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Abstract
In this paper, we analyze the real-time infection data of COVID-19 epidemic for nine nations. Our analysis is up to May 04, 
2020. South Korea, China, Italy, France, Spain, and Germany have either flattened or close to flattening their epidemic curves. 
USA and Japan have transitioned to a linear regime, while India is still in a power-law phase. We argue that the transition 
from an exponential regime to a succession of power-law regimes is a good indicator for flattening of the epidemic curve. 
We also argue that lockdowns, long-term community transmission, and the transmission by asymptomatic carriers traveling 
long distances may be inducing the power-law growth of the epidemic.
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Introduction

COVID-19 pandemic has caused major disruptions in the 
world. As of May 9, 2020, it has infected approximately 
4 million humans, killed more than 0.27 million individ-
uals, and has brought most of the world to a standstill in 
lockdowns (WorldOMeter 2020; Johns Hopkins University 
2020). Hence, modeling and forecast of this epidemic is of 
critical importance. In this paper, we analyze the publicly 
available data set given in the WorldOMeter (2020). The 
data show that countries that have achieved flattening of the 
epidemic curve exhibit power law growth before saturation. 
This feature can be used as an important diagnostic for flat-
tening of the epidemic curve.

Epidemiologists have made various models for under-
standing and forecasting epidemics. Kermack and McK-
endrick (1927) constructed one of the first models, called 
SIR model, for epidemic evolution. Here, the variables S 
and I describe respectively the numbers of susceptible and 
infected individuals. The variable R represents the removed 
individuals who have either recovered or died. The SIR 
model has been generalized to SEIR model that includes 
exposed individuals, E, who are infected but not yet infec-
tious (Bjørnstad 2018; Daley and Gani 2001).

SARS-CoV-2 is an extremely contagious virus. In addi-
tion, many infected individuals, called asymptomatic car-
riers, who show mild or no symptoms of infection have 
contributed significantly to the spread of the epidemic 
unwittingly (Li et al. 2020). Hence, modelling COVD-19 
requires more complex models of epidemiology, including 
features of quarantine, lockdowns, stochasticity, interactions 
among population pockets, etc. Note that quarantines and 
lockdowns help in suppressing the maximum number of 
infected individuals; such steps are critical for the epidemic 
management with limited public health resources. The satu-
ration or flattening of the curve in China is attributed to 
strong lockdowns.

For COVID-19 epidemic, some of the new models have 
managed to provide good forecasts that appears to match 
with the data. Peng et al. (2020) constructed a seven-var-
iable model (including quarantined and death variables) 
for epidemic spread in China and predicted that the daily 
count of exposed and infectious individuals will be neg-
ligible by March 30, 2020. Their predictions are in good 
agreement with the present data. Chinazzi et al. (2020) 
studied the effects of travel restrictions on the spread 
of COVID-19 in China and in the world, and Hellewell 
et al. (2020) performed feasibility studies of controlling 
COVID-19 epidemic by isolation. Mandal et al. (2020) 
constructed a India-specific model for devising inter-
vention strategies; they focussed on four metros—Delhi, 
Mumbai, Kolkata, and Bengaluru—along with intercity 
connectivity. To account for spatio-temporal behavour, 
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Min et al. (2013) simulated how a disease could spread 
within a network with different mixing styles, and showed 
that the average epidemic size and speed depend criti-
cally on network parameters. In addition, there are many 
epidemic models that are inspired by population growth 
models (Daley and Gani 2001; Wu et al. 2020). There are 
several other models designed to understand the spread 
of COVID-19 (Labadin et al. 2020; Shim et al. 2020; 
Shayak et al. 2020). In another interesting of analysis of 
COVID-19 epidemic, Schüttler et al. (2020) argued that 
I(t) or total death count could be modelled using the error 
function.

We observed that along with us, several other research-
ers have also reported power-law growth after the expo-
nential regime (Ziff and Ziff 2020; Komarova and Wodarz 
2020; Manchein et al. 2020; Blasius 2020; Cherednik and 
Hill 2020). Hence, this conjecture is quite robust. We will 
detail our results in the next section.

Data Analysis and Results

In this paper, we report our results based on a comprehensive 
data analysis of nine major countries—China, USA, Italy, 
France, Spain, Germany, South Korea, Japan and India. We 
chose the above nations because of the large numbers of 
positive cases here. For our analysis, we employed the real-
time data available at WorldOMeter (2020).

We digitized the data up to May 04, 2020 and studied the 
temporal evolution of the cumulative count of infected indi-
viduals, which is denoted by I(t), where t is time in days. In 
Fig. 1 we plot the time series of I(t) and its derivative İ(t) in 
semi-logy format using red and blue curves respectively. The 
derivatives İ(t) have been computed using Python’s gradient 
function. The starting dates for the plots are listed in Table 1.

No single function appears to fit with I(t), hence we 
employ different functions to fit at different time intervals. 
As is well-known, in the early phase, the growth is expo-
nential, but it transitions to power laws subsequently. Hence, 
we employ exponential function and polynomials for con-
structing best-fit curves to different parts of I(t). The best-fit 

Fig. 1   (color online) For the COVID-19 epidemic, the semi-logy plots of total infected individuals (I(t)) vs. time (t) (red thin curves) for the nine 
nations. We also plot İ(t) vs. t (blue thick curves). The black dotted curves represent the best-fit curves. For the best-fit functions, refer to Table 1
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functions are listed in Table 1, as well as exhibited in all the 
plots. We have computed the best-fit curves using Python’s 
polyfit function, and the errors as the relative errors between 
the original data and the fitted data.

In the early phase, all the curves exhibit exponential 
growth as I(t) = A exp(�t) , where � is the growth rate. Inter-
estingly, the I(t) plots for USA, Spain, Germany, and France 
require two exponential functions for the fits. For example, 
Germany’s data requires two functions, exp(0.34t) and 
exp(0.25t) . Note that the growth rate � varies for different 

countries, which is because � depends on various factors 
such as immunity level of the population, climate, local pol-
icy decisions (lockdown, social distancing, testing intensity), 
etc.

Larger the � , larger the growth rate for the infection. Also, 
the inverse of the constant � yields the growth time scale. In 
fact, in the exponential phase, the number of cases double 
in time T = (log 2)∕� . For South Korea, � = 0.67 , hence, 
T ≈ 1 ; that is, I(t) for South Korea doubled every day in the 
early phase (February 18 to February 23). The doubling time 

Table 1   For the COVID-19 data 
for various countries, the best-fit 
functions and the respective 
relative errors for various stages 
of evolution shown in Fig. 1. 
The figure also exhibits the 
respective best-fit curves

Countries (Start date) Best-fit functions and errors

China (January 22) 1) 380e0.40t (±2.2%)
2) 89t2 + 750t − 4100 (±2.8%)

3) 1400t − 34,000 (±0.64%)

4) 2200
√

t + 65,000 (±0.36%)

South Korea (February 18) 1) 15e0.67t (±2.2%)
2) 9.7t2 + 430t − 3500 (±1.5%)

3) 160t + 4000 (±0.67%)

4) 880
√

t + 3600 (±0.085%)

France (February 24) 1) 5.4e0.46t (±11%)
2) 110e0.18t (±6.5%)
3) 6.9t3 − 360t2 + 4200t + 40,000 (±1.6%)

4) 4600t − 11 × 104 (±1.1%)

5) 27000
√

t − 51,000 (±0.45%)

USA (February 21) 1) 4.6e0.28t (±4.1%)
2) 17e0.24t (±3.5%)
3) 8.5t3 − 970t2 + 67,000t − 15 × 105 (±0.46%)

4) 30,000t − 1 × 106 (±0.44%)

Germany (February 23) 1) 7.6e0.34t (±11%)
2) 24e0.25t (±2.9%)
3) 22t2 + 4100t − 11 × 104 (±1.2%)

4) 2800t − 14,000 (±0.58%)

5) 23,000
√

t − 25,000 (±0.2%)

Spain (February 26) 1) 15e0.33t (±8.1%)
2) 230e0.19t (±3.6%)
3) 27t2 + 5900t − 14 × 104 (±0.34%)

4) 4600t − 50,000 (±0.64%)

5) 51,000
√

t − 17 × 104 (±0.16%)

Italy (February 21) 1) 60e0.33t (±3.2%)
2) 0.51t4 − 30t3 + 770t2 − 8500t + 35,000 (±1.5%)

3) 7.8t3 − 760t2 + 30,000t − 38 × 104 (±0.61%)

4) 3800t − 45,000 (±0.61%)

5) 39,000
√

t − 12 × 104 (±0.3%)

Japan (February 15) 1) 58e0.093t (±4.6%)
2) 0.38t3 − 38t2 + 1400t − 16,000 (±1.9%)

5) 330t − 10,000 (±1.2%)

India (March 04) 1) 17e0.16t (±7.1%)
2) 28t2 − 1300t + 17,000 (±0.86%)
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for India in the exponential phase was log(2)∕0.16 ≈ 4.3 
days. Note that for the exponential regime, İ ≈ 𝛽I.

After the exponential phase, the curves transition to 
power laws, polynomials to be more precise. The curve for 
China exhibits three power laws: t2 , t, and then 

√

t , after 
which I(t) saturates. Among the nine nations, China and 
South Korea have flattened their epidemic curves, while 
Italy, Spain, France, and Germany have reached 

√

t regime 
after transitioning through a series of power law regimes. 
These nations have almost flattened their epidemic curves. 
Note that some nations exhibit t3 and t4 power laws as well. 
We also remark that the best-fit curves are polynomials (see 
Table 1); the power laws mentioned above and those indi-
cated in the plots are the leading-order terms of the respec-
tive polynomials. Among these countries, USA, Japan, and 
India are yet to rach 

√

t regime.
Figure 1 also contains plots for İ , derivatives of I(t), that 

represents daily new count of infections. Similar to I(t), 
İ increases exponentially in the beginning. After this, we 
observe a transition to power law regimes. For the power 
law I(t) ∼ Btn , we derive that İ ∼ I1−1∕n . Clearly, this slope 
is suppressed compared to the exponential regime by a fac-
tor of I−1∕n . Note however that the epidemic growth in the 
power law regime is still very significant because I(t) is 
large. For large n (e.g., 4 or 5), İ ∝ I , which is same as the 
formula for the exponential growth (refer to the t4 regime 
of Italy). Also note that in the linear regime, İ is constant, 
implying a constant number of new cases every day. We can 
estimate the doubling time using the best-fit functions.

In Fig. 1, in the exponential regimes, I(t) and İ(t) curves 
run almost parallel to each other because İ ≈ 𝛽I . In contrast, 
in the power law regimes, İ(t) deviates from being parallel 
to I(t), consistent with the suppression in İ(t) mentioned in 
the previous paragraph. However, for large n, İ exhibits a 
marginal deviation from the form İ ≈ 𝛽I(t).

We can combine the above ingredients into a compre-
hensive picture for the epidemic forecast, specially for flat-
tening or saturating the I(t) curve that is prime objective for 
most affected nations. As illustrated in the schematic dia-
gram of Fig. 2, the I(t) curve follows four stages: exp(�t), tn , 
t, and constant, which are represented by S1, S2, S3, and 
S4 respectively. It is an elementary observation that the I(t) 
curve transitions from a convex form to a concave form. 
Such a simple observation of the data reveals insights into 
the temporal evolution of the epidemic. For example, before 
flattening of I(t) , we look for flattening of the growth rate 
İ(t) , which is the third stage in Fig. 2. Our preliminary stud-
ies show that the the above picture of evolution is also appli-
cable to SARS and EBOLA epidemics (Ma 2020; World 
Health Organization 2003).

Recently, Prakash et al. (2020) studied the phase space 
portraits, that is, İ vs. I plots and observed the phase-space 
curves to be linear. This is natural for the exponential growth 

( ̇I ∝ 𝛽I ), as well as for the power-law growth with large 
exponent n, because İ ∼ I1−1∕n.

Note that the above features of Fig. 2 appear in almost all 
epidemic models. Wu et al. (2020) considered a model with 
İ = rIp(1 − (I∕𝜅)𝛼) , where r, p, �, � are free parameters, to 
provide a fit to the epidemic curve for China. In our paper, 
the focus is on the data itself, rather than models that may 
involve many parameters.

Conclusions and Discussion

The main result of our paper is the emergence of power 
laws between the exponential regime and flattening of the 
COVID-19 epidemic. We believe that the appearance of the 
power law is related to the lockdowns, imposed social dis-
tancing, and long distance travels by asymptomatic carriers. 
Considering strong similarities between the rumor spread-
ing and epidemics (Daley and Gani 2001), the long-distance 
travels and power-law regimes may also play a major role 
in rumor spreading. Note that the social media and internet 
provide means for fast transmission of rumor.

The aforementioned power-law growth of epidemic 
appears to have similarities with turbulent diffusion or Tay-
lor diffusion, which is faster than molecular diffusion (Taylor 
1954; Leslie 1973; Sreenivasan 2018; Verma 2018, 2019). 
In turbulent diffusion, the separation between two particles, 
D(t), increases as t3∕2 , and Ḋ ∼ D1∕3 . The relative veloc-
ity between the particles, Ḋ , increases with time because 
larger eddies have larger speeds. This feature has a qualita-
tive resemblance with aforementioned long-distance travels 
by asymptotic carriers.

There is possibly another connection of COVID-19 epi-
demic with turbulence and critical phenomena. In early 
stages, the epidemic spreads via contacts between infected 
and susceptible individuals. However, once the epidemic has 

I(t
),
· I(t
)

t
eβt

tn
t

Const

Flat

I(t)

S4S1 S2 S3

tn
−1 ·I(t)

Fig. 2   (color online) For COVID-19 epidemic: Schematic plots 
for I(t) and its derivative İ(t) vs. t. S1, S2, S3, S4 represent the four 
stages of the epidemic: exponential growth in count ( exp(�t) ), power 
law growth ( tn ), linear growth (t), and flat
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spread widely, then indirect transmissions—contacts with 
infected surfaces, public transport, air—begin to play an 
important role in the epidemic growth. Such transmissions 
are referred to as community spread or transmission. This 
is analogous to interactions among clusters of molecules in 
phase transition, and those among large fluid vortices in tur-
bulence. Such interactions are responsible for the dynamic 
scaling in phase transition, and for the aforementioned tur-
bulence diffusion (Wilson and Kogut 1974; Täuber 2017; 
Taylor 1954; Leslie 1973; Sreenivasan 2018; Verma 2018, 
2019). Super spreading of COVID-19 and the power-law 
regime of I(t) may be connected to the above phenomena. 
Note however that the community spread could also con-
tribute in the exponential growth phase; the two exponential 
regimes in Fig. 1 may be due to these reasons. These issues 
need further exploration.

The I(t) plots of Fig. 1 exhibit different values for the 
growth rate � and polynomials. These constants depend on 
various factors, such as immunity levels of the population, 
climate conditions, extent of lockdowns, levels of testing, 
social distancing, etc. The slowed progress of the epidemic 
in India may be due to the stricter and early lockdown. We 
also believe that a careful study of the I(t) curves may help 
in forecasting when the epidemic curve will flatten.

Now, we summarize our findings. The COVID-19 real-
time data of infected individuals, I(t), contains useful 
information that may help forecast the development of the 
epidemic. We conjecture that the power law growth of I(t) 
may be due to the epidemic transmission by asymptomatic 
carriers traveling long distances, and/or due to community 
spread.
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