, with the inner one-third
f the tissue completely avascular [16] . This decrease in vascularity is
elieved to be linked to the distribution of endostatin, a potent angio-
enic inhibitor, over time. More specifically, with aging, endostatin has
een shown to increase within the inner meniscus and decrease in the
eriphery of the meniscus [17] . 

.2. Meniscal mechanobiology and structure 

Human menisci are two wedge-shaped, semilunar discs that form a
ocket to stabilize and cushion the impact between the lateral/medial
emoral condyles and the tibial plateau during the course of normal leg
ovement ( Fig. 1 ) [16] . By absorbing compressive forces due to normal
ovement, the meniscus maintains stability and reduces joint friction

 1 , 3 , 4 ]. The lateral meniscus is nearly circular and covers more area
f tibial plateau than the C-shaped medial [18] . A network of ligaments
unction in concert to stabilize the meniscus and knee joint during load-
ng conditions experienced during extension or flexion of the joint [ 16 ,
9-22 ]. In order to absorb joint loading, the menisci are not firmly fixed
long their entire structure on the tibia and can follow knee translation
uring motion. However, the ends of the meniscus, the anterior and
osterior horns, are tightly anchored to the tibia by ligamentous exten-
ions forming the meniscal root attachment [23] . The medial meniscus
osterior horn is anchored to the posterior intercondylar fossa with a
hared attachment point of the posterior meniscocapsular and menis-
otibial ligaments [20] and in front of the posterior cruciate ligament
nsertion point on the tibia. The anterior horn attachment to the tibia
urface is variable with up to four tibial insertion points with connec-
ions to the anterior cruciate attachment and the transverse ligament [ 4 ,
2 , 24 ]. The width of the medial meniscus is approximately 7.6 mm at
nterior horn, 9.3 mm at midbody and 12.6 mm at the posterior horn
20] . The midbody of the medial meniscus is connected to the joint cap-
ule via the deep medial collateral ligament which helps restrict motion
2 
4] . The posterior horn of the lateral meniscus is connected to the tibia
ith a complex organization of three popliteomeniscal fascicles, pos-

erolateral capsule, meniscotibial ligament, and the anterior and pos-
erior meniscofemoral ligaments [ 19 , 25 ]. The width is approximately
.5 mm at the anterior horn and 10.4 mm at the midbody and posterior
orn [19] . The less commonly torn lateral meniscus has a larger range
f motion than the medial meniscus which results from the close prox-
mity of the attachments of the anterior and posterior horns as well as
ewer capsular attachment points [4] . 

Each meniscus serves a different function where the medial menis-
us is important for maintaining anterior-posterior knee stability [ 26 ,
7 ] and the lateral meniscus helps maintain rotatory stability [28] . The
ifferences in biomechanical function, tibial attachment biology, stress
oads, and contact areas necessitate that repair procedures, particularly
n the horn and root zones are unique to each attachment [ 19 , 20 , 29-
1 ]. During normal movement activities such as walking, the knee joint
xperiences mechanical force loading up to 5 times that of the normal
ody weight [32] . During knee extension, an estimated 40–60% of the
xerted force is directly transmitted to the meniscus, increasing to 90%
uring knee flexion [33] . Most of this load increase impacts the posterior
orn, which is among the most common tear sites found in the medial
eniscus [ 29 , 30 ]. The axial force transmitted to the meniscus is con-

erted to tensile strain through tissue deformation and the induction
f hoop stresses throughout the ECM [1] . Force transmission is aided
y the viscoelastic properties conferred by the interplay between the
olid collagen/proteoglycan matrix and the fluid water component of
he tissue. Force application, such as standing or taking a step, causes
n immediate elastic response within the tissue due to the hydrostatic
ressure present in the fluid component [34] . While still under load,
he meniscus continues to slowly deform at a controlled rate due to
he solid matrix resisting a higher proportion of the force, resulting in
 functional tissue creep response [34] . Though the load is effectively
istributed in healthy tissue, contact stress is significantly increased in
nee joints with meniscal tears [5] . 

The meniscus is composed of an ordered network of collagen (22%
et weight), glycosaminoglycans (GAGs; 0.8% wet weight) and water

72% wet weight) [35] , arrayed to efficiently transmit force throughout
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Fig. 2. A. Illustration showing collagen fiber orientation within the meniscus based on electron microscopy. 1, superficial network; 2, lamellar layer; 3, central main 
layer where collagen fibrils have circumferential orientation. Arrowheads, interwoven radial collagen fibrils; open arrow, connective tissue penetrating from joint 
capsule. Reprinted with permission from Petersen and Tillmann [37] . B. Cut away view illustration showing collagen fiber orientation within the meniscus near 
the anterior horn. The meniscus contains circumferential collagen fiber bundles interspersed with radial “tie fiber ” collagen fibers. A, Anterior horn shaded to show 

approximate footprint. The dashed lines on the right indicate the continuing meniscus shape. 
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he tissue ( Fig. 2 ). This combination of proteins and sugars forming the
eniscus extracellular matrix facilitate uptake of significant amounts

f water [36] . The surface layer of the meniscus is primarily composed
f randomly oriented collagen I fibers, with the inner layers comprised
f both collagen I and collagen II [37] . In the inner meniscus, colla-
en fibers are oriented circumferentially [38] , imparting tensile strength
nd transmission of compression forces into hoop stress around the pe-
iphery of the tissue ( Fig. 2 B). Radial collagen tie fibers, arranged per-
endicular to the meniscal plane, confer structural integrity and stiff-
ess to the tissue under load bearing conditions [39] . Joint movement
nd the application of mechanical forces are important for continued
evelopment, reorganization and maintenance of the collagen network
15] . 

In addition to the ordered collagen structure, proteoglycans and
AGs present in the adult meniscus contribute significantly to tissue
echanical properties [40] . Sulfated GAGs are an important component

f the meniscus, with the main types consisting of chondroitin-sulfate
60% of GAG weight), dermatan sulfate (20–30% of GAG weight), and
eratin sulfate (15% of GAG weight) [3] . Though all three GAGs are
ound throughout the tissue, they are present in higher quantities in the
nner region of the tissue. Aggrecan, biglycan, and decorin proteogly-
ans are also found throughout the meniscus, and follow similar distri-
ution patterns to the GAG network [41] . The extensive proteoglycan
nd GAG network present in the tissue is instrumental in the ability to re-
ist compressive loads [40] . The extremely high negative charge present
n these molecules attracts counter-ions, drawing water into the tissue
42] . The pressure exerted by the hydrated tissue effectively counters
ompressive loads applied to the tissue, allowing the force to be redis-
ributed and preventing structural damage. 

Traditionally, the meniscus has been divided into three zones of vas-
ularization: a vascular red-red zone, a semi-vascular red-white zone,
nd an avascular white-white zone [43] . The red-red zone is located
t the outer edge of the meniscus and is attached to the joint capsule,
ith roughly 10–30% of the tissue periphery supporting blood vessel
rowth. A recent study of adults of < 35 years old found the maximum
egree of vascular penetration was up to 42–48% into each meniscus
44] . Partial vascularization of the middle tissue section is referred to
s the red-white zone, due to the limited presence of cells and vessels in
his region. The deep meniscal region is completely avascular, devoid
f any blood vessels or neural cells [3] . The degree of vascularization
ppears to be directly related to the healing capacity of each zone; the
ed-red zone has the highest capacity for self-regeneration, whereas the
hite-white zone is highly susceptible to permanent damage and degen-

rative lesions [43] . Resident cells within the white-white zone absorb
 S  

3 
utrition and clear waste through synovial diffusion, potentially due to
oint motion [43] . 

The classification of cells within the meniscus is largely based on
orphology and tissue function, with three generally accepted cell iden-

ities: fibroblasts, fibrochondrocytes, and progenitor cells [45] . Cells lo-
ated in the outer red-red zone of the meniscus typically have an oval
hape and function similar to fibroblasts, namely secreting extracellular
atrix proteins, and are surrounded by collagen I [46] . Cells within the

ntermediate and inner white-white zone appear round, and are embed-
ed within ECM consisting primarily of collagen II and GAGs. The cel-
ular morphology and ECM composition surrounding these cells is more
ndicative of hyaline cartilage, and thus these cells have been classified
s fibrochondrocytes [45] . Recently, a third CD34 + cell group has also
een identified at the superficial (surface) area of the meniscus. These
ells present with flat, spindle-like morphology and exhibit stem cell like
haracteristics. It is theorized that these cells may be involved in the re-
enerative properties of the meniscal red-red zone, with some studies
howing cellular migration to damaged tissue [47] . 

. Meniscal injuries 

Tears of the meniscus resulting from trauma or repetitive abnormal
tresses are among the most commonly diagnosed knee injuries, with a
early incidence of approximately 61 per 100,000 people [ 48 , 49 ]. They
sually occur due to knee twisting during physical activity, particularly
f full body weight is applied, and during sudden stops, starts and ag-
ressive pivoting. Squatting and deep knee flexion is another common
echanism that can lead to torn menisci. Athletes and military members
ave high frequencies of meniscal tears, with military service members
aving ten times the incidence of tears compared to civilians [ 50 , 51 ].
he symptoms range from popping, catching and clicking sensations,
welling and to pain with deep knee flexion. Asymptomatic meniscal
ears have also been described [52] , and are correlated with osteoarthri-
is [53] . Radiographs that rely on differences in x-ray density cannot
ccurately differentiate meniscus from adjacent soft tissues [54] . How-
ver, osteoarthritic changes to bone, swelling of the joint space or loss of
oint space can be identified on x-rays and suggest an underlying injury
o the meniscus and ligamentous attachments of the knee. MRI, which
an provide excellent characterization of soft tissues, is the mainstay for
iagnosis of meniscal tears [ 54 , 55 ]. In addition, the gold standard for
iagnosing meniscal tears is direct observation with arthroscopy [56] . 

Meniscal tears are generally classified according to their orientation,
irectionality and can be partial or full thickness [ 8 , 57 ]. The 2019 ES-
KA meniscus consensus added more definition to meniscal tears [ 58 ,
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Fig. 3. Illustration of different meniscal tears. 
Case/image courtesy of Dr. Matt Skalski, Ra- 
diopaedia.org, rID: 55569. 
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9 ]. They suggest dividing the meniscus into three equal-sized radial
ones (anterior, mid body and posterior) and three equal width circum-
erential zones labeled 1, 2 or 3 starting from the outer rim [60] . The
atter classifications are more objective and replace the previous con-
ention of red-red, red-white and white-white. There are vertical tears
n the longitudinal direction, and in the radial direction from the medial
im toward the lateral rim, or complex tears encompassing multiple di-
ections ( Fig. 3 ). Vertical longitudinal tears usually occur between the
ircumferential collagen fibers, and as such may not necessarily disrupt
he mechanical functions of the knee [61] . However, and more com-
only found in the medial meniscus, large longitudinal vertical tears

an progress to completion and twist to form a “bucket handle ” tear
hich can displace or flip similar to a bucket handle [62] . Bucket han-
le tears typically lead to knee instability, pain and locking of the knee
oint. Medial meniscus tears are frequently associated with anterior cru-
iate ligament tears [31] . Horizontal tears are sometimes asymptomatic,
re typically degenerative and most often occur between horizontal lay-
rs of collagen fibers of the medial meniscus [ 63 , 64 ]. Parrot beak or
blique tears and radial tears disrupt the circumferential collagen fiber
rrangement and compromise the ability to handle loads, and are typi-
ally not repairable [ 8 , 65 ]. Tears in and around the anterior or poste-
ior horn and root attachments are also common [ 66 , 67 ]. These tears
an be quite damaging since secure attachment at the meniscal horns
s critical for load distribution [68] , and if left untreated degenerative
steoarthritis will develop [ 69 , 70 ]. Finally, a class of meniscal damage
hat is sometimes under diagnosed due to its location in a blind spot
hen observing through standard arthroscopic portals are ramp lesions

71-73] . These are longitudinal tears of the peripheral attachment of
he posterior horn of the medial meniscus often associated with ACL
upture, and were originally defined as being no longer than 2.5 cm in
ength [74] . Left undiagnosed and untreated, ramp lesions increase the
ailure risk of ACL grafts, have increased probability of further meniscal
amage, and like other meniscal injuries, increase risk of osteoarthritis
73] . 

. Tear treatment options 

The following sections describe methods to surgically repair or treat
amaged meniscus tissue including the use of allograft transplants and
4 
rtificial meniscus implants. Treatment methods of torn menisci have
hanged and improved as better understanding, surgical techniques and
nstruments, and data are developed. The importance of the meniscus
o knee joint stability, shock absorption and load transmission mandates
hat, when feasible, the meniscus should be saved or repaired rather than
esected [ 58 , 59 ]. Historically a complete meniscectomy was performed,
hough this procedure was later linked to rapid onset of degenerative
steoarthritis [ 57 , 75 ]. Fortunately, a variety of surgical repair options
hat notably spare meniscal tissue are currently possible, and several
echniques are discussed here. 

.1. Repair methods 

Nearly 1 million meniscal surgical procedures are performed annu-
lly in the United States [ 49 , 76 ]. The surgical treatment varies depend-
ng on the type of damage present ( Fig. 3 ) and includes partial meniscec-
omy, repair, or reconstructions using implants or allograft transplants
7] . Tears in the outer 1/3 (e.g., the red-red zone) are the most likely
o heal without surgical intervention owing to the vascularity of this
egion. In addition, self-repair is possibly aided by mesenchymal stem
ells (MSCs) recruited to the injury site, as greater numbers of MSCs
re detectable in synovial fluid following meniscal injury compared to
ormal knees [77] . Arthroscopic surgeries are the most common repair
pproach [ 8 , 78 ] and include inside-out repairs ( [79] , outside-in repairs
 80 , 81 ], all-inside repairs [82] , and transtibial repairs of the meniscal
oot [ 67 , 70 , 83 ]. These techniques are frequently used to repair dam-
ge in the red-red zone or red-white zone and are defined by the direc-
ion of the sutures (e.g., introduction from outside the joint capsule and
nto the meniscus for outside-in, etc .). All-inside meniscus repairs are
ecoming more common [84] , are ideal for posterior horn tears, and
equire absorbable sutures and fixation devices. The inside-out method
s best for repairs on the mid-body and posterior parts of the meniscus,
ith functional outcome and failure rates similar to the all-inside pro-

ess [85] . Outside-in methods are ideal for anterior horn and mid-body
ears, due to preferential access to the afflicted region. Each method
as similar complication risks that include failure to heal, neurovascu-
ar damage and knee stiffness. The outside-in method takes the longest
ime to complete but has the highest success rate [84] . Meniscal root
ears are typically repaired using suture anchors (direct fixation) and
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ndirect fixation using sutures pulled through a transtibial tunnel [ 70 ,
3 , 86 ]. In general, vertical longitudinal tears are quite repairable [87] ,
hile oblique, radial and bucket handle tears have less likelihood of

uccessful repair [88] . 
In an attempt to augment and increase repair success, some surgeons

mprove the flow of blood to the repair by trephination and abrading
he red-red zone to allow for infiltration of blood, cells and growth fac-
ors [89] . Additionally, platelet rich plasma (PRP), which is abundant in
rowth factors and anti-inflammatories, is used [90] . Fibrin clots have
een used to augment repair of degenerative complex horizontal tears
f the medial meniscus with clinical healing observed in 75% of pa-
ients in short term follow up [91] . The physical state of the clot allow
or more precise placement at the tear site compared to PRP [92] , and
brin clots enhance healing ability and tissue regeneration in avascu-

ar (white-white zone) of menisci [ 93 , 94 ]. Each of these supplemental
ethods is an attempt to counteract the low vascularity and cellular-

ty of the tissue and the corresponding poor healing ability of cartilagi-
ous tissue of the meniscus. The benefits of these augmentations are
ot always entirely clear as clinical studies report conflicting results on
ealing outcomes, particularly with the use of PRP [90] . However, the
uccess of these results are influenced by the type of tear, and among
ther factors, patient age. [ 89 , 90 , 95 , 96 ]. 

If the tear and patient are not amenable to repairs, partial meniscec-
omy is an option. The procedure has been performed for many years
nd has a low risk of surgical complications [97] . Although patients
eport satisfaction with the results, it is well documented that menis-
ectomy results in an increase in contact stress and often leads to the
evelopment of osteoarthritis [ 5 , 61 , 98 ] . 

.2. Meniscus allograft transplant 

For certain patients, including those with complete meniscectomy, a
eniscal allograft transplant is an effective treatment option [99-104] .
he donor graft is typically frozen after harvest, and the freeze thaw pro-
ess is assumed to kill any cells present without significantly disrupting
he organized collagen structures. The choice of preservation method
oes, however, affect meniscal mechanical properties [ 101 , 105 ]. The
raft must be appropriately sized to ensure best outcomes and are typi-
ally matched through Pollard’s radiographic method or by close match-
ng of sex, weight and height (reviewed by [100] ). There is no true
greement on the degree of graft size mismatch tolerated, but it is clear
hat oversized and undersized grafts increase contact forces on either
he articular cartilage or the meniscus itself and this negatively effects
nee function [106] . Dienst et al. concluded that a size difference of
 10% of the original meniscus size should yield acceptable results and

hat it is better to choose an allograft that is slightly too large rather
han too small [106] . 

In addition to size matching, secure fixation of both the anterior
nd posterior horn of the allograft is critical to ensure that mechani-
al properties remain close to normal. [ 107 , 108 ]. Allografts are fre-
uently transplanted with bone plugs for medial meniscal allografts or
one bridges for lateral allografts harvested from a cadaveric donor
109-111] . These methods preserve the critical attachment points in the
eniscal roots between bone, ligament and meniscus in the donor ma-

erial and obviate the need for surgeons to reconstruct this strong at-
achment point in the recipient. The bone plugs allow for fairly routine
ealing and integration of the bone graft site, show better results than
oft tissue fixation with joint contact pressures [112] , and in most cases
atients are able to resume preinjury activity levels [113] . Alhalki et al.
etermined in a cadaveric study that the contact mechanics of grafts us-
ng bone plugs were close to normal, and that the addition of peripheral
utures had no significant effects on the mechanics, which suggests that
trong meniscal horn anchorage in allografts are the most essential to
reserving or regaining functional knee mechanics [107] . Furthermore,
he environment and root attachment for each horn of the medial and
ateral meniscus are each mechanically unique which adds complexity to
5 
ny repair [ 114 , 115 ]. As with meniscal repairs, the success of allograft
ransplants is defined by pain relief and improvement of knee function
nd motion for the patient, as well as delaying or preventing the onset
f osteoarthritis. Reports suggest that allograft transplants improve knee
unctionality in the short and intermediate term [ 113 , 116 ]. 

.3. Artificial meniscus implants 

The acquisition of the appropriately sized matched donor meniscus
an be difficult and expensive, with the potential to introduce biological
athogens to the recipient. In an attempt to circumvent these risks and
imitations, synthetic, laboratory-produced solutions have been devel-
ped. One such example is the Collagen Meniscus Implant (CMI, Stryker
orporation, Kalamazoo, MI, USA) [117] , a Class 2 medical device first
pproved by the United States FDA in 2008 in a 510(k) process and com-
osed of a bovine cartilage, chondroitin sulfate and hyaluronic acid-
ased scaffold that was designed as a resorbable temporary structure
hat would stabilize the knee joint and promote cell infiltration and
rowth, with the end result yielding a fully developed and restored
eniscus [117-119] . The CMI is fabricated by first precipitating the

omponents and layering the precipitate into a mold after which the
aterial is lyophilized and cross-linked with formaldehyde [117] . The

esulting material is highly porous, and electron microscopy reveals the
MI structure is a herringbone-like pattern that are 500 𝜇m long and
ith 80 𝜇m wide grooves [120] . The CMI surface pores have diameters

rom 60 to 90 𝜇m and appear to be a fibrillar network in stratified lay-
rs. However, the collagen network of the CMI is essentially random and
acks the natural anisotropic circumferential and radial fiber alignments
een in the meniscus. 

Though the CMI approximates an entire meniscus, it is FDA cleared
o replace only portions of the medial meniscus and not for a complete
eniscal replacement. In doing so, the patient needs a healthy menis-

al rim complete with anterior and posterior roots to fix the implant. In
ddition, the defect in the patient must extend into the red-red or the
ed-white zone of the meniscus (or be resected and prepared to expose
he zones) in order to provide sufficient vascularization and access to
ells for repopulating the CMI. Initial studies showed that 6 months post
mplantation in human patients, ingrowth of cells into the CMI occurred
 117 , 118 ]. Histologically, the CMI had begun to be replaced by cells
imilar to meniscus fibrochondrocytes, new collagen was evident and
istinct from the CMI, and no inflammation or infection was present,
hough no detailed characterization of the cells were reported [ 117 ,
18 , 120 ]. In addition, significant implant structure was still present,
ut cellularization of the implants appeared to be progressive with im-
roved results after 1 year and accompanied by diminished implant size
118] , suggesting that the remodeling of the repaired meniscus is a slow
rocess. A sheep study using CMI showed that the nascent cell pop-
lation was more like scar tissue than meniscal tissue; however, CMI
eeded with fibrochondrocytes before implantation showed much im-
roved vascularization, remodeling, and cellularity [121] , which sug-
ests that using a scaffold loaded with cells such as fibrochondrocytes,
hondrocytes, or MSCs may offer a better approach for meniscal healing
nd regeneration compared with just a scaffold alone. Long term follow
p with CMI recipients using physical examinations for functionality and
RI scans indicate that pain relief and improved knee operation persist

or at least 10 years [122-124] and remodeling of the implant occurs
or up to 5 years post-surgery [125] . Interestingly, radiography showed
one of the CMIs maintained their initial size, 11% were complete re-
orbed and 89% were partially resorbed [ 123 , 126 ]. [127] It is unclear
f the reported shrinking size of the CMI over time was implant con-
raction or compression or if it was a biological absorption concomitant
ith cellular colonization and remodeling. Second look arthroscopies or
iopsy may answer this question. A recently published follow up study
n a small number of recipients concluded that CMI provided pain relief
nd good knee function for 20 years post implantation, though some os-
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eoarthritis progression was noted [127] . These data are encouraging,
nd additional recipients need to be studied for long term follow up. 

A different approach to meniscus injury treatment is the
Usurface device (Active Implants, LLC, Memphis, TN USA), a disk-

haped artificial meniscus composed of circumferentially strengthened
olycarbonate-urethane with embedded high tensile ultra-high molecu-
ar weight polyethylene fibers [128] . This implant is approved for use in
ome European countries and Israel, and is being investigated for safety
nd effectiveness in ongoing United States clinical trials (The SUN Clin-
cal Trial, The VENUS Clinical Study; ClinicalTrials.gov). This artificial
eniscus is neither resorbable nor biocompatible and was designed for

mplantation without any fixation requirement. However, the lack of
xation led to an incident where the implant migrated from the proper

ocation into the suprapatallar space and resulted in knee lock up [129] .
he ongoing clinical trials should determine if this issue remains prob-

ematic. 
The NUsurface artificial meniscus design was dictated by desired me-

hanical behavior and optimized with 3D finite element simulations of
aterial properties and contact mechanics of the knee joint [128] . The
nal design was chosen to have optimal pressure distribution in the knee
elative to natural meniscus, and also for ease of manufacturing. An
xtensive study showed that the implant was a non-linear viscoelastic
aterial, was flexible and deformable under low compressive load, but

ecame stiffer and resisted deformation under higher compressive loads.
his was attributed to the circumferential reinforcing fibers transition-

ng from a slack native state to aligning and tensing during deformation
130] . The synthetic meniscus was capable of withstanding 5 million dy-
amic gait loading cycles without failure and exhibited only superficial
urface damage [131] . Furthermore, in a study with cadaveric knees,
hemesh et al. concluded that the NUsurface implant restored mechan-
cal function in knees with damaged medial menisci to levels typical in
ealthy knees, and with no alteration to the contact pressures or area of
he lateral meniscus [132] .. 

Finally, ACTIfit (Orteq Sports Medicine Ltd., London, UK) is a
olyurethane and poly( 𝜀 -caprolactone) (PCL) based device that is a
iodegradable, porous scaffold approved for use in Europe [133] . It is
imilar to CMI in shape and implantation strategy for replacing part of
he damaged meniscus as long as the rim and horns are intact. Stud-
es show that host cells repopulate the device and that it is capable of
estoring knee function [133-136] . A recent 5-year European clinical
tudy of 155 patients indicated that ACTIfit improved knee joint func-
ion and decreased pain. [137] . However, 23 implants failed during the
tudy with 10 breakages, 7 replaced with allograft transplants, and 6
ubjected to knee arthroplasty. The US FDA has recently given ACTIfit
 Breakthrough Device Designation. 

. Development of scaffolds and tissue engineered models for 

eniscal repair 

In addition to implants already approved for medical use in patients
orldwide, there are numerous studies in the research and develop-
ent phase to design tissue engineered implants as well as practical

lternatives made with artificial materials. Tissue engineering brings
igh expectations for discovery of new regenerative medicine therapies.
arious materials, including synthetic polymers, hydrogels, and tissue-
erived ECM as well as MSCs and other cell types have been used re-
ently to produce scaffolds or tissue engineered models for meniscus
egeneration or replacement [138-144] ( Table 1 ). Furthermore, novel
abrication techniques such as 3D printing and electrospinning promise
o play a significant role for future orthopedic device design includ-
ng personalized medicine where customized manufacture of individual
atient-specific replacement tissues and devices are possible [145] . The
ollowing sections describe materials and additives used to build menis-
al structures that have been tested in vitro and in animal models as
ell as different scaffold fabrication techniques. 
6 
.1. Materials used for meniscal scaffolds and models 

Specific properties and features are required of materials used in
eniscal and other tissue substitutes (reviewed in [146] ). For exam-
le, scaffold material stiffness and composition is known to influence
he outcome of lineage differentiation of mesenchymal stem cells [147-
54] . The geometric and architectural features of the material such as
he pore size and percentage and micro surface roughness and height
re also important for cell adhesion, infiltration and proliferation [155-
59] , and collagen fiber length and stiffness together influence cell sur-
ace tension which is needed for proliferation and migration [160] . In
ddition, the materials must either be biocompatible or be capable of
eing functionally modified to promote cell growth and to avoid in-
roducing cytotoxicity [ 161 , 162 ]. In some cases, it is desired that the
caffold is resorbed and replaced with natural cells and extracellular
atrix. In these instances, it is important to understand the rate of

n vivo resorption relative to that of recellularization and remodeling
nd to note any potential toxicity of the degradation products in the
ody. 

Often synthetic materials such PCL, poly(lactic acid-co-glycolic acid)
PLGA), poly- l -lactide (PLLA), and others [ 142 , 143 , 163 , 164 ] are used.
CL is appealing to use in scaffolds because devices made from it have
een approved by the FDA, it’s ∼60 °C melting point makes it easy to
ork with and it is metabolized into non-harmful CO 2 and H 2 O [165] .
caffolds may also be composed of natural molecules such as colla-
en, gelatin, hyaluronic acid, agarose and other hydrogels [166] , and
n some instances scaffolds are composed of ECM from decellularized
eniscus tissue [ 167 , 168 ]. Hydrogels are polymer networks that absorb

nd retain water due to the presence of hydrophilic groups [169] . Their
rosslinked network stems from hydrogen bonds, hydrophobic interac-
ions, and covalent bonds that convey stability in water while maintain-
ng a three-dimensional structure. In general, most protein hydrogels
nd other natural polymers provide an environment that encourages cell
dhesion, growth and differentiation, but lack stiffness and mechanical
trength [170] . Thermoplastics are a useful aid to mechanical stability
nd scaffold structural integrity, but are not always preferred substrates
or cell growth [ 169 , 171 ]. 

Decellularized extracellular matrix (DECM) has been used as a cell-
nstructive building block for tissue engineering in many projects [172-
75] , including meniscus [ 168 , 176-181 ], where it’s use was first re-
orted by Maier et al. in 2007 for ovine specimens [182] , Stapleton
t al. for porcine meniscus [181] and Sandmann et al. in 2009 for hu-
an meniscal tissue [183] . The ECM components such as collagen, fi-

ronectin, laminin, elastin, proteoglycans, and the localized growth fac-
ors present are involved in maintaining the native-like environment of
he cells growing both in vitro or in vivo [184] . Gentle removal of the
ells preserves the complexity of structured matrix to serve as a scaffold
 17 , 181 , 185 ] while retaining instructive cues for cellular repopula-
ion and gain of functionality in the tissue engineered model, and thus
ay be more promising to use than other biomaterials. DECM scaffolds
ay offer clinical value in treating meniscal tears by acting as a biome-

hanically relevant material to replace damaged tissue removed dur-
ng partial meniscectomy [185] , however nearly all the published work
n DECM scaffolds as meniscal replacements are in vitro studies. Thus,
dditional pre-clinical animal studies are required to evaluate if DECM
caffolds provide a suitable long-term solution for repair of damaged hu-
an meniscus tissue. Another limitation is the potential for significant

oss of GAGs during decellularization [ 17 , 181 , 186 ]. Furthermore, the
ense microstructure of both native and decellularized meniscus hin-
ers cell mobility, invasion and proliferation. Macropore sizes in the
ange of 150–500 μm seem to be ideal for cellular infiltration [159] , and
nfiltration is improved following treatment with histone deacetylase
nhibitors to reduce the stiffness of the cell nucleus to make deforma-
ion easier during cell translocation [187] . Matrix-degrading enzymes
ay also be used, in order to render the meniscus matrix environment

loser to a fetal-like state, which is known to have better repair capa-
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Table 1 

Recent publications on meniscal substitute research. 

Material used Fabrication 
method 

Biological 
Additives 

Results Notables Cross-linker Methods Reference 

Fabrication by molding 
Collagen I Molding Meniscal fibro- 

chondrocytes 
Collagen, gag content, tensile and 

equilibrium moduli increased 
with time. 

∼50% uniform 

contraction of 
the meniscus 

Culture the cells and meniscus 
structure in chondrogenic 
media for 4 weeks. 

[208] 

Collagen I Molding Meniscal Fibro- 
chondrocytes 

Immobilized constructs retained 
their dimensions over the culture 
period unlike unclamped 
samples. Collagen fiber 
remodeling resulted in 
developing circumferential and 
radial alignment leading to 
anisotropy with a 2–3x 
circumferential moduli relative to 
radial moduli. 

Collagen meniscal structures 
and cells were immobilized 
at the extended horn region 
and cultured for up to 8 
weeks in growth media. 

[233] 

Collagen I Molding Meniscal Fibro- 
chondrocytes 

Development of aligned collagen 
fibers proceeded faster and was 
accompanied by improved GAG 
and collagen content and 
native-like equilibrium modulus, 
and improved tensile properties. 

Collagen meniscal structures 
and cells were immobilized 
at the extended horn region 
and cultured for up to 4 
weeks in growth media with 
axial loading applied. 

[234] 

Collagen I molding MSCs, meniscal fi- 
brochondrocytes 

MSCs led to higher level of GAG 
compared with fibrochondrocytes 
but the collagen structure was 
not as good. 

High levels of GAG 
production 
correlated with 
reduced collagen 
fiber diameter. 

Collagen meniscal structures 
and cells were immobilized 
at the extended horn region 
and cultured for up to 4 
weeks in growth media. 

[239] 

Collagen I molding Meniscal fibro- 
chondrocytes 

Molding collagen into tubing 
loaded with bone plugs formed a 
scaffold with three regions: bone, 
bone-collagen, and collagen, 
showing collagen and bone can 
be integrated together into a 
simplified test model for 
meniscus-to-bone enthesis. 
Clamped samples had continuous 
collagen fibers that spanned the 
collagen and bone regions and 
did not contract in the 
longitudinal axis like unclamped 
samples, and are more like that 
found in native enthesis. 

The integration of 
fibrochondrocyte seeded 
collagen gels to 
decellularized bone plugs 
was studied as an enthesis 
model system for up to 4 
weeks in modified growth 
media. It was also 
determined if immobilization 
in the bone plug surface 
effects collagen organization 
at the soft tissue to bone 
interface. 

[245] 

DECM molding Meniscus cells Meniscus cells invaded scaffolds 
with 16% W/V ECM density. 
Genipin cross-linking led to 
higher GAG content and cell 
numbers, and improved shear 
strength of repair 

genipin Determine the effects of ECM 

density and genipin cross 
linking on cell proliferation 
and differentiation within the 
ECM scaffold. 

[168] 

DECM molding hMSCs Meniscal cells invaded the 
peripheral region of the unseeded 
plugs within 7 days of explant 
culture but required 28 days to 
cellularize the inner regions of 
the plug. MSC-seeded 8% density 
scaffolds retained more cells and 
had higher DNA and GAG content 
after 28 days. 

DECM from meniscus was 
powdered, rehydrated to 8% 

W/V and molded. Cylindrical 
plugs were placed into 
porcine menisci and cultured 
as an explant in MSC growth 
media with ascorbate 

[178] 

DECM Molding/ freeze 
drying 

SF-MSCs, TGF 𝛽3, 
IGF1 

TGF- 𝛽3 and IGF1 induced 
production of the cartilaginous 
matrix and upregulated the 
expression of aggrecan, collagens 
I and II. SF MSCs had a round 
morphology in the DCM scaffolds 
in the presence of the growth 
factors. SF MSCs had better 
characteristics compared to bone 
marrow MSCs for meniscus tissue 
engineering applications by 
undergoing fibrochondrogenesis 
with less hypertrophic 
differentiation (based on collagen 
X) . Larger-scale fibrocartilaginous 
matrix was generated by SF-MSCs 
seeded on meniscal DECM 

scaffolds with TGF- 𝛽3 and IGF-1. 

Synovial fluid (SF) MSCs were 
cultured on DECM scaffolds 
with and without the 
addition of growth factors in 
serum free chondrogenic 
media for up to 3 weeks. 

[194] 

( continued on next page ) 
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Table 1 ( continued ) 

Material used Fabrication 
method 

Biological 
Additives 

Results Notables Cross-linker Methods Reference 

DECM molding MSCs, TGF 𝛽3 Serum-free media with TGF- 𝛽 and 
dexamethasone promoted MSC 
proliferation and increased the 
production of meniscus ECM 

components, collagens and 
proteoglycans and promoted 
integrative repair of meniscus 
tissue explants 

Test properties of cell seeded 
DECM (8% w/v) scaffolds 
cultured in different 
combinations of serum, 
Dexamethasone, and TGF- 𝛽. 
Evaluate the effects of these 
media on the tissue 
biochemical properties and 
the shear strength of repair 
in menisci explant models. 

[246] 

DECM, PEG-DA molding MSCs qPCR showed that collagen I was 
upregulated in gels made with 
outer region DECM, while 
collagen II and aggrecan were 
upregulated in gels made with 
inner region DECM. 

LAP Cells, DECM from either the 
inner or outer meniscal 
region and PEGDA were 
mixed to form a hydrogel, 
and placed in chondrogenic 
cell culture media. 

[180] 

GelMA, HaMA molding chondrocytes A bioreactor system was developed 
that applied defined uni- and 
biaxial mechanical stimulation to 
chondrocyte-containing 
hydrogels. 14-day static 
preculture was necessary in order 
to detect upregulation of 
chondrogenic markers after 
loading. Short duration loading 
∼1 hr. led to better results 
compared to 12 hr. loading 
cycles. 

Irgacure 
2959 

The effects of different 
mechanical loads applied to 
cells in hydrogels and grown 
in chondrogenic media were 
evaluated. 

[237] 

GelMA molding ADSCs, TGF 𝛽3 ADSCs encapsulated in GelMA and 
preloaded with TGF-b3 at 
2 mg/mL undergo chondrogenic 
differentiation and, when 
injected and cross linked into a 
radial meniscal tear, resulted in 
repair, based on histology and 
mechanics. 

For direct repair of 
meniscal tears in 
situ 

LAP Cross linked gelatin was seeded 
with cells and TGFB was 
investigated in an in vitro 
meniscal tear model, where 
tears were made and then 
healing ability of the cells 
and hydrogel was assessed 
for up to 8 weeks in culture 
following injecting and 
crosslinking in the tear. 

[197] 

PCL, carbon 
nanofibers 

molding Meniscal cells When compared to human 
meniscus samples and control 
scaffolds lacking nanofibers, 
these nanocomposite scaffolds 
have better static and dynamic 
mechanical properties. Meniscal 
cells attached to the honeycomb 
surface and proliferated. Scaffolds 
were subcutaneously implanted 
rabbits, and biochemical and 
immunohistochemistry analysis 
showed biocompatibility. 

PCL scaffolds were prepared 
with different concentrations 
of carbon nanofibers and 
evaluated based on physical 
and biological properties. 
Biotin, chondroitin, proline 
and glucose were also added 
to the scaffolds which were 
then freeze dried. 

[247] 

CMI Commercial 
product made 
by mold- 
ing/freeze 
drying 

MSCs Perfusion and 
mechanicalstimulation positively 
effect MSC proliferation and 
differentiation while seeded on a 
collagen meniscus implant. 
Equilibrium modulus improved 
2.5-fold with growth under 
compression. 

Cells were seeded on a CMI and 
grown in static conditions or 
a bioreactor with perfusion 
and/or cyclic compression. 

[232] 

Fabrication by electrospinning 
Collagen I electrospinning A custom electrospinning printer 

was designed and built to 
produce organized single lines of 
collagen nanofibers with 
cylindrical morphology. 40% 

acetic acid was the best solvent to 
produce solid cylindrical collagen 
fibers of 1–2 micro diameter. 

Acetic acid concentration, 
relative humidity and voltage 
parameters were optimized 
for direct-write 
electrospinning collagen 
nanofibers for building 
scaffolds. 

[248] 

Collagen I, 
chondroitin 
sulfate, hyaluronic 
acid, PLGA 

Freeze dried 
foam and elec- 
trospinning 

Meniscal fibro- 
chondrocytes 

Cells proliferated on scaffolds for 
up to 3 weeks, but were slow to 
invade the interior. Compressive 
modulus reached 12 kPa after 45 
days in culture 

EDC/NHS Culture the cells and scaffold 
for up to 45 days. 

[210] 

( continued on next page ) 
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Table 1 ( continued ) 

Material used Fabrication 
method 

Biological 
Additives 

Results Notables Cross-linker Methods Reference 

Collagen I, 
chondroitin 
sulfate, hyaluronic 
acid, PLGA 

Freeze dried 
foam and elec- 
trospinning 

Meniscal fibro- 
chondrocytes 

Best results in samples seeded with 
cells prior to implantation. In all 
cases scaffolds were resorbed 
over time and inflammatory cells 
were observed. Chondrocytes and 
fibrocartilage tissue were present 
along with connective tissue 

EDC/NHS Culture the cells and scaffold 
for 10 days and implant into 
rabbit knees for 3 or 10 
weeks. 

[209] 

PMMA, PCL, PLA, 
Collagen I 

electrospinning One formula (FM3) had the best 
compressive (255 MPa) and 
tensile moduli (11.6 MPa). No 
sign of infection was observed in 
the xenograft and 
neovascularization was detected 
along with granuloma indicating 
invasion of the foreign materials 
by macrophages. 

Different formulations of 
Collagen and polymers were 
blended and electrospun onto 
negative shaped meniscal 
mandrels with random, 
aligned or radial fibers. A 
meniscus replicate was 
produced with different fiber 
alignment in different regions 
and sections of the meniscus 
were implanted into rat renal 
capsules for up to 4 weeks. 

[249] 

PCL, PEO, 
hyaluronate 

electrospinning PDGF-AB, 
collagenase 

In vitro and in vivo data 
demonstrate that 
chemoattractants alone do not 
increase cell migration without 
also modifying local ECM 

microenvironment with 
collagenase to make it more 
porous. 

PCL scaffold was combined 
with water soluble poly 
(ethylene oxide) (PEO) fibers 
that allowed for rapid release 
of collagenase followed by 
slower degrading HA fibers 
that released PDGF over 
several weeks. A meniscal 
fragment containing the 
scaffold was subcutaneously 
implanted into nude rats. 

[189] 

PCl, PEO electrospinning Meniscal fibro- 
chondrocytes 

Softening of the nucleus improves 
migration through microporous 
membranes, electrospun 
scaffolds, tissue sections and the 
subcutaneous meniscal implant. 
Nuclear properties and cell 
function recover after treatment. 

PCL scaffold was combined 
with water soluble PEO fibers 
that allowed for rapid release 
of HDAC inhibitors to 
decrease meniscal cell 
nuclear stiffness. A meniscal 
fragment containing the 
scaffold was subcutaneously 
implanted into nude rats. 

[187] 

DECM, PCL electrospinning Meniscal fibro- 
chondrocytes 

Tensile modulus of aligned fibers 
peaked at ∼330 Mpa and was 
significantly higher than the 
randomly aligned fibers (90 
Mpa). Scaffolds also supported 
cell attachment though there was 
no correlation with ECM content. 

Electrospun filaments were 
analyzed for mechanical 
properties and cell 
attachment. 

[191] 

Fabrication with 3D Printing 

Silk, gelatin 3D printing Meniscal fibro- 
chondrocytes 

Biocompatibility was excellent. 
Fibrochondrocyte gene 
expression was maintained for 3 
weeks. Compressive moduli was 
similar to native meniscus. 

EDC/NHS 3D print human meniscus 
shaped scaffolds with three 
layers of grid, concentric and 
lamellar infill patterns. 

[227] 

Collagen I 3D printing MSCs Successfully reproduced the shape 
of the patient meniscus and cell 
were viable. 

No attempt to 
mimic collagen 
architecture 

Patient specific model created 
from MRI and printed with 
collagen I. 

[214] 

Collagen I, alginate, 
agarose 

3D printing Chondrocytes Collagen or agarose each increased 
mechanical strength of alginate 
gels. Collagen/alginate gels were 
better at inducing cell 
attachment, proliferation, GAG 
production and cartilage gene 
expression, and better maintained 
chondrocyte phenotype. 

CaCl 2 3D printed hydrogels and cells 
were evaluated by analysis of 
swelling ratio and 
mechanical properties and 
assessment of cell viability, 
morphology, and cartilage 
gene expression. 

[250] 

Collagen I, 
hyaluronic acid, 
p(DTD DD) 

Molding, 3D 
printing and 
fiber weaving 

Demonstrated that a 
fiber-reinforced scaffold acts as a 
functional meniscus replacement 
and had a protective effect on the 
articular cartilage through 32 
weeks. 

A polymer fiber–reinforced 
collagen sponge meniscus 
scaffold was evaluated 
mechanically and 
histologically after up to 32 
weeks of implantation in an 
ovine total meniscectomy 
model. 

[251] 

( continued on next page ) 
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Table 1 ( continued ) 

Material used Fabrication 
method 

Biological 
Additives 

Results Notables Cross-linker Methods Reference 

poly(desaminotyrosyl- 

tyrosine dodecyl 
ester 
dodecanoate), 
(p(DTD DD) 
collagen I, 
hyaluronate 

3D printing and 
infusion 

Compressive moduli and tensile 
stiffness comparable to native. 
When transplanted into a partial 
meniscus defect in an in vitro test 
using sheep hind limbs, it 
restored near normal knee 
contact stress. 

3D-printing circumferential 
and radial filaments of 
poly(desaminotyrosyl- 
tyrosine dodecyl ester 
dodecanoate) and infused 
with collagen-hyaluronan. 
Mechanical properties were 
evaluated in an in vitro knee 
model system. 

[228] 

Collagen I, 
hyaluronic acid, 
p(DTD DD) 

3D printing Scaffolds were infiltrated with cells 
that generated dense 
fibrocartilage-like tissue with 
significant collagen and GAG 
deposition. The stability of the 
surgical fixation was variable, 
with three partially displaced and 
five completely displaced 
implants at 12 weeks and three 
correctly placed, four partially 
displaced, and two completely 
displaced implants at 24 weeks. 

EDC/NHS Biomechanically functional, 
collagen-hyaluronan infused, 
printed polymeric scaffold 
was implanted into 18 sheep 
for up to 24 weeks to assess 
the scaffold’s fixation, 
cellular response, tissue 
generation, integration to the 
host tissue, and effect on the 
surrounding articular 
cartilage. 

[229] 

PCL, GelMA, 
Agarose 

3D printing Meniscal fibro- 
chondrocytes 

Dynamic stimulation resulted in 
increased collagen II in the inner 
region, and increased collagen I 
in the outer region. 

Irgacure 
2959 

Meniscus shaped PCL scaffold 
printed and then coated with 
agarose and GelMA in the 
inner and outer regions. 
Constructs with cells were 
incubated in chondrogenic 
media for 6 weeks. Dynamic 
biaxial strain that increased 
in magnitude from the outer 
region (2% axial strain and 
1% radial strain) towards the 
inner region (10% axial 
strain and 5% radial strain) 
was applied between weeks 4 
and 8, at 1 Hz, for 1 h/day 
and 5 days/week 

[224] 

PCL, GelMA, 
GelMA-agarose 

3D printing Meniscal fibro- 
chondrocytes 

Circumferential PCL strands 
promoted elongation and 
alignment of fibrochondrocytes. 
These resemble native meniscus 
with more Collagen I in the outer 
zone and more Collagen II in the 
inner zone. 

Irgacure 
2959 

Circumferentially oriented PCL 
filaments were printed in a 
meniscus shape, and then the 
inner and outer zones were 
coated with 
fibrochondrocytes in 
GelMA-Agarose and GelMA, 
respectively. 

[226] 

GelMA, HaMA, 
agarose, PCL 

3D printing, 
molding 

Meniscal fibro- 
chondrocytes 

GelMA and agarose allowed better 
cell viability than other hydrogels 
and PCL promoted better 
proliferation. Agarose, GelMA, 
HaMA, and GelMA- HaMA 
hydrogels induced a higher 
production of ECM than PCL. 
GelMA, on which cells adhered 
strongly, exhibited a high level of 
collagen production. Agarose and 
HaMA, on which cells adhered 
weakly and assumed a round 
morphology, exhibited a high 
level of GAG production. 

Irgacure 
2959 

Different hydrogels, and 3D 
printed PCL were tested for 
in vitro meniscal 
regeneration in static and 
dynamic culture in 
chondrogenic media. 

[252] 

PCL, DECM, alginate Molding, 3D 
printing 

ADSCs, TGF 𝛽3, 
CTGF 

Alginate and ECM hydrogels 
derived from inner and outer 
regions of the meniscus 
stimulated chondrogenesis and 
fibrochondrogenesis, 
respectively. These were further 
improved after culture with 
TGF 𝛽3 and CTGF, respectively. 
The hydrogel was 3D bioprinted 
in alternating strands with PCL 
which resulted in an equilibrium 

modulus of ∼1000 kPa. 

CaCl 2 Alginate hydrogels were mixed 
with DECM from inner or 
outer meniscus zone along 
with ADSCs and cultured 
with TGF 𝛽3 and CTGF 
media. Gels were mixed with 
PCL for 3D printing. 

[199] 

( continued on next page ) 
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Table 1 ( continued ) 

Material used Fabrication 
method 

Biological 
Additives 

Results Notables Cross-linker Methods Reference 

DECM, PCL 3D printing and 
molding 

Meniscal fibro- 
chondrocytes 

After 6 months, the best results 
were from the combination of 
PCL, ECM and cells where the 
collagen content was close to 
native, GAG content was 75% of 
native control group, and tensile 
modulus and compressive moduli 
were 85% and 60% of control. 

PCL filaments extruded in 
circumferential and radial 
directions to simulate 
meniscal collagen fiber 
arrangements and a hybrid 
scaffold was created after 
injection of meniscus DECM. 
Constructs were seeded with 
fibrochondrocytes and 
implanted into a rabbit 
meniscal defect model. 

[179] 

PCL 3D printing MSCs, CTGF, 
TGF 𝛽3 

MSCs subjected to growth factor 
and dynamic loading showed 
zonal differentiation into 
fibrochondrocyte-like cells with 
collagen I and II synthesis. In 
rabbits, evaluation at 24 weeks 
revealed zone-specific matrix 
phenotypes that resembled native 
tissue. The outer zone had an 
aligned fibrous matrix containing 
COL 1, and the inner zone was 
cartilaginous containing COL-2 
and proteoglycans. In vivo, the 
implants developed native like 
ECM structure and mechanical 
properties approaching native 
meniscus. 

Test effects of dynamic 
compressive-tensile loading 
and growth factors on MSCs 
seeded on a PCL scaffold. 
Mechanical and biological 
properties were evaluated in 
vitro for 4 weeks and in vivo 
for 24 weeks. 

[201] 

PCL 3D printing MSCs Cell seeded scaffolds increased 
fibrocartilage regeneration with 
the presence of collagens I, II, III 
and proteoglycans. In addition, 
there was less tibia and femur 
cartilage degeneration in the cell 
seeded implants compared with 
meniscectomy or scaffold only. 

PCL scaffolds were seeded with 
cells for 24 h and implanted 
into a rabbit knee for up to 
24 weeks. 

[192] 

PCL 3D printing Infill structure (tool path) affected 
the compressive modulus. 

No hydrogel was 
used 

Used a patient specific 
meniscus model and varied 
the tool paths while printing 
to generate 2 different 
geometries based on variants 
of cross hatch infill patterns, 
and evaluated the porosity 
and compressive modulus. 

[213] 

PCL 3D printing MSCs Mean pore size of 3D-printed PCL 
scaffold influenced MSC 
behavior, GAG and collagen II 
production and biomechanics. 
Scaffolds with a mean pore size 
of 215 𝜇m had better tensile and 
compressive moduli and were 
optimal for cell attachment and 
ECM production. No 
inflammation was detected in 
vivo, and vascular infiltration 
was detected in the outer zone of 
the implant. 

PCL scaffolds were fabricated 
with 3 different pore sizes, 
and MSC attachment, GAG 
production and mechanical 
properties were measured. 
Scaffolds were implanted in 
rabbit knees for 12 weeks. 

[157] 

PCL 3D printing Meniscus scaffolds were produced 
with an architecture of 
circumferential and radial fibers. 
Suture tabs were incorporated to 
facilitate fixation at the meniscal 
horns and the coronary 
attachments. These scaffolds 
were designed to have 100% pore 
interconnectivity and 61% 

porosity. The equilibrium 

compressive modulus at 10% 

strain of the scaffold was 
18.8 ± 3.1 MPa and ultimate load 
in a suture pull-out test on the 
anterior horn suture tab was 32 
N. 

A 3D printed meniscus scaffold 
was made with PCL using 
several different 
architectures. 

[163] 

( continued on next page ) 
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Table 1 ( continued ) 

Material used Fabrication 
method 

Biological 
Additives 

Results Notables Cross-linker Methods Reference 

PCL, PLGA 3D printing TGF 𝛽3, CTGF PCL meniscal scaffolds supported 
variable regeneration of fibrous 
and fibrochondrocytic tissue. 
There were no significant visual 
differences in the regenerated 
meniscal tissue with and without 
growth factors present. PCL 
degraded over time but remnants 
were still detectable at 12 
months. 82% of the implants 
partially extruded out of place. 

No fixation at the 
meniscal horns 

Scaffolds with and without GF 
microspheres were implanted 
into sheep for up to 12 
months. Implants were 
sutured to remaining 
meniscus and joint capsule. 

[198] 

PCL, PLGA 𝜇spheres 3D printing SF MSCs, TGF 𝛽3, 
CTGF 

After 6 weeks in vitro , CTGF and 
TGF 𝛽3 induced zone-specific 
expression of collagen I and II, 
from SF MSCs, and resembled 
native meniscus. Regenerated 
sheep meniscus tissue had 
zone-specific cell phenotypes 
similar to native meniscus, where 
the outer zone contained 
fibroblast-like cells; 
chondrocyte-like cells in the 
inner zone; and mixed fibroblast- 
and chondrocyte-like cells in the 
intermediate zone. Young’s 
modulus was higher in the 
CTGF →TGF 𝛽3 scaffold group and 
the native menisci than in the 
empty 𝜇S group. 

Anatomically shaped meniscus 
were 3D printed with PCL 
with circumferential fibers. 
Microspheres containing 
CTGF and TGF 𝛽3 𝜇S were 
tethered to the outer and 
inner regions of the meniscus 
scaffold, where they released 
rapidly or slowly over 42 
days, respectively in culture 
on a monolayer of SF MSCs, 
or in sheep. 

[200] 

Cellulose 
nanocrystal, 
phenyl acrylate, 
acrylamide 

3D printing A single network copolymer 
hydrogel was printed and tested. 
The synergistic effect of the 
hydrophobic (PA) and 
hydrophilic (acrylamide) 
components induced a significant 
increase in tensile strength 
( ∼4.4 MPa) and compressive 
strength ( ∼20 MPa). 

Irgacure 
2959 

hydrogel containing cellulose 
nanocrystal (CNC), and 
different ratios of phenyl 
acrylate (PA) and acrylamide 
was developed to print an 
artificial meniscus. 

[253] 

PLL nanofibers, 
alginate 

3D printing ADSCs Compared to alginate hydrogel 
alone, the PLA aided cell 
proliferation. 

CaCl 2 Patient specific meniscus model 
3d bioprinted and placed in 
chondrogenic media. 

[225] 

PLGA 𝜇spheres, 
fibrin 

Not applicable Synovial MSCs, 
TGF 𝛽3, CTGF 

1000 ng/ml CTGF and slow TGF 𝛽3 
release (0.3 ng/day) effectively 
heal the meniscus tear, based on 
histology, alignment of collagen 
fibers, and tensile modulus. 

For direct repair of 
meniscal tears in 
situ 

Release rate of TGF 𝛽3 was 
controlled by varying 
compositions of PLGA 
microspheres, and CTGF was 
encapsulated in fibrin glue. 
Meniscus explants with tears 
were cultured for 8 weeks on 
top of MSCs to determine 
how dose and rate of release 
influence tear healing. 

[195] 

Fibrin gel, PLGA 
𝜇spheres 

Not applicable SF MSCs, TGF 𝛽3, 
CTGF 

Short-term release of CTGF 
recruited SF MSCs into the 
incision site and formed an 
integrated fibrous matrix. 
Sustain-released of TGF 𝛽3 led to 
remodeling of the intermediate 
fibrous matrix into 
fibrocartilaginous matrix, fully 
integrating incised meniscal 
tissues with improved functional 
properties both in explants and in 
rabbits. 

Healing was evaluated using a 
meniscal explant model 
derived from the inner 
avascular region and 
cultured on a SF MSC 
monolayer in chondrogenic 
media for up to 6 weeks. Also 
tested in avascular regions of 
rabbit menisci in vivo for up 
to 6 weeks. 

[196] 

DECM Not applicable Chondrocytes Decellularized meniscus maintained 
collagen architecture and 
mechanical properties. 

60% loss of GAGs 
during 
decellularization 

Meniscal tissue was gently 
decellularized. 

[181] 
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ility [187-190] . Thus, the balance between using structured DECM to
upply instructive cellular cues while retaining the physical integrity
f a functional support and maintaining porosity conducive to cellular
igration and repopulation is important for the success of tissue engi-

eered meniscal substitutes. a  

12 
Two recent studies [ 168 , 178 ] used minimally processed porcine
ECM to mold scaffolds of different densities. Porosity decreased with

ncreasing ECM percentage but all pores were larger than typical cell
iameters. In an in vitro meniscus injury repair model using 3 mm di-
meter scaffold plugs, it was observed that meniscal cells invaded the



G.J. Klarmann, J. Gaston and V.B. Ho Biomaterials and Biosystems 4 (2021) 100026 

p  

d  

8  

G  

s  

r  

s  

c  

i
 

f  

T  

n  

fi  

n  

t  

(  

c
 

v  

1  

m  

f  

g  

d  

o  

a  

c  

a  

c  

l  

l  

u  

[  

t  

r  

I  

fi  

e  

n  

t  

r  

8  

s  

G  

p  

a

4  

 

o  

n  

a  

d  

w  

i  

s  

d  

i  

o  

d  

p  

m  

t  

t  

t
 

a  

m  

t  

c  

t  

c  

t
 

t  

w  

c  

a  

p  

m  

p  

f  

s  

r  

a  

p

4

p

 

c  

p  

2  

c  

i  

c  

l  

m  

r  

t  

C  

t  

r  

p  

t  

t  

s  

T  

r  

s  

c  

s  

h  

fl  

n  

t  

t  

m  

s  

f  

f  

I  

t  

F  

p  

o  

i  

c  
eripheral region of the unseeded plugs within 7 days but required 28
ays until the inner regions of the plug were cellularized. MSC-seeded
% density (w/v) scaffolds retained more cells and had higher DNA and
AG content after 28 days [178] . Meniscus cells were able to invade

caffolds with 16% ECM density. The addition of genipin cross-linking
esulted in higher GAG content and cell numbers, and improved the
hear strength of repair [168] . Their data suggest that the 16% w/v,
ross-linked DECM scaffolds may be an approach to continue pursuing
n an effort to develop laboratory generated meniscal repair solutions. 

In a different approach, porcine DECM was combined with PCL to
abricate random and aligned nanofibers using electrospinning [191] .
he tensile modulus of aligned fibers peaked at ∼330 MPa and was sig-
ificantly higher than the 90 MPa measured for the randomly aligned
bers. These scaffolds also supported cell attachment though there was
o correlation with ECM content. This study, like most involving elec-
rospinning, suffers from limitations in that only very thin fiber mats
 < 1 mm) can be deposited thus precluding production of a physiologi-
ally relevant 5–10 mm thick meniscus tissue implant. 

The addition of morphogenic growth factors (GF) can improve cell
iability, differentiation, and infiltration in meniscal scaffolds [ 189 ,
92-201 ]. In some cases, meniscal devices were suspended in cell culture
edia containing cartilage grown factors such as transforming growth

actor beta (TGF 𝛽), connective tissue growth factor (CTGF), insulin-like
rowth factors (IGF) or others to facilitate chondrogenic and fibrochon-
rogenic differentiation of stromal type stem cells [ 199 , 201 , 202 ]. In
ther studies, the growth factors are mixed within the hydrogel [197] ,
nd finally, growth factors were applied with fibrin glue and PLGA mi-
rospheres to patch meniscal tears [ 195 , 196 ]. Mohanraj et al. published
n intriguing PLGA microsphere GF delivery approach where the mi-
rospheres were designed to release TGFB3 cargo based on mechanical
oading thresholds [203] . This approach may have value for repair of
oad bearing tissues including the meniscus. Several studies found the
se of TGF 𝛽3 alone was insufficient to induce effective meniscal healing
 200 , 204 ]. Thus, more in-depth approaches investigated the combina-
ion of TGF 𝛽3 and CTGF where the GF release occurred in a more tempo-
ally controlled manner in defined meniscal zones [ 195 , 196 , 198 , 200 ].
n one instance, a 3D printed PCL meniscus scaffold with circumferential
bers and interconnecting microchannels contained TGF 𝛽3 and CTGF
ncapsulated within PLGA microspheres physically tethered to the in-
er and outer meniscal zones [200] . The PLGA components determined
he release kinetics and allowed for rapid release of CTGF and controlled
elease of the TGF 𝛽3 over 42 days. The scaffolds were cultured for up to
 weeks directly on a monolayer of synovial MSCs in an explant model
ystem. The acellular meniscus was invaded by the MSCs and developed
AG-rich fibrocartilage type tissue with aligned collagen fibers and im-
roved tensile modulus; The most favorable results were observed with
 high concentration of CTGF and slowly releasing TGF 𝛽3. 

.2. Meniscal substitutes and scaffolds fabricated using traditional methods

Scaffolds for tissue engineering are often fabricated by molding and
ccasionally in combination with other methods such as electrospin-
ing [205] . Simple molded scaffolds of PCL or PCL/Pluronic F127 with
nd without a collagen coating support MSC growth and chondrogenic
ifferentiation in vitro [206] . More complex meniscal shaped scaffolds
ere fabricated from polyglycolic acid (PGA) fiber meshes by bond-

ng adjacent PGA fibers with PLGA [207] . Rabbit meniscal cells were
eeded on scaffolds which were then implanted in rabbits following me-
ial meniscectomy. The implant shape was maintained over 36 weeks
n vivo only when seeded with cells. Histologically, the cells resembled
rganized fibrochondrocytes, and collagen I, II and proteoglycans were
etected. However, the total amount of collagen measured in the im-
lant recovered after 36 weeks was approximately half that of natural
eniscus, though collagen content was slightly higher in the middle sec-

ions, and the Young’s Modulus in the middle and posterior sections of
13 
he recovered implant was 4 times less than natural tissue, indicating
hat these scaffolds are not yet as strong as native menisci [207] . 

Pure bovine collagen I and fibrochondrocytes were shaped using an
natomically correct meniscal mold [208] . Compared to alginate-based
eniscus scaffolds, the collagen menisci contracted significantly over

ime in culture, though this could be mitigated somewhat using high
oncentration collagen (20 mg/ml). The collagen and GAG content and
he tensile modulus increased with longer culture but ultimately the
ollagen organization and mechanical strength were less than that of
he native meniscus [208] . 

Collagen foams have been used to produce scaffolds [ 209 , 210 ]. In
his work, Halili et al. stacked 3 layers of collagen foam interspersed
ith electrospun mats of PLGA and collagen I fibers and with the top

ollagen foam layer also containing chondroitin sulfate and hyaluronic
cid. The mechanical properties could be tuned by changing the foam
reparation methods as well as by seeding the scaffold with rabbit
eniscal cells, which improved the compressive properties [210] . Re-
lacement of the medial meniscus in a rabbit model with these scaf-
olds demonstrated the most favorable results were detected in samples
eeded with cells prior to implantation. In all cases the scaffolds were
esorbed or degraded over time and inflammatory cells were observed
t the tissue site, but some chondrocytes and fibrocartilage tissue were
resent along with unstructured connective tissue [209] . 

.3. Meniscal substitutes and scaffolds fabricated with three-dimensional 

rinting 

3D printing is becoming a more common method to produce menis-
al scaffolds and replacements due to the ability to precisely control
rint head tool paths and architectural geometry of the object [ 211 ,
12 ]. This method can be used to fabricate a 3D structure specified via
omputer aided designs using hydrogels, synthetic polymers or ceram-
cs and are sometimes supplemented with morphogenic proteins, and/or
ells (bioprinting) [211] . Typically, a 3D printed object is manufactured
ayer by layer with precise control over the printhead tool path. 3D
edical image datasets derived from CT and/or MRI can be used to

econstruct the patient’s exact meniscus for 3D printing [ 213 , 214 ]. Al-
ernatively, a more generalized meniscus structure similar in form to the
MI can be 3D printed and be ready to be shaped as needed by the or-
hopedic surgeon ( Fig. 4 ). Bioinks used for 3D bioprinting have similar
equirements as scaffold materials and, in addition they must have the
roper viscosity to be printable. However, hydrogels like collagen need
o be held at cooler temperatures during extrusion printing to avoid
hermally induced gelling, and this low viscosity solution lacks the es-
ential structural properties to maintain shape fidelity during printing.
hus, unlike thermoplastics which are easily printed via extrusion, and
etain their dimensions as each layer is extruded, collagen ink extru-
ions frequently sag as subsequent layers are deposited which ultimately
ompromises print quality by limiting the print height and decreasing
hape fidelity. The use of support baths made of gelatin and agarose
ave greatly aided the printing of collagen and hydrogels by acting as
uid gels [215-217] . The inherent viscosity of the fluid gel holds the
ewly extruded ink in place until it gels or is crosslinked while, owing
o fast viscoelastic recovery, yielding enough to allow the extrusion tip
o move through without significant resistance. Indeed, extrusion fila-
ents with diameters as small as 20 𝜇m have been successfully printed in

upport baths [218] . 3D bioprinting also comes with risks of cell damage
rom the shear stress, hydrostatic pressure, and compressive and tensile
orces, and not all cell types will be affected in the same way [219] .
n addition, shear and mechanical stresses can initiate cell differentia-
ion in mesenchymal stem cells and other cell types. [ 148 , 220-222 ].
urthermore, although chemical photoinitiating agents such as lithium
henyl-2,4,6-trimethylbenzoylphosphinate (LAP) and Irgacure 2959 are
ften used in bioinks and methacrylated hydrogels for crosslinking to
mprove strength and mechanical properties, they can be a source of
ytotoxicity and genotoxicity mediated by free radical photoproducts of
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Fig. 4. 3D printed meniscus examples. Menisci 
designs were 3D printed in thermoplastic poly- 
mer as examples to illustrate two different ap- 
proaches for replacement menisci. A. Anatomi- 
cal design printed from a reconstruction based 
on MRI of a human patient, B. Generalized de- 
sign that can be trimmed to fit different defect 
shapes prior to surgical implantation. 
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hotoinitiator activation, direct chemical toxicity, and through the UV
ight source needed for crosslinking [223] . 

Several recent studies describe anatomically shaped meniscal devices
roduced by 3D printing [ 163 , 192 , 199 , 201 , 213 , 224-227 ], includ-
ng those fabricated based on human knee MRI reconstructions [ 213 ,
14 , 225 ]. One study produced an architectural mimic bioprinted with
SCs and high concentration collagen I but with no attempt to recreate

he microstructures of the meniscal collagen fiber arrangement [214] .
arayanan et al. used bioink composed of alginate, polylactic acid (PLA)
anofibers and human adipose-derived stem cells where they found that,
ompared to alginate hydrogel alone, the PLA allowed for better cell pro-
iferation [225] . Finally, Cengiz et al. 3D printed with PCL without cells
r ECM components and varied the tool paths to generate 2 different ge-
metries based on variants of cross hatch grid patterns, and evaluated
he porosity and compressive modulus [213] . These papers are proof of
oncept for the process of reconstructing and fabricating an exact copy
f a patient’s meniscus and serve as starting points for building more
iologically relevant tissue engineered models. 

A blend of silk fibroin and gelatin was used to 3D print human menis-
us shaped scaffolds with three layers of grid, concentric and lamellar
nfill patterns [227] . The scaffolds were lyophilized and crosslinked with
DC/NHS and seeded with porcine fibrochondrocytes. Biocompatibility
as excellent and no cytotoxicity was evident, and fibrochondrocyte
ene expression was maintained for 3 weeks. In addition, the compres-
ive moduli was similar to native meniscus. 

In a study that factored native meniscal microstructure into the de-
ign, a resorbable poly(desaminotyrosyl-tyrosine dodecyl ester dode-
anoate) meniscus-shaped scaffold was 3D printed with a circumfer-
ntial and radial fiber network and then the void spaces were infused
ith collagen I and hyaluronic acid [228] . This meniscal replacement
ad compressive moduli and tensile stiffness comparable to native sheep
eniscus (1.33 ± 0.51 mPa, and 127.6 ± 47.6 N/mm, respectively), and
hen transplanted into a partial meniscus defect in an in vitro test us-

ng sheep hind limbs, they found it helped restore near normal knee
ontact stress. Subsequently, the scaffold was tested in a sheep 80%
osterior meniscectomy defect model [229] . Unfortunately, the major-
ty of the scaffolds were displaced from the initial location. However,
brocartilage-like tissue infiltration and vascularization were observed,
hough the overall collagen and GAG content was less than found in
ative meniscus. Importantly, the data indicate that the biodegradable
olyarylate polymer is apparently nontoxic [ 230 , 231 ]. These in vivo
esults also highlight the critical nature of fixation of artificial and tis-
ue engineered meniscal implants in order to be maintained in place
nd integrate in the repair site within the damaged meniscus, as materi-
ls that cannot hold up to sutures and surgical manipulation will lead to
oor outcomes. Additional approaches were published where circumfer-
ntially oriented PCL filaments were printed in a meniscus shape, and
hen the inner and outer zones were coated with fibrochondrocytes in
ethacrylated gelatin (GelMa)-Agarose (fibrogenic material) and GelMa

chondrogenic material), respectively [ 224 , 226 ]. Biochemically these
esemble native meniscus with more Collagen I in the outer zone and
 b  

14 
ore Collagen II in the inner zone. Similarly, Chen, et al. extruded PCL
laments in circumferential and radial directions to simulate meniscal
ollagen fiber arrangements and a hybrid scaffold was created after in-
ection of meniscus DECM [179] . The constructs were seeded with fibro-
hondrocytes and implanted into a rabbit meniscal defect model. After
 months, the best results were from the combination of PCL, ECM and
ells where the collagen content was close to native, GAG content was
5% of native control group, and tensile modulus and compressive mod-
li were 85% and 60% of control [179] . 

. Application of mechanical force to improve mechanical 

roperties of meniscal substitutes 

Some of the published data for tissue engineering meniscal repair
caffolds and devices describe meniscal structures that have an anatom-
cal shape, or contain cells found in natural meniscus tissue. However,
any of these engineered menisci-type devices lack the mechanical
roperties in compression and tension that are required to function-
lly replace or repair a damaged meniscus in the body [ 208 , 214 ]. For
he anisotropic native meniscus, tensile properties vary with position
ithin the structure as a result of collagen fiber densities and orienta-

ion, properties that are absent in a homogeneous printed or molded
eniscal replacement constructs. Fortunately, and reminiscent of the
atural development and maturation of meniscal tissue in vivo [16] ,
he application of resistance or mechanical force to cell seeded engi-
eered structures leads to better biochemical properties, remodeling of
he ECM, and development of a more anisotropic structure that better
atches the desired mechanical properties [232-238] . To achieve this,

ioreactors have been developed to deliver long and short term cyclic
pplications of compression, shear, and/or hydrostatic forces [16] . In a
eries of papers, Bonassar and colleagues demonstrated that by immobi-
izing the horn regions of a molded meniscus consisting of collagen I and
brochondrocytes for up to 8 weeks, collagen fibers developed circum-

erential and radial alignments, and there was an overall improvement
n equilibrium and tensile moduli. This elegant approach mimics the in
ivo meniscal horn attachments and takes advantage of the contractile
roperties of fibroblasts, which are constrained due to horn area an-
horage, and transforms the contractile force tension into hoop stress
hat facilitates collagen fiber alignment [ 233 , 234 ]. Similarly, the use of
SCs in this system improved GAG and collagen production though the

ollagen fiber organization was better with fibrochondrocytes [239] .
espite these gains, the mechanical properties ultimately fell short of
ative meniscus. However, by applying physiologically relevant axial
oading in a bioreactor in combination with meniscal horn immobiliza-
ion, the development of aligned collagen fibers proceeded faster and
as accompanied by improved GAG and collagen content, native-like

quilibrium modulus, and improved tensile properties [234] . 
Another study found that MSCs seeded on CMI subjected to cyclic

ompression and perfusion had better proliferation and equilibrium
odulus compared to uncompressed samples [232] . Similarly, tissue-

ased, scaffold-free menisci were created naturally by culturing only
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hondrocytes and meniscal cells in a mold with chondrogenic media
 167 , 236 ]. Simultaneous tensile and compressive loading stimulation
as applied for 1 h each day from days 10–14 with 30 cycles of 1-minute

timulation and 1 min of rest. This stimulation increased collagen and
AG content, and relaxation, instantaneous, and circumferential ten-

ile moduli each showed several fold-improvement, while radial tensile
odulus was 6 times better than unstimulated tissue constructs. These

tudies suggest that in order to develop a tissue engineered meniscal
ubstitute that exhibits mechanical properties and anisotropy that sim-
lates native meniscus, it is necessary to have a combination of materials
nd cells along with the application of mechanical loading to facilitate
ollagen remodeling and deposition. 

. Summary 

There are several challenges that must be met in developing a hu-
an meniscal substitute: the mechanical properties and behaviors must

pproximate those of native tissue, novel devices must be suitable for
xation to the knee joint capsule, the remaining meniscus and/or the

igaments, tendons and bone near the meniscal horns, and the implant
ust be either biocompatible and permit cellular infiltration and aid
atural healing, remodeling and regeneration or it must be of a chem-
cally inert artificial design with extended longevity. Tissue engineer-
ng and additive manufacturing approaches for fabrication of meniscal
eplacements have promising potential to deliver a new therapy. How-
ver, the body of research is at times disparate in that some approaches
se synthetic polymers, some use ECM and hydrogels, others use combi-
ations. And still other approaches use autologous and allogeneic cells
240] occasionally supplemented with growth factors. In some cases,
hese meniscal devices are subjected to application of force or tension
n bioreactors. A common goal is the desire to produce an appropriately
ized human meniscal substitute having mechanical properties and func-
ionality closely resemble those typically found in humans. These efforts
ay lead to production of unique patient-specific meniscal replacements

r a more generalized off-the-shelf implant that can be shaped during
he repair surgery to conform to the defect and restore patient’s knee
echanics. Each of these approaches require detailed preclinical study

nd then eventually human clinical trials. To this end, the time needed
o create the device, the choice of materials, the adaptability of the pro-
edures used in the lab as they are moved to a scaled-up GMP manu-
acturing environment and, ultimately, the cost required to produce a
unctional meniscal substitute will all need to be carefully considered.
n addition, the end product will need to have minimal variability from
anufacturing run to run in order to help achieve FDA clearance of such
evices. The use of cell-containing meniscus substitutes, like all cellu-
ar therapeutics, may be a source of difficulty for regulatory approval.
se of allogeneic MSCs, which may be non-immunogenic [240-243] ,
ould make the process less difficult as MSCs are the subject of many
ngoing clinical trials for various applications [244] . It is also possi-
le to utilize the cell component only as a tool to help reorganize and
tructure the implant during the manufacturing process after which cells
ould be removed to generate an acellular scaffold for implantation. It is

ikely the balance between manufacturing complexity and reproducibil-
ty, biosafety and product efficacy may determine which approach to
enerate a novel meniscal substitute may lead to launch of a new med-
cal device for treatment of damaged human menisci. 
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