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Abstract

Background: Flux Balance Analysis (FBA) based mathematical modeling enables in silico prediction of systems
behavior for genome-scale metabolic networks. Computational methods have been derived in the FBA framework to
solve bi-level optimization for deriving “optimal” mutant microbial strains with targeted biochemical overproduction.
The common inherent assumption of these methods is that the surviving mutants will always cooperate with the
engineering objective by overproducing the maximum desired biochemicals. However, it has been shown that this
optimistic assumption may not be valid in practice.

Methods: We study the validity and robustness of existing bi-level methods for strain optimization under uncertainty
and non-cooperative environment. More importantly, we propose new pessimistic optimization formulations:
P-ROOM and P-OptKnock, aiming to derive robust mutants with the desired overproduction under two different
mutant cell survival models: (1) ROOM assuming mutants have the minimum changes in reaction fluxes from
wild-type flux values, and (2) the one considered by OptKnock maximizing the biomass production yield. When
optimizing for desired overproduction, our pessimistic formulations derive more robust mutant strains by considering
the uncertainty of the cell survival models at the inner level and the cooperation between the outer- and inner-level
decision makers. For both P-ROOM and P-OptKnock, by converting multi-level formulations into single-level Mixed
Integer Programming (MIP) problems based on the strong duality theorem, we can derive exact optimal solutions
that are highly scalable with large networks.

Results: Our robust formulations P-ROOM and P-OptKnock are tested with a small E. coli core metabolic network and
a large-scale E. coli iAF1260 network. We demonstrate that the original bi-level formulations (ROOM and OptKnock)
derive mutants that may not achieve the predicted overproduction under uncertainty and non-cooperative
environment. The knockouts obtained by the proposed pessimistic formulations yield higher chemical production
rates than those by the optimistic formulations. Moreover, with higher uncertainty levels, both cellular models under
pessimistic approaches produce the same mutant strains.

Conclusions: In this paper, we propose a new pessimistic optimization framework for mutant strain design. Our
pessimistic strain optimization methods produce more robust solutions regardless of the inner-level mutant survival
models, which is desired as the models for cell survival are often approximate to real-world systems. Such robust and
reliable knockout strategies obtained by the pessimistic formulations would provide confidence for in-vivo
experimental design of microbial mutants of interest.
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Introduction
Whole-genome high-throughput profiling techniques
have enabled the systematic study of biological systems
at the genome scale [1, 2]. In particular, systems models
and computational methods for analyzing and controlling
genome-scale metabolic networks have greatly advanced
the field of metabolic engineering [3]. With the bet-
ter understanding of the systems behavior of micro-
bial metabolism, metabolic engineering based on the
metabolic network models can help predict metabolic
phenotypes [4, 5] and derive engineering strategies for
strain design by manipulating the native microbial path-
ways to produce chemicals of commercial and biomedical
benefits [6–11].

Mathematical modeling of metabolism often focuses
on steady-state behavior, especially when long-term
metabolic dynamics is of interest, as accurate reconstruc-
tion of genome-scale kinetic models is challenging when
considering the large model space and parameter uncer-
tainties. Constraint-based approaches based on the reac-
tion stochiometry, notably Flux Balance Analysis (FBA)
by Linear Programming (LP) formulations, study genome-
scale dynamics by mass-balance equations at steady states
to understand and predict macro-level microbial behav-
ior in the presence of perturbation, for example caused by
mutations or environmental changes [12–15]. By adding
thermodynamic and flux capacity constraints, FBA often
models steady-state behavior by assuming that the cell
growth flux needs to be maximized based on biomass
composition [16].

Many computational approaches have been proposed
in this computational framework for in silico prediction
of potentially feasible metabolic phenotypes and eval-
uation of theoretical limits of metabolic performance
after knocking out certain genes or reactions for strain
design [14, 16]. Metabolic engineering with such com-
putationally derived knockout strategies has shown to
be effective to achieve overproduction of biochemicals
of interest [17]. Those strain optimization methods are
generally modeled as bi-level optimization problems that
seek for maximum overproduction of a desired biochem-
ical at the outer level under the condition that mutant
cells are still alive, modeled as the inner-level optimiza-
tion problem. For example, OptKnock [17], ROOM (Reg-
ulatory On/Off Minimization) [18], and MOMAKnock
[19] all fall under this category with different mutant
cell survival models at the inner level detailed in the
“Background” section.

These existing bi-level formulations for microbial strain
design have inherent assumptions that nature will always
cooperate with the human desire to select the mutants
that serve the outer-level engineering objective the best,
namely they assume that a cooperative environment
exists between the outer-level (human) and inner-level

(microbial strain) decision makers. However, in practice,
surviving mutant strains may not always fit the best with
the engineering goal. In addition, the model assumptions
for the cell survival at the inner level are often the approx-
imations to the real-world scenarios, which may result
in the derived knockout strategies not overproducing the
predicted amount of desirable biochemicals. Therefore,
the robustness and viability of these predicted knockout
strategies may need to be re-evaluated. For example, if
the perturbed strains do not cooperate with the knockout
implementer, they may do very opposite to the engi-
neering objective and these optimistic bi-level strategies
may not work in practice. In [20], we have shown that
OptKnock-derived knockout strategies may produce the
desired chemicals at levels much lower than the expected
ones, when the aforementioned two assumptions are
relaxed.

In this paper, we innovate a computational framework
to predict robust knockout strategies for overproduction
of desirable chemicals with different inner-level mutant
cell survival models. Specifically, we develop a pessimistic
optimization formulation [21] that considers the uncer-
tainty of the cell survival models at the inner level and the
cooperation between the outer- and inner-level optimiza-
tion decisions. Figure 1 illustrates our pessimistic bi-level
optimization framework for identifying the knockouts to
have the maximum overproduction of a desired chem-
ical as a bioengineering objective under the worst-case
or least-favorable scenario. The inner-level cellular model
has a competing objective function to maintain the cell
survival. According to the cellular model, different objec-
tive functions can be chosen. We study such pessimistic
formulations with both the cell survival criteria of (1)
minimization of significant flux changes with respect to
wild-type flux values as in ROOM [18]; and (2) maxi-
mization of biomass growth as in OptKnock [17]. Based
on the corresponding pessimistic formulations, which
we call P-ROOM and P-OptKnock respectively, we will
optimize the desired overproduction in the least favor-
able situation (i.e., the non-cooperative situation) and
investigate the sensitivity of resulting knockouts with
respect to cell response and uncertainty introduced by
the inner-level cell survival models. Since the inner-level
cellular model is linear given the outer-level binary deci-
sion variables, we can employ the LP duality theory
and convert the pessimistic bi-level optimization prob-
lem to a single-level MIP problem by applying two dual
transformations as described in Methods. Experimental
results on both a core E. coli metabolic network and a
genome-scale iAF1260 network [22] show that our pes-
simistic formulations can generate more robust knockout
strategies compared to the existing bi-level optimization
methods for strain design. Regardless of the choice of
inner-level surrogate functions for cell survival, P-ROOM
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Fig. 1 The pessimistic bi-level problem structure for knockout identification. The inner-most level problem defines the optimization of cell survival
based on a specific cellular objective (e.g., maximization of biomass growth in P-OptKnock and minimization of flux changes in P-ROOM). The outer
level maximizes the worst-case scenario for Succinate production

and P-OptKnock produce consistent and stable knockout
strategies for the targeted biochemical overproduction as
the formulations are specifically designed to take care of
the model uncertainty.

Background
Before we present pessimistic optimization formulations
to derive robust knockout strategies for strain design, we
briefly summarize the background and important math-
ematical notations for FBA and the bi-level optimization
models for deriving knockouts, including OptKnock [17]
and ROOM [18].

FBA
FBA is an LP problem for the analysis of stoichiometric-
based metabolic network models of involved reactions at
the genome scale. A linear objective function is minimized
or maximized subject to mass-balance, thermodynamic
and capacity constraints, with respect to reaction fluxes
in a vector form v. The LP formulation of FBA can be
expressed as:

max(min)v cT v
s.t. Sv = 0, vmin ≤ v ≤ vmax.

Under the steady-state assumption, mass-balance con-
straints constitute a system of linear equations where the
weighted sum of fluxes, based on stoichiometric coeffi-
cients given in a matrix form S, is 0. Thermodynamic
and capacity constraints are defined as lower and upper
bounds on reaction fluxes. In the FBA framework, maxi-
mization of biomass growth is often adopted as the objec-
tive function for modeling cell survival, where c becomes a
vector with all values of 1 for the reactions corresponding
to the biomass formation.

OptKnock
FBA enables efficient computational design of beneficial
genetically engineered microbial strains. The pioneer-
ing work by the authors of [17], OptKnock, searches
for potential genetic perturbations (e.g., gene or reaction

knockouts) for redirection of metabolic flux to overpro-
duce desired biochemicals and maintain cellular growth.
This bi-level optimization problem captures the engineer-
ing objective at the outer level (e.g., to maximize the
overproduction) while the inner-level problem models a
cellular fitness objective (e.g., maximization of biomass
growth). The mathematical programming formulation of
OptKnock can be expressed as follows:

max
zj∈{0,1},∀j∈J

vchemical

s.t. max
vj∈R,∀j∈J

vbiom

s.t.
∑

j∈J
Sijvj = 0, ∀i ∈ I

vglc = vglc_uptake, vbiom � vtarget
biomass

vmin
j zj � vj � vmax

j zj, ∀j ∈ J
∑

j∈J
(1 − zj) � K ,

(1)

where I and J are the sets of metabolites and reactions,
respectively. In this model, vj represents the flux of reac-
tion j in J. Each element of the matrix S is the stoichio-
metric coefficient Sij of metabolite i in reaction j. The
outer-level binary decision variable zj is 1 if the corre-
sponding reaction flux vj is active and 0 otherwise. The
overproduction of a chemical of interest is maximized at
the outer level allowing K possible knockout reactions.
The inner-level cell survival model is based on steady-
state analysis with FBA constraints. Depending on the
availability of nutrients or the maximal fluxes that can
be supported by enzymatic pathways [13], vmin

j and vmax
j

are the lowest and highest possible reaction fluxes for the
reaction j, respectively. The glucose consumption rate vglc
is often set to a fixed value as vglc_uptake, and vtarget

biomass is
the minimum level of biomass production. As the biomass
growth is a linear objective function of metabolic reaction
fluxes, strong duality of the inner-level optimization helps
to convert the original bi-level optimization problem into
a Mixed Integer Linear Programming (MILP) problem,
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which can be solved efficiently for large-scale metabolic
networks [17, 23].

ROOM
Observed experimental flux values reported in [24]
showed that maximizing biomass reaction flux as a sur-
rogate function for the most probable physiological state
of the metabolic model is indeed effective for wild-type
strains as they have been exposed to long-term evolu-
tionary pressure. However, it may not be valid for the
engineered mutants without such a long-term progress.
Therefore, it calls for other realistic cell survival mod-
els for mutants. ROOM [18] is one of such models,
in which binary variables yj’s are introduced to capture
significant (up/down regulated) or insignificant reaction
flux changes. Instead of maximizing the biomass growth,
ROOM [18] aims to minimize the number of signifi-
cant flux changes. Relaxing the binary variables yj’s in
the original MILP formulation leads to the LP variant of
ROOM:

max
zj∈{0,1},∀j∈J

vchemical

s.t. min
vj∈R,yj∈R,∀j∈J

∑

j∈J
yj

s.t.
∑

j∈J
Sijvj = 0, ∀i ∈ I

vglc = vglc_uptake, vbiom � vtarget
biomass

vmin
j zj � vj � vmax

j zj, ∀j ∈ J

vj − yj(vmax
j − wj) ≤ wj, ∀j ∈ J

vj − yj(vmin
j − wj) ≥ wj, ∀j ∈ J

0 ≤ yj ≤ 1, ∀j ∈ J
∑

j∈J
(1 − zj) � K ,

(2)

in which wj is the wild-type flux values that can be solved
by FBA. In this bi-level optimization model (2), the inner-
level cellular objective is to minimize the flux changes.
The inequalities with yj’s constrain the flux values not
to deviate from the wild-type flux values. We again can
employ the strong duality condition to convert the bi-level
optimization problem into a MILP to solve (2).

Methods
The above optimistic bi-level optimization methods effec-
tively model the interacting objectives of the outer-level
knockout implementer and the inner-level microbial cells.
However, the effectiveness of these optimistic formu-
lations depends on the inherent assumption that the
outer-level engineering objective and inner-level cellu-
lar fitness function behave cooperatively by selecting the

inner-level solutions in favor of the outer-level optimiza-
tion problem. In practice, when the inner-level problem
either does not faithfully reflect cellular fitness objec-
tives or has non-unique solutions, there is no guaran-
tee that the cell response will be in cooperation with
the engineering objective to maximize the desirable bio-
chemical product formation as we recently found in
[20]. The main questions that we would like to address
here are:

1. How robust are the derived knockout strategies based
on these optimistic bi-level optimization formulations?

2. Does the robustness depend on how the inner-level
optimization problem approximates mutant cell
objectives?

3. Can we formulate new optimization problems that
derive more robust solutions?

We answer the first two questions by allowing the inner-
level problem to take non-optimistic solutions as we have
done in [20] to evaluate the knockout strategies derived
by OptKnock and ROOM. More importantly, we pro-
pose a novel pessimistic bi-level optimization framework
in this paper to derive robust knockout strategies, which
consider the uncertainty introduced by the inner-level
models from the aforementioned non-cooperative and
non-unique issues.

We now present our pessimistic optimization formula-
tions for deriving robust mutant strains and provide the
detailed derivation of the optimization solutions to our
pessimistic models, in which we maximize the desired
overproduction for the worst-case scenario due to uncer-
tainty and non-cooperative environment with different
inner-level mutant cell survival models.

Pessimistic bi-level optimization
As discussed, due to the inner-level model uncertainty
and non-cooperative issues, the existing optimistic bi-
level strain optimization methods may not be able to
produce reliable results when there exist non-unique solu-
tions to the inner-level problem. In order to overcome
this limitation, we propose a pessimistic optimization
framework to optimize for the worst-case scenario under
uncertainty and non-cooperative environment. The math-
ematical programming formulation of pessimistic bi-level
optimization can be represented in the following general
form [21]:

max
x∈X

min
y∈Y (x)

F(x, y)

s.t. G(x) ≤ 0
Y (x) = arg min(max)y{f(x, y) : g(x, y) ≤ 0, y ∈ Y},

(3)
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where x and y are the outer-level and inner-level decision
variables with the corresponding feasible sets X and Y.
In the above formulation, F represents the outer-level
objective function, F : X × Y → R, and f represents
inner-level objective function, f : X × Y → R. G and g
represent the inequality constraint functions at the outer
and inner levels, respectively. Y (x) denotes the set of
optimal solutions to the inner-level problem for a given x,
which may contain multiple elements. Solving such a pes-
simistic bi-level optimization problem is computationally
very difficult. Even a linear optimistic bi-level problem,
where both the outer-level and the inner-level problems
are linear programs, is theoretically NP-hard [25]. In our
study, to solve the more difficult pessimistic bi-level opti-
mization problem, we first employ the LP duality theory
based on the fact that the inner-most level problem is a
linear program. It converts the pessimistic bi-level model
into a standard bi-level problem, which enables us to fully
make use of existing bi-level optimization algorithms.
For example, we transform the standard bi-level model
into a single level mixed integer programming (MIP)
problem using the strong duality theory, which can be
solved through the commercial MIP solver CPLEX. As
those operations are rather simple, we make a challenging
pessimistic bi-level problem practically solvable even for
large-scale cases.

We mention that for P-ROOM (4), there are |J| binary
variables in the outer level, 2|J| continuous variables and
O(|I| + 5|J|) constraints in the inner level. By taking the
dual of the inner-most problem, we convert (4) into a
standard bi-level problem (7), whose inner-level problem
has O(|I| + 7|J|) variables and O(|I| + 7|J|) constraints.
Comparing to the traditional bi-level ROOM model (2),
which has the identical outer-level problem, and 2|J|
continuous variables and O(|I| + 5|J|) constraints in
the inner level, (7) does not have a much larger or more
complicated structure. Hence, it can be expected that
the computational complexity of (7) will not be drasti-
cally more than that of the traditional ROOM model.
Moreover, our numerical study shows that the single
level MIP reformulation of (7) for a larger-scale net-
work can be computed by CPLEX in a reasonable time,
which indicates the efficiency of our proposed solution
strategy.

Inspired by this pessimistic optimization framework, we
propose pessimistic models for mutant strain optimiza-
tion under model uncertainty. We note that the notations
appearing in the following pessimistic formulations have
the same definitions as in the “Background” section.

Pessimistic strain optimization I: P-ROOM
In the following, we propose the pessimistic formula-
tion based on the original ROOM model (2) in the same
minimax flavor as in (3):

max
zj ,∀j∈J

min
vj ,yj∈Y (zj),∀j∈J

vchemical

s.t.
∑

j∈J

(
1 − zj

) � K , zj ∈ {0, 1} , ∀j ∈ J

Y (zj) = argminvj ,yj

⎧
⎨

⎩
∑

j∈J
yj :

∑

j∈J
Sijvj =0, ∀i ∈ I, vglc =vglc_uptake,

vbiom �vtarget
biomass, vmin

j zj �vj �vmax
j zj, vj−yj

(
vmax

j − wj
)

≤ wj,

vj − yj
(

vmin
j − wj

)
≥ wj, 0 ≤ yj ≤ 1, ∀j ∈ J

⎫
⎬

⎭ .

(4)

Originally introduced in [21], the ε-approximation
extension of the above pessimistic formulation is flexible
when model uncertainty needs to be considered for bi-
level decision making. Specifically, the ε-approximation
of the pessimistic problem is to allow a proportional gap
of ε for the inner-level objective function value from the
optimal value that the actual knockout solutions would
take. When ε = 0, we have the original pessimistic
formulations assuming that the inner-level models are
faithful, but inner-level decision variables may act against
outer-level engineering objectives. Higher ε values reflect
that the inner-level mutant strains have a higher tol-
erance level for inner-level model uncertainty when a
non-cooperative decision is taken against the outer-level
engineering objectives. Such an ε-approximation of the
pessimistic problem can be written as follows:

max
zj :zj∈{0,1},∀j∈J ,

∑
j∈J (1−zj)�K

min
vj ,yj ,∀j∈J

vchemical

s.t.
∑

j∈J
Sijvj = 0, ∀i ∈ I, vglc = vglc_uptake, vbiom � vtarget

biom

vmin
j zj�vj � vmax

j zj, vj − yj
(

vmax
j − wj

)
≤ wj, ∀j ∈ J

vj − yj
(

vmin
j − wj

)
≥ wj, 0 ≤ yj ≤ 1, ∀j ∈ J

∑

j∈J
yj ≤ ϕ(v∗, y∗)(1 + ε),

(5)

where ϕ(v∗, y∗) is the inner-level function value changing
with respect to the inner-level decision variables v∗ and
y∗. As the inner-level problem is LP, we can convert the
problem into its dual representation by the strong duality
theorem as in [17, 26], which is:

max
glc,ui ,∀i∈I,μ,aj ,∀j∈J

glc.vglc_uptake + μbiomvtarget
biomass +

∑

j∈J
vmin

j μmin,jzj−
∑

j∈J
vmax

j μmax,jzj −
∑

j∈J
μmax2,jwj +

∑

j∈J
μmin2,jwj −

∑

j∈J
aj

s.t.
∑

i∈I
Si,glcui + glc + μmin,glc−μmax,glc − μmax2,glc + μmin2,glc = 0

∑

i∈I
Si,biomui + μbiom + μmin,biom − μmax,biom − μmax2,biom

+ μmin2,biom = 0
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∑

i∈I
Si,jui + μmin,j − μmax,j − μmax2,j + μmin2,j = 0, ∀j ∈ J , j

�= biom, glc

μmax2,j
(

vmax
j − wj

)
− μmin2,j

(
vmin

j − wj
)

− aj ≤ 1, ∀j ∈ J

glc, ui ∈ R, ∀i ∈ I μbiom, μmin,j, μmax,j, μmax2,j, μmin2,j, aj

≥ 0, ∀j ∈ J

(6)

where ui denotes the dual variable associated with the
mass-balance constraint,

∑
j Sijvj = 0 for metabolite i,

glc is the dual variable associated with the glucose uptake
constraint, μbiom is the dual variable associated with the
minimum biomass threshold constraint, and μmin,j and
μmax,j are the dual variables for the two directions of the
inequality constraint vmin

j zj � vj � vmax
j zj for each reac-

tion j. Finally, μmin2,j and μmax2,j are the dual variables
associated with the constraints vj − yj

(
vmin

j − wj
)

≥ wj

and vj − yj
(

vmax
j − wj

)
≤ wj, denoting the flux changes

with respect to wild-type flux values, respectively, and
aj is the dual variable associated with the upper bound
constraint on yj. Note that the constraint vmin

j zj � vj �
vmax

j zj links the outer-most level binary decision variables
zj and inner-level decision variables vj.

By aggregating the inner-level constraints to the outer
level with those introduced by its dual in (6) with the
adopted ε-approximation, the final pessimistic formu-
lation P-ROOM aims to solve the following max-min
problem;

max
zj :zj∈{0,1},∀j∈J ,

∑
j∈J (1−zj)�K

min
vj ,yj ,glc,ui ,aj ,μ,∀i∈I,∀j∈J

vchemical

s.t.
∑

j∈J
Sijvj = 0, ∀i ∈ I

vglc = vglc_uptake, vbiom � vtarget
biomass, vmin

j zj � vj

� vmax
j zj, ∀j ∈ J

vj − yj
(

vmax
j − wj

)
≤ wj, vj − yj

(
vmin

j − wj
)

≥ wj , 0

≤ yj ≤ 1, ∀j ∈ J
⎛

⎝glc.vglc_uptake + μbiomvtarget
biomass +

∑

j∈J
vmin

j μmin,jzj

−
∑

j∈J
vmax

j μmax,jzj

−
∑

j∈J
μmax2,jwj +

∑

j∈J
μmin2,jwj −

∑

j∈J
aj

⎞

⎠ (1 + ε)

−
∑

j∈J
yj ≥ 0

∑

i∈I
Si,glcui + glc + μmin,glc − μmax,glc − μmax2,glc

+ μmin2,glc = 0
∑

i∈I
Si,biomui + μbiom + μmin,biom − μmax,biom

− μmax2,biom + μmin2,biom = 0

∑

i∈I
Si,jui + μmin,j − μmax,j − μmax2,j + μmin2,j

= 0, ∀j ∈ J , j �= biom, glc

μmax2,j
(

vmax
j −wj

)
−μmin2,j

(
vmin

j −wj
)
−aj ≤ 1, ∀j ∈ J

vj, glc, ui ∈ R, ∀j ∈ J , ∀i ∈ I,

μbiom, μmin,j, μmax,j , μmax2,j , μmin2,j, aj, yj ≥ 0, ∀j ∈ J

(7)

In order to solve the max-min problem above, we use the
strong duality theorem again to transform the minimiza-
tion problem into its dual maximization representation,
resulting in its equivalent single-level MIP as:

max
zj ,γ ,pj ,qj ,x,cj ,t,sj ,rj

γglcvglc_uptake + γbiomvtarget
biomass +

∑

j∈J
vmin

j xmin,jzj−
∑

j∈J
vmax

j xmax,jzj −
∑

j∈J
xmax2,jwj +

∑

j∈J
xmin2,jwj

−
∑

j∈J
cj −

∑

j∈J
qj

s.t.
∑

j∈J
(1 − zj) � K ,

∑

j∈J
Si,jsj = 0, ∀i ∈ I, sglc = vglc_uptake

sbiom � vtarget
biomass, vmin

j zj � sj � vmax
j zj , ∀j ∈ J

sj−rj
(

vmax
j −wj

)
≤wj, sj−rj

(
vmin

j −wj
)
≥wj, 0≤rj ≤1, ∀j ∈ J

∑

i∈I
Si,chemγi + xmin,chem − xmax,chem − xmax2,chem

+ xmin2,chem = 1
∑

i∈I
Si,glcγi + γglc + xmin,glc − xmax,glc − xmax2,glc

+ xmin2,glc = 0
∑

i∈I
Si,biomγi + γbiom + xmin,biom − xmax,biom − xmax2,biom

+ xmin2,biom = 0
∑

i∈I
Si,jγi + xmin,j − xmax,j − xmax2,j + xmin2,j = 0, ∀j ∈ J , j

�= biom,glc,chem

xmax2,j
(

vmax
j −wj

)
−xmin2,j

(
vmin

j − wj
)

− cj − t ≤ 0, ∀j ∈ J
∑

j∈J
Sijpj = 0, ∀i ∈ I

(1 + ε)vglc_uptaket + pglc = 0
− vmax

j (1 + ε)tzj − pj ≤ 0, ∀j ∈ J

vmin
j (1 + ε)tzj + pj ≤ 0, ∀j ∈ J

(1 + ε)vtarget
biomasst + pbiom ≤ 0

− wj(1 + ε)t − pj −
(

vmax
j − wj

)
qj ≤ 0, ∀j ∈ J

wj(1 + ε)t + pj +
(

vmin
j − wj

)
qj ≤ 0, ∀j ∈ J

qj − (1 + ε)t ≤ 0, ∀j ∈ J
sj, γglc, γi, pj ∈ R, ∀i ∈ I, ∀j ∈ J
γbiom, xmin,j, xmax,j, xmax2,j, xmin2,j, cj, t, qj, rj ≥ 0, zj

∈ {0, 1}, ∀j ∈ J .

(8)
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Since some knockout strategies zj may not have
corresponding feasible solutions to the inner problem
of (7), causing the corresponding dual solutions to be
unbounded, new continuous decision variables sj and rj
are added here in order to enforce the feasibility of the
inner primal problem of (7) to avoid such degenerated
cases. The bilinear terms in the objective function and the
constraints in (8) can be further linearized by using the
commonly adopted big-M method. This single-level MILP
problem can be solved efficiently for large-scale problems
by available solvers.

Pessimistic strain optimization II: P-OptKnock
In OptKnock [17], the inner-level mutant survival model
is approximated by the maximum biomass growth condi-
tion. In order to optimize for the overproduction of the
target biochemicals in worse-case scenario, we can sim-
ilarly write the corresponding pessimistic formulation as
what we have derived for P-ROOM:

max
zj ,∀j∈J

min
vj∈Y (zj)

vchemical

s.t.
∑

j∈J
(1 − zj) � K

zj ∈ {0, 1} , ∀j ∈ J

Y (zj) = argmax

⎧
⎨

⎩vbiom :
∑

j∈J
Sijvj = 0, ∀i ∈ I,

vglc = vglc_uptake,

vbiom � vtarget
biomass, vmin

j zj � vj � vmax
j zj, ∀j ∈ J

⎫
⎬

⎭ .

(9)

By adopting the same ε-approximation to the pes-
simistic problem in (9) to incorporate the inner-level
model uncertainty, we have the P-OptKnock formulation
as:

max
zj :zj∈{0,1},∀j∈J ,

∑
j∈J (1−zj)�K

min
vj ,∀j∈J

vchemical

s.t.
∑

j∈J
Sijvj = 0, ∀i ∈ I, vglc = vglc_uptake,

vbiom � vtarget
biomass

vmin
j zj � vj � vmax

j zj, ∀j ∈ J

vbiom ≥ ϕ(v∗)(1 − ε),

(10)

where ϕ(v∗) is the inner-most level function value of
a given inner-level decision variable v∗. Similar to the
approach we have employed for P-ROOM, we can con-
vert this optimization problem (10) to a single-level MIP.
We note that the single-level MIP equivalent of the pes-
simistic formulation P-OptKnock is indeed similar to the
work in [26] when the tolerance level ε is chosen as 0.
However, we emphasize that our proposed pessimistic

framework is more general and can be extended to differ-
ent bi-level strain optimization formulations that employ
various cell-survival models.

Results and discussion
In this section, we first evaluate the knockout solutions
by optimistic bi-level optimization methods on a core E.
coli metabolic network [27] when the outer- and inner-
level decision makers are not cooperative. We then test
our robust strain optimization methods, namely P-ROOM
and P-OptKnock, derived in the “Methods” section, on
the core network and a large E. coli metabolic net-
work, iAF1260 [22], for overproduction of Succinate. The
models are optimized using the MILP solver CPLEX
12.6.3 [28].

Succinate overproduction on AntCore metabolic network
We derive knockout solutions for a core E. coli metabolic
network model [27] with 74 chemicals and 75 reactions
for Succinate overproduction. The network model is from
the OptKnock package [17], in which the glucose uptake is
set at a fixed value of 100mmol/gDW.hr and the minimum
biomass is set as 5 mmol/gDW.hr. Since the glucose-
uptake rate is fixed, the Succinate yield is equivalent to
the corresponding flux value considering steady-state sto-
ichiometry constraint. The wild-type flux distribution is
computed by maximizing the biomass in the FBA frame-
work. In this set of experiments, we set the allowable
knockout numbers K = 3, 4, and 5. All the reported
experiments are based on the aerobic condition.

We first evaluate the robustness of two optimistic
bi-level programs OptKnock (1) and ROOM (2) by
computing the performance of least favorable Succinate
overproduction under uncertainty for the derived knock-
outs z∗ by solving (1) and (2). As discussed in the
“Methods” section, we introduce a parameter ε as
the model tolerance level to capture how faithful the
inner-level mutant survival model is and whether the
mutants will cooperate with the outer-level overpro-
duction objectives. By allowing the gap ε between the
realistic responses and the optimal inner-level objec-
tive function value, the increase in ε reflects the higher
model tolerance by approximating the inner-level model
uncertainty and non-cooperativeness. The pessimistic
Succinate overproduction rate evaluations of optimistic
knockout solutions are derived by finding the worst-
case solutions of reaction flux values in ε-approximation
sets.

The computed evaluation values for different ε val-
ues (0 ≤ ε ≤ 0.4) are plotted in cyan and red lines in Fig. 2
with different numbers of allowed knockouts. It is clear
that with higher model uncertainty (larger ε values), both
ROOM and OptKnock strategies lead to smaller Succi-
nate overproduction compared to the predicted optimistic
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Fig. 2 Pessimistic Models and Evaluation. The outer-level objective values of P-ROOM and P-OptKnock for a) K = 3, b) K = 4, and c) K = 5 plotted
with increasing ε for the core E. coli metabolic network. The evaluation Succinate rates of the optimistic models, ROOM and OptKnock, are also
given as red and cyan solid lines, respectively. (Color-coded as Blue: P-OptKnock, Black: P-ROOM)

overproduction rates. We also note that the Succinate
rates drop very quickly even with small ε, which implies
that these optimistic knockout strategies are not robust.
Finally, when the inner-level mutant survival models are
not as faithful as desired, the derived knockout strategies
may not be effective at all. For example, when K = 3 and 4,

the knockouts suggested by OptKnock are too “opti-
mistic” as the corresponding evaluation Succinate rates
go to 0 as shown in Fig. 2a and b. Compared with the
results from ROOM, this validates that the minimum flux
change model may be a better mutant cell survival model
than the maximum biomass growth model adopted in
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OptKnock. These experiments bring out that the cellular
and engineering objectives may behave in opposite direc-
tions and the optimistic knockout strategies may not work
in practice.

With the same ε-approximation model uncertainty,
we now compare the corresponding derived knock-
out strategies based on our proposed pessimistic mod-
els: P-OptKnock and P-ROOM. Figure 2 illustrates the
ε-optimal Succinate overproduction rates of the derived
knockout solutions by P-OptKnock and P-ROOM in blue
and black lines, respectively. Obviously, our pessimistic
strategies derive more robust solutions, for which the
worst-case or least favorable Succinate rates for differ-
ent ε values are consistently on top of the rates from
optimistic strategies. The least favorable Succinate rates
decrease monotonically with increasing ε correspond-
ing to higher model uncertainty. More interestingly, as ε

increases, both P-OptKnock and P-ROOM converge to
the stable Succinate overproduction rates. In fact, they
derive the same knockout reactions as provided in Table 1.
This clearly shows that our pessimistic formulations can
produce consistent and robust mutant strains with respect
to the inner-level mutant survival model uncertainty. As
a side note, when K = 5, the pessimistic Succinate val-
ues produced by P-ROOM and its optimistic counterpart
are almost the same for different tolerance levels, probably
because the surviving mutants are more restricted with
the increasing number of knockout reactions. This also
shows that the minimum flux change is a better mutant
survival model.

In Table 1, the succinate overproduction rates are
given by the pessimistic formulations P-ROOM and P-
OptKnock for the tolerance values ε in which both

models became stable (ε = 0.4) as shown in Fig. 2.
Although the pessimistic models provide different Succi-
nate values for different ε values in Fig. 2, the knockout
strategies and the Succinate values for both P-ROOM
and P-OptKnock are identical when they reach stabil-
ity. When K = 3, one of the knockouts suggested by
P-ROOM and P-OptKnock involves competing byprod-
uct metabolism pathways for succinate such as 6-
Phospho-D-gluconate (6pg) and Ribulose 5-phosphate
(ru5p). With K = 4, the reaction decomposing suc-
cinate (suc) is also eliminated. As more knockouts
are allowed, the resulting succinate production can
be further increased. We should also note that the
removal of an important reaction for Trans-hyrogenation
(nadh↔nadph) may cause significant reduction in
biomass flux value. For the knockout strategies suggested
by ROOM and OptKnock, when assuming the optimistic
environment, the succinate rates are larger than the val-
ues suggested by pessimistic knockouts as expected since
optimistic formulation provides an upper bound for the
pessimistic formulation. From all the experiments with
different K ’s, we demonstrate that, when we formulate
the mutant optimization problem as pessimistic opti-
mization by incorporating the model uncertainty, both
P-OptKnock and P-ROOM can suggest consistent and
robust knockouts, making the mutant strain optimization
problem more reliable, accurate, and independent from
the choice of inner-level surrogate functions for mutant
cell objectives.

Succinate overproduction on iAF1260 network
We have shown that the derived knockout strategies
based on optimistic methods may not be robust and

Table 1 Knockout strains derived by pessimistic and optimistic models on the core E.coli metabolic network

K Knockouts Succinate production

P-ROOM 3 6pg→ru5p + co2 + nadph, oac + accoa→cit, ac→ac(ext) 76.97

4 g6p→6pg + nadph, oac + accoa→cit, suc↔fum + fadh2, ac→ac(ext) 82.36

5 g6p→6pg + nadph, mal→pyr + co2 + nadph, 3pg + glu→ser + akg + nadh,
fadh2 + 0.5o2→2atp, nadh↔nadph

107.07

P-OptKnock 3 6pg→ru5p + co2 + nadph, oac + accoa→ cit, ac→ac(ext) 76.97

4 g6p→6pg + nadph, oac + accoa→cit, suc↔fum + fadh2, ac→ac(ext) 82.36

5 g6p→6pg + nadph, mal→pyr + co2 + nadph, 3pg + glu→ser + akg + nadh,
fadh2 + 0.5o2→2atp, nadh↔nadph

107.07

ROOM 3 dhap↔gap, g6p→6pg + nadph, fadh2 + 0.5o2→2atp 93.92

4 dhap↔gap, g6p→6pg + nadph, fadh2 + 0.5o2→2atp, glyc(ext)→ 108.22

5 g6p→6pg + nadph, mal→pyr + co2 + nadph, 3pg + glu→ser + akg + nadh,
fadh2 + 0.5o2→2atp, nadh↔nadph

115.58

OptKnock 3 g6p→6pg + nadph, mal→pyr + co2 + nadph, nadh↔nadph 110.179

4 g6p→6pg + nadph, mal→pyr + co2 + nadph, 3pg + glu→ser + akg + nadh,
nadh↔ nadph

123.314

5 g6p→6pg + nadph, 3pg + glu→ser + akg + nadh, nadh↔nadph,
glyc↔glyc(ext), ac(ext)→

129.786
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often “over-optimistic” by the experiments on the core
E. coli metabolic network, while our proposed methods
P-ROOM and P-OptKnock based on pessimistic opti-
mization for mutant strain design have achieved robust
and more practical knockout strategies. We further test
P-ROOM and P-OptKnock to derive mutant strains
for the overproduction of Succinate on a large E. coli
metabolic network model, iAF1260 [22], which has 1658
metabolites and 2936 reactions including the pseudo reac-
tions required for the computational model, also from the
OptKnock package [17]. The glucose uptake rate is fixed
at 100 mmol/gDW.hr, and the minimum biomass value is
also set to 5 mmol/gDW.hr. The reported experiments are
based on the anaerobic environment. We allow K = 3
knockout reactions on this large network.

Figure 3 provides the ε-optimal Succinate flux rates,
which are the outer-level objective function values based
on two pessimistic models of P-ROOM and P-OptKnock
at different ε values. When there is no model uncertainty
(ε = 0), P-ROOM clearly provides higher Succinate rate
than the value P-OptKnock suggests. This again suggests
that modeling mutant cell survival by minimization of
flux changes plays a role in favor of engineering objec-
tives with improved targeted productions. At higher ε

values, P-ROOM and P-OptKnock reach stability, and
they derive the same knockout reactions as provided in
Table 2 as we also observed in the experiments on the
E. coli core metabolic network. If we consider the fact
that the inner-level cell survival models are approximate
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Fig. 3 Pessimistic Models. The outer-level objective values of P-ROOM
and P-OptKnock for K = 3 plotted as solid lines with increasing ε for a
large-scale iAF1260 E. coli metabolic network. (Color-coded as Blue:
P-OptKnock, Black: P-ROOM)

to the real-world systems, incorporating this model uncer-
tainty with ε-approximation in our formulated pessimistic
mutant strain optimization methods, P-ROOM and
P-OptKnock, has a key role to achieve robust knockout
solutions that are less affected by these approximate cell
survival models.

Table 2 provides the predicted knockouts by P-ROOM
and P-OptKnock when K = 3. The minimum and max-
imum Succinate flux rates are also given for the mutant
and also wild-type strains. The Succinate flux rates of pes-
simistic models are given for two different ε values: ε = 1
denoting the highest tolerance level for the inner-level
model uncertainty, and ε = 0 denoting 0 tolerance level.
In Table 2, both P-ROOM and P-OptKnock predict three
identical knockouts that yield a minimum production rate
of the Succinate that is higher than the predicted pro-
duction rate in the wild-type strains. It validates that our
pessimistic mutant strain optimization methods guaran-
tee a higher Succinate production rate than that of wild-
type strains even in the worst-case scenario. Furthermore,
minimum and maximum Succinate rates given the pre-
dicted knockouts define a larger range for the OptKnock
model, which may indicate the inner-level mutant cell sur-
vival model by biomass maximization is less faithful than
ROOM’s minimum flux change model.

We have also included the derived knockouts by ROOM
and OptKnock and corresponding minimum and maxi-
mum succinate rates in Table 2. The mutant strain with
the knockouts obtained by ROOM produces 0 mini-
mal succinate flux value with the highest inner-level
model uncertainty. However, P-ROOM succeeds in get-
ting higher production rates even when ε = 1. The
minimal succinate rate when ε = 0 in ROOM is greater
than the minimal succinate rate for P-ROOM which is
8.09. This is because the reported pessimistic knock-
outs are identified when the model uncertainty is taken
as ε = 1. We note that the mutant with the pes-
simistic knockouts identified by P-ROOM when ε = 0
actually produces the minimal succinate rate as 31.36.
The knockouts captured by OptKnock are same as the
ones identified by pessimistic formulations, leading to the
same mutant with the same succinate production rates as
P-OptKnock. Pessimistic formulations identified the suc-
cinate dehydrogenase reaction (SUCDi) as one of the
suggested knockouts, which directly consumes succinate
(succ), and the reaction pyruvate formate lyase (PFL).
These have been reported as effective knockout strategies
in [17, 29].

As demonstrated by the results from both the small
core E. coli metabolic network and large iAF1260 network,
our pessimistic formulations for strain optimization pro-
duce robust and stable knockout solution strategies under
model uncertainty. Especially when comparing the results
from P-ROOM and P-OptKnock, both models derive the
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Table 2 Knockout strains derived by pessimistic and optimistic models on the iAF1260 E.coli metabolic network

Knockouts min vsuccinate max vsuccinate

ROOM - 0 0

FBA - 0 0.372

P-ROOM • mlthf + nadp↔methf + nadph ε = 0 8.09 8.09

• coa + pyr→accoa + for ε = 1 5.69 40.08

• q8 + succ→fum + q8h2

P-OptKnock • mlthf + nadp↔methf + nadph ε = 0 8.23 8.23

• coa + pyr→accoa + for ε = 1 4.78 80.52

• q8 + succ→fum + q8h2

ROOM • g6p + nadp↔6pgl + h + nadph ε = 0 31.36 31.36

• h2o + pser-L→pi + ser-L ε = 1 0 76.143

• q8 + succ→fum + q8h2

OptKnock • mlthf + nadp↔methf + nadph ε = 0 8.23 8.23

• coa + pyr→accoa + for ε = 1 4.78 80.52

• q8 + succ→fum + q8h2

same stable knockout solutions regardless of the inner-
level surrogate functions for mutant cell survival. Such
consistency is critical when considering the translation of
computationally derived results into in vivo experiments
in practical metabolic engineering.

Conclusions
In this paper, we have proposed a new pessimistic
optimization framework to identify optimal knockout
strategies for maximum targeted bio-production under
model uncertainty. We specifically have investigated two
cell survival models and presented two correspond-
ing pessimistic models to derive robust knockout reac-
tions to achieve maximum biochemical overproduction:
(1) P-ROOM under the minimum flux change condi-
tion; and (2) P-OptKnock under the maximum biomass
condition. The experiments on both the core E. coli
metabolic network [27] and large-scale iAF1260 net-
work [22] have demonstrated that the pessimistic mod-
els for strain optimization derive robust and stable
metabolic strain perturbation strategies through genome-
scale steady-state stoichiometric modeling. Formulating
the strain optimization problem based on pessimistic
optimization considering the model uncertainty leads to
consistent and reliable solutions regardless of the inner-
level mutant survival models, which can provide high
confidence for future in vivo experimental design of
promising microbial mutants that benefit the human
society.
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