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Rationale: We provide an in-depth description of a comprehensive clinical,

immunological, and neuroimaging study that includes a full image processing pipeline.

This approach, although implemented in HIV infected individuals, can be used in the

general population to assess cerebrovascular health.

Aims: In this longitudinal study, we seek to determine the effects of neuroinflammation

due to HIV-1 infection on the pathomechanisms of cerebral small vessel disease (CSVD).

The study focuses on the interaction of activated platelets, pro-inflammatory monocytes

and endothelial cells and their impact on the neurovascular unit. The effects on the

neurovascular unit are evaluated by a novel combination of imaging biomarkers.

Sample Size: We will enroll 110 HIV-infected individuals on stable combination

anti-retroviral therapy for at least three months and an equal number of age-matched

controls. We anticipate a drop-out rate of 20%.

Methods and Design: Subjects are followed for three years and evaluated by flow

cytometric analysis of whole blood (to measure platelet activation, platelet monocyte

complexes, and markers of monocyte activation), neuropsychological testing, and

brain MRI at the baseline, 18- and 36-month time points. MRI imaging follows the

recommended clinical small vessel imaging standards and adds several advanced

sequences to obtain quantitative assessments of brain tissues including white matter

microstructure, tissue susceptibility, and blood perfusion.

Discussion: The study provides further understanding of the underlying mechanisms

of CSVD in chronic inflammatory disorders such as HIV infection. The longitudinal study

design and comprehensive approach allows the investigation of quantitative changes in

imaging metrics and their impact on cognitive performance.
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1. INTRODUCTION

Cerebral small vessel disease (CSVD) is a common
neurodegenerative disease associated with aging and other
neurological diseases that is diagnosed by brain imaging. CSVD
affects small penetrating arteries, arterioles, capillaries, and
venules (1) and is clinically diagnosed by presence of brain
atrophy, white matter hyperintensities (WMHs), enlarged
perivascular spaces, cerebral microbleeds, and lacunar infarcts.
These are detected by T1-weighted (T1w), fluid attenuated
inversion recovery (FLAIR), T2-weighted (T2w), T2*-weighted
(T2*), and diffusion MRI (dMRI) (2). Additional neuroimaging
techniques to study CSVD in more detail have been proposed
and include (3) cutting-edge research sequences that can be
used to assess altered microcirculation and blood brain barrier
(BBB) dysfunction indirectly by measuring cerebrovascular
reactivity (CVR), cerebral blood flow (CBF), white matter
microstructure, and tissue susceptibility (4). As further detailed
below, in this study we used the following advanced research
sequences to obtain quantitative tissue metrics throughout the
brain: multi-shell dMRI, resting-state functional MRI (rs-fMRI),
multiple-delay pseudo-continuous arterial spin labeling (pcASL),
and quantitative susceptibility mapping (QSM).

Older adults living with human immunodeficiency
virus (HIV) infection are at increased risk of developing
cerebrovascular disease in terms of both large and small vessel
disease (5–7). Relatively limited attention has been devoted
to HIV-associated CSVD so far, despite its known long-term
effects on cognitive function in the general population. In HIV-
infection, CSVD could be the result of multiple mechanisms
(8–10). In addition to the known atherosclerosis mechanisms
affecting the older population, older HIV+ individuals are also
exposed to HIV proteins, host immune activation products, and
combination antiretroviral therapy (cART), which can affect
the neurovascular unit (endothelial cells, pericytes, astrocytes,
neurons, andmicroglia). Interestingly, CSVD has been associated
with markers secreted by myeloid cells (11, 12).

Aberrant platelet activation during HIV infection causes
an increase in platelet-monocyte complexes (PMCs) that
drives monocyte maturation from CD14+/CD16- to the
proinflammatory CD14(low)/CD16+ phenotype (13, 14).
Reduction in the numbers of CD14+/CD16- monocytes are
associated with proatherosclerosis changes (15, 16), BBB
permeability (17, 18), and aging (19, 20). Based on these
observations, we hypothesize that pro-inflammatory monocytes
lead to an altered integrity of the BBB and neurovascular unit.
Therefore, in this study we investigate mechanisms by which
activated platelets interacting with monocytes and endothelial
cells contribute to CSVD, in particular via processes that alter
vascular permeability and reactivity which lead to altered
microstructural integrity. We employ standard MRI sequences
used in clinical practice to qualitatively ascertain the presence of
CSVD and four advanced MRI sequences to quantitatively asses
white matter structural integrity, vascular reactivity, CBF, and
iron distribution. We also incorporate novel markers of immune
activation and cognitive testing.

TABLE 1 | Inclusion and exclusion criteria.

Inclusion criteria

Seropositive for HIV-1 on the basis of documented HIV infection

On stable cART for at least 3 months prior to screening

Viral load ≤200 copies/mL

Capable of giving informed consent

Aged ≥50 years for n = 70 subjects and aged between age 18 and 49

for n = 40 subjects

Exclusion Criteria

Symptomatic cerebrovascular disease

Uncontrolled diabetes mellitus, hypertension, or familial

hypercholesterolemia

Schizophrenia spectrum and other psychotic disorders, untreated

Bipolar and related disorders

Chronic seizures, stroke not consistent with CSVD, head trauma

resulting in loss of consciousness > 30 min, and multiple sclerosis

Brain infection (except for HIV-1)

Major Neurocognitive Disorder, as established by HAND definition for

HIV+ subjects and severity of cognitive and functional impairment for

HIV-controls

Serum creatinine levels > 2.0 mg/dl

Current use of immunosuppressants

Chronic inflammatory conditions

Substance use disorder in the past 6 months

Metallic implants that do not meet safety standards for MRI

Claustrophobia

The inclusion and exclusion criteria were selected to minimize other possible confounding

factors. HIV negative controls meet the same inclusion and exclusion criteria except for

having a confirmed HIV negative test.

2. METHODS AND ANALYSIS

2.1. Study Design
A total of 110 HIV-infected (HIV+) men and women and
110 HIV-uninfected (HIV-) age and sex matched controls
will be recruited using recruitment materials approved by
the Institutional Research Subjects Review Board (RSRB). All
participants provide written informed consent according to the
RSRB approved protocol prior to any evaluation. Blood samples
are acquired from adults after written informed consent carried
out in accordance with the Declaration of Helsinki. Study
participants are followed for 3 years as changes in CSVD are
expected to occur within 3 years of follow-up.

The inclusion and exclusion criteria are shown in Table 1.
Special effort will be made to enroll controls that are
demographically similar to the HIV+ subjects. Both men and
women are invited to participate in the study as there are
no scientific bases for sex restrictions. However, given the
sex distribution of HIV-infection in our clinics, more men
than women are expected to be enrolled. In this study we
use the Reynolds cardiovascular risk score (21) as a vascular
covariate in analyses to account for the effect of traditional risk
factors associated with vascular disease. We have also elected
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FIGURE 1 | Study data acquisition timeline. Clinical Evaluation includes a physical exam, neuropsychological tests, CES-D, and functional assessments. Full Brain

MRI includes all described imaging sequences. Partial Brain MRI excludes QSM, T2w, and MRA sequences. Full laboratory testing includes chemistry, hematology,

urine, CD4 count, HIV RNA, urine toxicology, real-time flowcytometry, plasma, and PBMC storage. Partial laboratory testing only includes tests performed for routine

clinical care.

to enroll patients on stable cART to minimize the effect of
uncontrolled viremia.

Subjects undergo three comprehensive evaluations [baseline
(BSL), 18-month, and 36-month time points] that includes
clinical evaluation, MRI, and comprehensive blood tests.
Routine phone follow-ups are conducted every 6-months
after the baseline visit. All collected data is stored in a
database in the University of Rochester Medical Center’s
(URMC) Bio-Lab Informatics System (BLIS), a comprehensive,
web-based data management system developed to store,
integrate, analyze, and securely share biomedical research data.
Details about each type of data collection and processing
is described below. See Figure 1 for the study’s data
acquisition timeline.

2.2. Blood Collection and Processing
Approximately 40 ml of whole blood will be collected in
Acid Citrate Dextrose (ACD) vacutainers (4 vacutainers) and
processed within 2 h of collection. The blood is incubated at
room temperature with slow shaking until processing. Plasma is
isolated from 20 ml of blood by centrifugation at 1,000 X g for 10
min at room temperature. Plasma is aliquoted and cryopreserved
at 80◦C for future use. Plasma is used to measure soluble markers

of monocyte activation (CD613,HMGB1, and neopterin) as well
as endothelial dysfunction (ICAM-1, sVCAM-1, osteoprotegerin,
and Lp-PLA2) using commercially available ELISAs. One
milliliter of whole blood is processed by flow cytometry to
measure the levels of circulating platelet-monocyte complexes
(PMCs) and expression of various monocyte activation markers
such as c-c chemokine receptor 2 (CCR2), CD40, CD62p (also
known as p-selectin), p-selectin glycoprotein ligand (PSGL-1),
and tumor necrosis factor receptor 2 (TNFR2). Remaining whole
blood is cryopreserved by mixing with RPMI containing 10%
Dimethyl sulfoxide (DMSO) and 20% fetal bovine serum (FBS)
in 1:1 volume using Mr. Frosty. Cryopreserved whole blood is
stored in vapor phase of liquid Nitrogen freezer for future use.

Flow cytometric analysis of platelet-monocyte complexes

and platelet activation is shown in Figure 2 and performed as

previously described (13, 22). Briefly, 100 µl whole blood is

fixed with equal volume of 4% paraformaldehyde (PFA) for 15

min at room temperature followed by red blood cell (RBC) lysis
using ACK lysis buffer. The cells are then washed and stained
with titrated amounts of antibodies against anti-CD14 PE (BD
Biosciences # 555398; 10 µl), anti-CD16 PE Cy7 (BD Biosciences
557744; 3 µl), anti-CD61AF647 (Biolegend # 336408; 3 µl), anti-
PSGL-1 FITC (R&D Systems # FAB9961G; 1.5 µl), anti-CD40
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FIGURE 2 | Analysis of platelet-monocyte complexes by flow cytometry. Our flow cytometry gating strategy to analyze PMCs from one representative study sample is

shown. Monocytes are initially gated based on forward and side scatter and then split into three subsets based on the expression of CD14 and CD16. Each monocyte

subset is then analyzed for expression of CD61, a platelet marker and CD61+ cells are defined as PMCs. Complexed and non-complexed cells are then analyzed for

the expression of different monocyte activation markers, namely CCR2 (depicted in the figure), CD40, CD62p, PSGL-1, TNFR2, and TF.

FITC BD Biosciences. # 555598; 10 µl), anti-CCR2 FITC (R&D
Systems # FAB151G; 1.5 µl), anti-CD62P FITC (BD Biosciences
# 555523; 5 µl), and anti-TNFR2 FITC (Miltenyi Biotech #130-
107-743; 1 µl) for 30 min at room temperature in the dark.
The cells are washed and acquired using the Accuri C6 flow
cytometer. 75,000 gated leukocytes are acquired based on forward
and side scatter per tube. Data is analyzed using Flow Jo software
version 10.4.2. Unstained cells and cells stained with anti-CD14
and anti-CD16 are used to gate on three subsets of monocytes:
classical monocytes (CD14+ CD16-), intermediate monocytes
(CD14+CD16+), and non-classical monocytes (CD14- CD16+).
Among these cells, those that expressed CD61, a platelet marker,
are termed as PMCs. Expression of CCR2, CD40, CD62p, and
TNFR2 is measured on PMCs and non-complexed monocytes.
Further, 10,000 platelet events are acquired based on size beads
(0.9–3 µm) and expression of CD61. Platelet activation is
measured by expression of CD62p.

2.3. Neurocognitive Testing
Assessments of neurocognitive and functional performance are
performed in order to derive an HIV-associated neurocognitive
disorder (HAND) classification (23). Prior to analyses, Z-
scores for each cognitive domain as well as a total Z-score is
calculated for each subject. All neuropsychological testing is
administered by the study coordinators, trained and supervised
by an experienced neuropsychologist. The neuropsychological
test battery includes tests of the following cognitive domains:
Attention/Working Memory (CalCAP CRT 4; CRT 14), Speed
of Information Processing (Stroop Color Naming, Digit Symbol
Modalities Test), Executive Function (Trail Making Test B,
Stroop Interference Task), Language (letter and category fluency),
Learning (Rey Auditory Verbal Learning Test Trials 1–5, Rey
Complex Figure Test Immediate Recall), Memory (RAVLT Trial
7, RCFT Delayed Recall), and Motor Skill (Grooved Pegboard).
Premorbid intellectual functioning and English language fluency
are assessed with the Wide Range Achievement Test (WRAT)
4-Reading subtest at the baseline only.

Functional and mood assessments include the instrumental
activities of daily living scale (IADLs) and some activities of daily
living (ADLs), self-reported cognitive function via the patient’s

assessment of own functional inventory (PAOFI), and a measure
of depression via the center for epidemiologic studies depression
scale (CESD).

2.4. MRI Acquisition
All imaging is performed on a research dedicated 3T Siemens
MAGNETOM PrismaFit (Erlangen, Germany) whole-body
scanner (software version VE11c) equipped with a 64-channel
phased array head coil capable of parallel imaging using
sensitivity encoding (SENSE), generalized auto calibrating partial
parallel acquisition (GRAPPA), and simultaneous multi-slice
(SMS) acceleration for diffusion and functional imaging. The
maximum gradient strength is 80 mT/m with a slew rate
of 200 mT/m/s. Table 2 summarizes the image acquisition
parameters used in this protocol.

2.4.1. Clinical Imaging
High-resolution T1w anatomical images are acquired using the
magnetization prepared 3D rapid gradient echo (MPRAGE)
sequence with the following parameters: inversion time (TI), 926
ms; flip angle (FlA), 8 degrees; echo time (TE), 2.45 ms; receiver
bandwidth (RBW), 190 Hz per pixel; echo spacing (ESP), 7.5 ms;
repetition time (TR), 1840.0 ms; and 1 mm isotropic resolution.
Slices are collected in straight-sagittal orientation. GRAPPA is
used with acceleration factor of 2 and 24 reference lines for an
acquisition time (TA) of 4 min 26 s.

T2w images are collected in 2D axial orientation with the
following parameters: TE, 100 ms; ESP, 11.1 ms; FlA, 150 degrees;
RBW, 222 Hz per pixel; TR, 6,000 ms; 0.5 × 0.5 mm in plane
resolution and 5.0 mm slice thickness for a TA of 2 min 54 s.

3D FLAIR images are acquired for both clinical readings and
quantitative structural processing to improve lesion detection
and tissue segmentation on individuals with periventricular
atrophy. Imaging parameters include TE, 215 ms; ESP, 3.42 ms;
echo train duration, 687 ms; TI, 1,800 ms; RBW, 7,571 Hz per
pixel; turbo factor, 278; and TR, 5,000 ms. A slice acceleration
factor of 2 is used at 1 mm isotropic voxel size for a total TA of 5
min 40 s.

MRA is acquired using two 3D time of flight (TOF) sequences
after a vessel neck scout, centered on the neck and Circle of
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TABLE 2 | Image acquisition parameters.

Sequence Type TR (ms) TE (ms) FlA (◦) SA Res (mm3) TA

T1w MPRAGE 1,840 2.45 8 2 1.0 × 1.0 × 1.0 4m 16 s

T2w 2D 6,000 100 150 1 0.5 × 0.5 × 5.0 2m 54 s

FLAIR 3D 5,000 215 2 1.0 × 1.0 × 1.0 5m 40 s

MRA Neck TOF 20 3.11 20 2 0.6 × 0.6 × 0.8 4m 22 s

MRA CoW TOF 21 3.42 20 2 0.5 × 0.5 × 0.5 8m 37 s

dMRI 2D SE-EPI 4,300 69 3 1.5 × 1.5 × 1.5 11m 38 s

QSM 3D mGRE 48 5.43 20 2 0.94 × 0.94 × 2.0 7m 7 s

fMRI 2D GE-EPI 993 43 70 8 2.0 × 2.0 × 2.0 5m 9 s

pcASL 2D SE-EPI 3,594 19 90 6 2.5 × 2.5 × 2.3 5m 30 s

TR, repetition time; TE, echo time; FlA, flip angle; SA, slice acceleration factor; Res, resolution; TA, acquisition time. Sequence specific parameters are located in section 2.5. Total

Acquisition time is 55 min 13 s, not including localizers, scouts, and shims, resulting in a total scanner time of about 58 min for baseline and 36-month scans. The 18-month MRI is 32

min 13 s of scanning.

Willis. Slices are collected in transverse orientation for both
scans with flow compensation. GRAPPA is used with acceleration
factor of 2 and 24 reference lines. Imaging parameters for the
neck/CoW acquisition include TE, 3.11/3.42 ms; FlA, 20/20
degrees; RBW, 252/250 Hz per pixel; TR, 20.0/21.0 ms; phase
oversampling, 50/30 %, slice oversampling, 16.7/20.0 %; image
resolution, 0.6 × 0.6 × 0.8/0.5 × 0.5 × 0.5 mm3; and TA 4 min
22 s/8 min 37 s.

2.4.2. Quantitative Imaging
In addition to the previously mentioned clinical sequences, the
diffusion and QSM images described below are also used both
for radiological viewing to determine CSVD burden and calculate
quantitative metrics via novel image post-processing.

Diffusion imaging is performed using a 2D transverse single-
shot single-echo spin echo (SE) echo-planar imaging (EPI)
sequence with TE, 69.0 ms; ESP, 0.66 ms; RBW, 1816 Hz per
pixel; matrix, 172 × 172; EPI factor, 172; TR, 4300 ms; and
1.5 mm isotropic resolution. Diffusion gradients are applied
along 64 directions with two non-zero b-values (1,000 and 2,000
s/mm2) and 7 interleaved reference scans. Parallel imaging is
enabled using slice acceleration of 3 and phase acceleration of
2 with 40 reference lines for a total scan time of 11 min 38 s.
All directions are collected with anterior-posterior (AP) phase
encoding. Reference reverse phase encoding b= 0 images are also
collected for distortion correction.

QSM is acquired with a 3D multi-gradient echo (mGRE)
pulse sequence with the following parameters: 8-echo mono-
polar readout train; FlA, 20 degrees; TE of first echo, 5.43 ms;
ESP, 1.50 ms; RBW, 930 Hz per pixel; and TR, 48.0 ms. Matrix
size is 256 × 256 × 64 with slices in straight-axial orientation
and voxel resolution of 0.94 × 0.94 × 2 mm3. GRAPPA is used
with acceleration factor of 2 and 24 reference lines, giving a scan
time of 7 min 7 s.

Blood oxygen level dependent (BOLD) rs-fMRI is performed
using a 2D transverse single-shot GE-EPI sequence with TE,
43.0 ms; ESP, 0.56 ms; FlA, 70 degrees; RBW, 2,442 Hz per
pixel; EPI factor, 128; TR, 993 ms; and 2 mm isotropic voxels.
Parallel imaging is enabled using a multiband acceleration
factor of 8 with 12 reference lines for 300 volumes for a total

scan time of 5 min 9 s. Images are collected with AP phase
encoding. Gradient field maps are also acquired to account for
distortion correction. In addition to the rs-fMRI acquisition,
we also record three physiological signals for quantitative signal
regression, namely heart rate, respiration rate, and end-tidal
carbon dioxide (ET-CO2).

Perfusion images are acquired with a multiple post-label delay
pseudo-continuous arterial spin labeling (pcASL) sequence using
a 2D transverse single-shot single-echo (SE) echo-planar imaging
(EPI) sequence with the following parameters: TE, 19.0 ms;
ESP, 0.57 ms; FlA, 90 degrees; RBW, 2,326 Hz per pixel; EPI
factor, 86; TR, 3594 ms; voxel size 2.5 × 2.5 × 2.3 mm3; slice
acceleration, 6; and labeling duration, 1.5 s. Multiple tag-control
pair measurements are acquired at five delay times for a total
of 86 perfusion measurements. One noise pair measurement
and one equilibrium pair measurement are also acquired for
perfusion calibration processing. The total scan time for these 90
measurements is 5 min 30 s.

2.5. MRI Quality Control and Clinical
Review
All images are checked by a lab member for quality control
within two days of image acquisition in the event that a subject
needs to be rescanned due to poor data quality. Quality control
consists of confirming proper data transfer from the scanner
to the data server, converting the standard digital imaging and
communications inmedicine (DICOM) files to the neuroimaging
informatics technology initiative (NifTI) data format via the
dcm2niix tool (24), and visual inspection of all imaging sequences
for any scanner and subject related artifacts. Sequences with
significant artifacts or excessive subject motion (at least 2 mm
shift during a single sequence) are either rescanned at a later date
within 30 days of the scan or removed from analyses. In rare
cases, sequences may be rescanned during the overall acquisition,
time permitting.

Clinical images that are used for diagnostic purposes are
also transferred to the Philips IntelliSpace Portal (v10.1) medical
software for the team’s radiologist to review to determine
CSVD severity in each subject and calculate vessel diameters.
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FIGURE 3 | Study MRI data processing pipeline. Colored arrows indicate the steps taken for sequence specific processing: ASL (red), fMRI (green), T1w (Black),

FLAIR (Orange), dMRI (Light Blue), T2*w (Purple). Final quantitative metrics calculated from each processing pipeline are indicated in the colored endpoints. The Dark

Purple URMC Portal shows the sequences sent to our radiologist for clinical evaluation.

Radiological findings are immediately documented in the study
database in BLIS. Any incidental findings are reported to
the principal investigator for review. Documented radiological
findings include a Fazekas score (25) rating based on the
severity of WMHs, presence of cerebral microbleeds, presence
of lacunar infarcts, and enlarged perivascular spaces. We also
report measurements of vessel diameters of extracranial cerebral
vessels and intracranial vessels forming the Circle of Willis and
the basilar artery.

Results of post-processing imaging metrics are also uploaded
to the BLIS database, along with all information used for
any analyses related to this study. Image postprocessing and
obtainable metrics are described in section 2.6. Technical details
related to MRI acquisition for each pulse sequence used in our
study are described below. Total scanning time is 58 min per
subject for each visit.

2.6. MRI Data Processing
In this section we describe our comprehensive image analysis
pipeline, including preprocessing, data cleaning, and post-
processing methods for each imaging modality up to more
detailed analyses. Any study specific analyses will be described
in future manuscripts dedicated to research aims for this project.
We freely provide our image processing pipeline on github to
be used for similar studies. All software packages referenced
throughout this section can be obtained with proper research
credentials and/or collaboration with other laboratories.

All image processing is completed within the URMC
servers either on laboratory desktops or in the Center for
Integrated Research Computing (CIRC), except for WMH lesion
segmentation. All software used for processing are installed
according to proper research agreements. Figure 3 shows our
CSVD image processing pipeline. Any deviations from this
comprehensive image processing pipeline will be fully detailed in
subsequent papers directly pertaining to specific analyses posed.

2.6.1. Structural Imaging
From the structural images collected, we process only the T1w
and FLAIR data. In addition to the processing steps described
below, we anonymize the T1w NifTI image by removing the face
via Freesurfer’s mri_deface tool (26). This anonymization ensures
that we do not violate any data sharing protocols in certain
stages of our processing pipeline. The T2w and MRA images
are used exclusively by our team’s radiologist for diagnostic
purposes. As previously mentioned, all diagnostic findings are
maintained in our BLIS database. It is worth noting that there
are a few quantitative values calculated from the MRA images.
The right and left internal carotid and basilar arterial diameters
are measured inside Philips IntelliSpace Portal by our radiologist
and uploaded to our database.

2.6.1.1. T1w
Structural segmentation is performed on the T1w images using
the anatomical processing script (fsl_anat), available as part
of FMRIB’s Software Library (FSL) (27–29). Unless otherwise
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specified, all processing is performed using version 6.0.0. The
processing pipeline includes image reorientation and cropping,
radio-frequency bias-field correction, linear, and nonlinear
registration to Montreal Neurological Institute (MNI)-152 2 mm
standard space via FLIRT (30, 31) and FNIRT (32) respectively,
brain extraction via BET (33), tissue segmentation with FAST
(FMRIB’s Automated Segmentation Tool) (34), and subcortical
structure segmentation using the FIRST algorithm (35).

Cortical reconstruction and volumetric segmentation is
performed with the Freesurfer image analysis suite, which is
documented and freely available for download online (http://
surfer.nmr.mgh.harvard.edu/). The technical details of these
procedures are described in prior publications. Briefly, this
processing includes motion correction and averaging (36)
of multiple volumetric T1w images (when more than one
is available), removal of non-brain tissue using a hybrid
watershed/surface deformation procedure (37), automated
Talairach transformation, segmentation of the subcortical white
matter and deep gray matter volumetric structures (including
hippocampus, amygdala, caudate, putamen, ventricles) (38, 39)
intensity normalization (40), tessellation of the gray matter white
matter boundary, automated topology correction (41, 42), and
surface deformation following intensity gradients to optimally
place the GM/WM and GM/CSF borders at the location where
the greatest shift in intensity defines the transition to the other
tissue class (43, 44). Once the cortical models are complete, a
number of deformable procedures can be performed for further
data processing and analysis including surface inflation (45),
registration to a spherical atlas which is based on individual
cortical folding patterns to match cortical geometry across
subjects (46), parcellation of the cerebral cortex into units with
respect to gyral and sulcal structure (39, 47), and creation of a
variety of surface based data including maps of curvature and
sulcal depth. This method uses both intensity and continuity
information from the entire three dimensional MR volume
in segmentation and deformation procedures to produce
representations of cortical thickness, calculated as the closest
distance from the GM/WM boundary to the gray/CSF boundary
at each vertex on the tessellated surface (44). The maps are
created using spatial intensity gradients across tissue classes and
are therefore not simply reliant on absolute signal intensity.
The maps produced are not restricted to the voxel resolution
of the original data thus are capable of detecting submillimeter
differences between groups. Procedures for the measurement
of cortical thickness have been validated against histological
analysis (48) and manual measurements (49, 50). Freesurfer
morphometric procedures have been demonstrated to show
good test-retest reliability across scanner manufacturers and
across field strengths (51, 52).

2.6.1.2. FLAIR
We use both the anonymized T1w and the FLAIR images to
quantitatively determine total WMH lesion burden. To do so
we use volBrain, an automated online MRI brain volumetry
system (53). More specifically, we make use of the lesionBrain
pipeline to segment and classify anyWMH lesions in our subjects
(54). The lesionBrain pipeline consists of the following stages:

preprocessing, structure segmentation, candidate mapping,
lesion segmentation, and lesion classification. Upon completion
of the pipeline, a detailed report is generated and includes the
overall lesion load, the number of lesions in each lesion class
(periventricular, juxtacortical, deep white, and infratenorial). We
use this quantitative measure of WMH burden to supplement,
rather than corroborate, our clinical findings for future analyses.

Briefly, preprocessing of the images includes intensity
normalization and registration to MNI space, denoizing by an
adaptive nonlocal means filter (55), correction for inhomogeneity
(56, 57), and tissue segmentation [gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF)] (58). Structure
segmentation further segments the following brain structures:
intracranial cavity (ICC), brainstem, cerebellum, and lateral
ventricles (59–61). Candidate mapping is performed only in
areas where lesions are likely to be found. The mean (µ) and
standard deviation (σ ) of the GM FLAIR intensities are used
to estimate a threshold (thr = µ + ασ , where α = 0.5) above
which all voxels within the ICC mask are considered as lesion
candidates. Due to some inconsistencies in training the algorithm
compared to the lesionBrain training dataset, any voxels that
lie within a previously built lesion atlas are also considered as
lesion candidates (62, 63). Lesion segmentation is performed
using an extension of the RI-NLM method (64). Segmentation
is performed in two stages to account for challenges associated
with both a voxel-based and patch-based approach. The RI-
NLM method is first applied to the T1w and FLAIR images to
obtain a lesion probability mask. This is followed by a secondary
regularization step using a patch-wise denoizing filter (65). The
weights of the filter are estimated on the FLAIR and used to
average the lesion probabilities. Systematic error correction is
automatically used to produce the final lesion segmentations
(66, 67). Finally, a classification algorithm is used to classify
lesion type.

2.6.2. Diffusion Imaging
With a high angular resolution diffusion imaging (HARDI)
acquisition, we are able to derive many quantitative metrics
using various post-processing techniques. This section covers
the following stages of our diffusion image processing pipeline:
preprocessing, diffusion tensor imaging (DTI), diffusion kurtosis
imaging (DKI), neurite orientation dispersion and density
imaging (NODDI), GM and WM based spatial statistics
(GSBSS and TBSS), tractography, and structural connectivity
(SC) extraction.

The preprocessing pipeline for all subsequent post-processing
included brain extraction using FSL’s BET (33), susceptibility
induced distortion correction using TOPUP (28, 68), and
eddy-current induced distortion and subject motion corrections
using EDDY (69). Data is collected with reversed phase-
encode blips, resulting in pairs of images with distortions
going in opposite directions. From these pairs the susceptibility-
induced off-resonance field is estimated using a method
similar to that described in (68) as implemented in FSL
and the two images are combined into a single corrected
one. More technical information about FSL’s EDDY can be
found in (68–70). This preprocessing pipeline is applied to all
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subsequent post-processing methods, described below. Images
are manually inspected using the motion correction reports
and data visualization software upon completion of data
preprocessing to catch any errors during preprocessing. Errors
during preprocessing are corrected on an individual basis,
as needed.

Whole-brain voxel-wise metrics are calculated from various
post-processing techniques to provide more information about
the diffusivity properties of brain tissues. We obtain ten different
metrics from our HARDI data that is modeled by three
theoretical diffusion signals. Diffusion tensor imaging (DTI) is
a model fitting technique that fits the diffusion tensor model
(71). Metrics are fit to each voxel using a linear regression with
sum of least-squares error and fractional anisotropy (FA), axial
diffusivity (AD), mean diffusivity (MD), and radial diffusivity
(RD) maps using FSL’s DTIFIT. Diffusion kurtosis imaging
(DKI) extends the second order diffusion tenor model to a
fourth order kurtosis model to fit additional metrics (72). Axial
kurtosis (AK), mean kurtosis (MK), and radial kurtosis (RK)
metrics are calculated using the DKI estimator in the Diffusion
Imaging in Python (DIPY) module in Python 3.6 (73). The DKI
estimator in DIPY automatically fits the four tensor metrics as
well. As part of quality control checks of the processed data, we
correlate the tensor metrics fit by DTI and DKI to ensure within-
subject consistency prior to analyses. Finally, neurite orientation
dispersion and density imaging (NODDI) estimation is processed
using the NODDI Toolbox v1.0.1 run on the MATLAB platform
(R2018a). NODDI estimation fits each parameter of the NODDI
model usingmaximum likelihood estimation using a Rician noise
model with the Gauss-Newton nonlinear optimization technique
(74). The voxel-wise metrics produced from the NODDI model
are the neurite density or intracellular volume fraction (ICVF),
orientation dispersion index (ODI), and extracellular or isotropic
volume fraction (ISO). These NODDI parameters are reliable in
the GM in addition to WM. In summary, we fit ten quantitative
diffusion metrics from three different signal models using our
HARDI data.

Since we build so many whole-brain voxel-wise metrics, it is
important that we prepare each map for group-based analyses.
On a voxel-wise scale, the most common group analysis is
whole-brain spatial statistics. While we do not present specific
spatial statistical analyses, we do present two options for spatial
statistics and describe the steps taken to prepare for each. The
main option we use for group analysis is tract-based spatial
statistics (TBSS) in FSL (28, 33, 75–77). In order to perform
TBSS along WM tracts, three main steps are required. The first
step is nonlinear alignment of each subject’s FA map to the
FMRIB58_FA 1 mm standard space target via FNIRT. Second,
a skeleton projection is created by thresholding the FA intensities
of all subjects. Finally, voxel-wise statistics is performed on the
skeleton using FSL’s randomize with research specific hypothesis
testing (78). Due to the high quality HARDI and rs-fMRI
acquisitions that we use, we have the option of also performing
NODDI-improved GM-based spatial statistics (N-GSBSS) using
the N-GSBSS pipeline (79). The N-GSBSS pipeline is self-
contained and does not directly follow from any preprocessing
described above.

The final stage of diffusion processing is tractography
in order to calculate SC matrices for each subject. After
diffusion preprocessing, the eddy corrected diffusion weighted
images are postprocessed using MRtrix3 (www.mrtrix.org),
Advanced Normalization Tools (ANTs) (80), and the Sherbrooke
Connectivity Imaging Lab toolbox in python (Scilpy) as part
of the population-based SC (PSC) pipeline (81). The b0
reference image is extracted, skull stripped, bias-field corrected,
cropped, intensity normalized, and resampled to 1 mm isotropic
resolution. The high-resolution T1w anatomical image is then
registered to the high-resolution diffusion image using ANTs
registration tools before being passed through Freesurfer’s recon-
all pipeline. Once the standard atlas parcellations are rigidly
registered to this diffusion anatomical space, the fiber orientation
distribution function (fODF) is calculated within each voxel to
prepare for tractography (82). Tractography is performed using
a particle filtering tractography (PFT) algorithm (83). Finally,
invalid streamlines are removed and SC matrices are calculated
for both the Desikan-Killiany (47) and Destrieux (84) atlases
using the PSC toolbox.

2.6.3. Quantitative Susceptibility Mapping
QSM reconstruction is performed utilizing the morphology
enabled dipole inversion with zero-tissue referencing (MEDI+0)
toolbox (85–88), on the MATLAB R2018a environment (The
Mathworks, Inc., Natick, MA). Phase unwrapping is performed
and background field removal is completed using the projection
onto dipole field (PDF) method. R2* maps are produced via a
monoexponential curve fitting and used to create CSF masks to
use as anatomical prior information before performing MEDI.
Finally, the dipole inversion is performed using L1 regularization
with Lagrange multipliers λ set to 1,000 and λCSF set to 100,
spherical mean value (SMV) radius set to 5, and the model error
reduction through iterative tuning (MERIT) option (89). R2*
maps are calculated during the QSM reconstruction process and
separately saved. Zero-tissue referencing is done with respect to
CSF and incorporated into the reconstruction toolbox to allow
for more accurate intersubject comparisons.

Both QSM and R2* maps are coregistered to the high
resolution structural and MNI152-2 mm standard spaces via the
magnitude image of the first echo of the data. Linear registration
between the T1w and QSMmap is performed using FLIRT, while
FNIRT nonlinear registration is used to register the QSM map
to standard space. Whole-brain voxel-based comparisons are
performed in standard space using FSL’s randomize tool (78) with
family-wise error rate correction after gaussian smoothing of 5
mm to account for coregistration errors and other susceptibility
induced artifacts.

2.6.4. Functional Imaging
Similar to the diffusion processing pipeline, our functional
images can be used for more than one purpose. Our
functional processing pipeline includes the following steps:
volumetric preprocessing, denoizing, and resting state network
(RSN) extraction, whole-brain voxel-wise CVR calculation,
volumetric functional connectivity (FC) calculation, and surface-
based preprocessing, denoizing, RSN extraction, and FC
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calculation. While others have proposed to incorporate both
volumetric and surface-based functional processing data for
more integrated information, we keep our volumetric and
surface-based processing independent of each other. Steps may
be adopted in the future to incorporate both types of functional
processing, depending on more specific analyses.

2.6.4.1. Volumetric Functional Processing
FMRI data processing is carried out using FSL’s FMRI Expert
Analysis Tool (FEAT) Version 6.00. Registration to high
resolution structural is carried out using boundary-based
registration (BBR) (90). Registration from high resolution
structural to standard space is then further refined using FNIRT
nonlinear registration (32, 77). The following pre-statistics
processing is applied: motion correction using MCFLIRT (91);
slice-timing correction using Fourier-space time-series phase-
shifting; non-brain removal using BET (33); spatial smoothing
using a Gaussian kernel of FWHM 5 mm; grand-mean intensity
normalization of the entire 4D dataset by a single multiplicative
factor; high-pass temporal filtering (Gaussian-weighted least-
squares straight line fitting, with sigma= 50.0 s).

Independent component analysis (ICA) based exploratory
data analysis is carried out using probabilistic ICA (92)
as implemented in FSL’s Multivariate Exploratory Linear
Decomposition into Independent Components (MELODIC)
Version 3.15 in order to investigate the possible presence
of unexpected artifacts or activation. The following data
preprocessing is applied to the input data: masking of non-brain
voxels; voxel-wise demeaning of the data; and normalization
of the voxel-wise variance. Preprocessed data are whitened and
projected into a 64-dimensional subspace using probabilistic
principal component analysis (PCA) where the number of
dimensions is estimated using the Laplace approximation to the
Bayesian evidence of the model order (92, 93). The whitened
observations are decomposed into sets of vectors which describe
signal variation across the temporal domain (time-courses)
and across the spatial domain (maps) by optimizing for non-
Gaussian spatial source distributions using a fixed-point iteration
technique (94). Estimated component maps are divided by the
standard deviation of the residual noise and thresholded by fitting
a mixture model to the histogram of intensity values (92).

After all functional preprocessing and exploratory ICA
analysis has been completed, we use FMRIB’s ICA-based
Xnoiseifier (FIX) to automatically classify “good” and “bad”
components in order to remove the “bad” components from
the time series data (95, 96). FIX runs on FSL, MATLAB,
and R (97), with a series of dependent packages in each. Due
to the similar nature of our functional data to the Human
Connectome Project’s (HCP), we utilize the pretrained weights
from the “minimally-preprocessed” 3T HCP-like datasets (TR =

0.7 s, 2 mm isotropic resolution, 15 min session, minimal high
pass temporal filtering) (95, 98). Unfortunately, our scanning
parameters are not identical to HCP’s, so we do expect some
classification errors due to the nature of the FIX algorithm.
As such, all images and components are manually checked for
consistency before removing “bad” components.

We calculate the CVR index for each voxel in standard and
native spaces following the method described in (99). Note that
CVR is calculated before MELODIC and FIX processing by in
house scripts. CVR is an indirect measure of how blood vessels
respond to changes in carbon dioxide. However, due to the
resting state nature of our study, we use a data-driven approach
to calculate reactivity. Others have previously demonstrated
that reactivity signals are part of the average BOLD signal
of all GM voxels (99). In order to calculate CVR, we first
perform a band pass filter to obtain the 0.02–0.04 Hz frequency
range. We then take the average BOLD time course of all
GM voxels of an individual and use it as a regressor against
the voxel-wise time-course of every voxel in the brain. The
regression coefficient associated with this linear model is then
normalized by a reference tissue to obtain the relative CVR of
every voxel.

Finally, we use the denoized functional data to build
FC matrices between regions of the brain. There is no
consensus on the best way to calculate FC (100). We use
the atlas-based FC Pearson correlation (101) implementation
in the Nilearn: Machine learning for Neuro-Imaging in
Python module (102). We incorporate the standard nuisance
regressors: translational and rotational motion, WM, CSF,
and the global signals. We build FC matrices with and
without various combinations of nuisance regressors for
both the Desikan-Killiany (47) and Destrieux (84) atlases,
similar to the SC matrices. By saving matrices with different
combinations of regressors, we provide options for many
kinds of future analyses without having to recalculate
FC matrices.

2.6.4.2. Surface-Based Functional Processing
Surface-based fMRI preprocessing is carried out using the
Freesurfer functional analysis streamline (FSFAST) pipeline
using Freesurfer version 6.0.1. The following pre-statistics
processing is applied: motion correction using MCFLIRT (91);
slice-timing correction using Fourier-space time-series phase-
shifting (103); non-brain removal and masking; registration to
the anatomical; sampling to the surface; and surface smoothing
using a Gaussian kernel of FWHM 5 mm. Surface sampling
is performed onto the left and right hemispheres in the native
anatomical (diffusion) space. Once the functional preprocessing
steps are completed, nuisance regressors are calculated using
principal component analysis (PCA). Surface-based registration
methods in Freesurfer are used to register individual native
surfaces to the fsaverage mesh space prior to any group-wise
analyses (45). We use surface-based adaptions of all of the
volumetric post-processing methods to obtain surface-based
RSNs and FC matrices. Additionally, surface-processed rs-fMRI
is used to derive seed-based connectivity maps to compare
differences between groups with better spatialization on the
cortical surface. While it is possible to combine both the
volumetric and surface-based fMRI data after preprocessing, as
has been done in the HCPminimal preprocessing pipelines (104),
we do not utilize the HCP pipeline due to the 2D nature of our
T2w images.
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TABLE 3 | Statistical Power for two-sample Student T-test based on mean MD of

the BCC and GCC.

d = 2.6% d = 3.0% d = 3.4% d = 3.8%

n = 60 0.794 0.894 0.953 0.982

n = 65 0.825 0.916 0.966 0.988

n = 70 0.852 0.934 0.976 0.992

n = 75 0.875 0.949 0.983 0.995

n = 80 0.895 0.960 0.988 0.997

n = 85 0.912 0.969 0.991 0.998

n is the sample size of each group and d is the minimum effect size as the percentage of

the control group that can be detected. The significance level is α = 0.05.

2.6.5. Perfusion Imaging
ASL images are processed using the Oxford ASL tool (105–107).
Preprocessing includes motion correction using MCFLIRT, slice
timing correction, distortion correction, spatial regularization,
and registration to high resolution anatomical space using
the boundary-based registration (BBR) algorithm (90) and
to MNI152-2 mm standard space using FNIRT nonlinear
registration. CBF quantification is run in three steps: Bayesian
inference for CBF according to the Buxton kinetic curve model
(108), Bayesian inference of further parameters as applicable to
multi-delay data, including cerebral blood volume (CBV) and
arterial transit time (ATT), and Bayesian inference with spatial
priors to fine tune the model parameters initialized by the high-
resolution anatomical image.

2.6.6. Region of Interest Metric Calculations
For pre-specified regions of interest (ROIs), we also calculate
average ROI values for all 16 previously described quantitative
metrics: DTI (FA, AD, MD, and RD), DKI (AK, MK, and RK),
NODDI (ISO, ICVF, and ODI), QSM (QSM and R2*), fMRI
(CVR), and ASL (CBF, ATT, and CBV). We use the following
atlases for ROI extraction, available in FSL in standard MNI152-
2 mm space: Harvard-Oxford cortical (HO-cor) and subcortical
(HO-sub) (47, 109–111) and the Johns Hopkins University
WM tracts (JHU-tracts) (112–114). To obtain the most accurate
averages for each metric, we take each ROI defined in each atlas
and apply nonlinear and linear inverse warps with FNIRT and
FLIRT to warp each ROI to native metric spaces. After warping,
ROIs are binarized before taking the average metric within each
ROI. Each value is uploaded to BLIS for future analyses. The
only metric that is not averaged in native space is the CVR
due to some theoretical limitations described in the literature
(see Discussion).

2.7. Statistical Analyses
2.7.1. Sample Size Calculation
The sample size calculation reflects differences in imaging
metrics previously reported by our group and others in HIV
infected individuals compared to HIV uninfected individuals.
Here we present a power analysis starting with DTI metrics
derived from one of our studies on patterns of whitematter injury
in HIV infection (115).

2.7.1.1. Diffusion Tensor Imaging
Fifty HIV participants and 13 HIV-uninfected controls were used
in that study. From the results of this study, we selected two brain
areas that provide reliable and reproducible DTI measurements,
namely the body and splenium of the corpus callosum (BCC and
SCC), although we identified other white matter structures that
show even more significant differences between HIV- controls
and HIV+ subjects. Therefore, the power calculation should err
on the conservative side. The mean MD value among controls
for the BCC and SCC is 0.964, the pooled standard deviation
computed from all subjects is 0.049, and the observed effect
size is 0.0371, which represents a 3.8% difference based on the
sample mean of the controls. The power is calculated based on
the information from this preliminary study using a two-sided
t-test for comparing two groups, which is reported in Table 3.

Based on this table, if we assume to have at least 60 HIV-
control subjects and at least 60 HIV+ subjects, we can detect
a very conservative effect size of 3.0% with about 90% power
between the two groups. A similar power calculation can be
derived using data from a recent publication from (116) assessing
brain white matter hyperintensity in HIV infection. The median
(IQR) periventricular WMH load for the HIV+ group (n = 103)
and control group (n = 70) is 0.8(1.5) and 0.4(1.0), respectively.
If we recruit 80 subjects in each group, we have 80% of statistical
power at significance level α = 0.05. However, in both our
previous study and (116) the mean age was around 50 years of
age. To further investigate age-CSVD interaction, we will also
include subjects younger than 50 years old. We assume that the
frequency of CSVD will decrease with the addition of younger
subjects but it will still be more frequent in HIV+ compared to
HIV- subjects. Therefore, assuming conservatively that the true
difference may be only 2.6% (if younger subjects are included) as
opposed to around 3.8% (if only older subjects were included),
if we have n = 85 subjects per group, we can achieve more than
90% statistical power. Furthermore, considering a drop-out rate
of about 20%, we plan to recruit n= 110 subjects per group for a
total of 220 subjects.

2.7.1.2. Cerebral Blood Flow (CBF)
Ances et al. (21) measured resting CBF in the lenticular nuclei
of HIV+ (n = 33, mean = 47.1) and HIV- individuals (n = 26,
mean = 56.2). The pooled standard deviation was 8.1. Based on
these results, the statistical power is more than 90% even if we
only have n= 30 in each group.

2.7.1.3. Quantitative Susceptibility Mapping (QSM)
Limited information is available in the literature on HIV-
associated changes in brain tissue susceptibility. Miszkiel et al.
(117) measured R2* in several ROIs of HIV infected (n= 28) and
uninfected (n = 15) subjects. In the globus pallidus, the mean
group differences and pooled standard deviations are 0.0029
and 0.0027, respectively; in the caudate, the group difference
is smaller (0.0019) and the pooled standard deviation is larger
(0.0037). By using the conservative results from the caudate, we
can still achieve 91% statistical power with n = 85 subjects in
each group.
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2.7.1.4. Cognitive Function
Decreased cognitive performance is well documented in HIV
infection and demonstrable even with small sample size (118,
119). In our previous studies, we observed a mean Z-score of
−1.14 in HIV+ subjects compared to a mean Z-score of 1.46
and a pooled standard deviation of 4.02. Thus, with n = 85 in
each group, the statistical power is 99%. However, our goal goes
beyond a comparison between HIV+ and HIV- subjects. Rather,
we will use a high-dimensional multivariate regression analysis
with a data-driven model selection procedure and multiple
testing adjustment. We are confident that most, if not all, of the
multivariate associations investigated will be significant, because
for n = 85 in each group, we have adequate power for these
covariates in the marginal power analyses.

2.7.2. Analysis Plan
Demographic and clinical data are assessed by descriptive
analysis using means and standard error (SE), medians and
inter-quartile ranges for continuous variables, and proportions
for categorical variables. We use graphical methods such as
histograms, Q-Q plots, and box-plots to visualize the data
and identify potential data problems such as outliers, missing
data, and skewness. If problems are detected, appropriate data
preparation steps such as outlier removal, data imputation, and
log-transformations are considered.

Comparisons between two independent groups (e.g., HIV+
versus HIV- subjects at baseline) are conducted by either two-
group Welch’s t-test or Wilcoxon ranksum test (for continuous
variables), or Fisher’s exact test (for categorical variables). One-
way analysis of variance (ANOVA) F-test followed by Tukey’s
post-hoc test and Kruskal-Wallis test with Dunn post-hoc test
are used to compare continuous variables across 3 or more
(K ≥ 3) groups. Paired t-test and Wilcoxon signed-rank test
are used to compare the levels of continuous variables between
two visits. Repeated measures ANOVA F-test and Friedman
test are used to test marginal group differences across multiple
time points. Pearson and Spearman correlation analyses are
used to assess marginal associations between two continuous
variables. The R package cocor is used to compare the correlation
coefficients computed from the two cohorts (120). A p-value <

0.05 is considered statistically significant for a single hypothesis
testing problem. For inferential problems that involved multiple
hypotheses, the Benjamini-Hochberg multiple testing procedure
(121) is used to control the false discovery rate (FDR) at the
< 0.05 level. All statistical analyses are performed in R (R
Foundation for Statistical Computing, Vienna, Austria).

Multivariate regression models are used to quantify the
associations between selected covariates and continuous response
variables at BSL, 18-month, and 36-month visits, controlling
for potential confounding effects such as age. The response
variable and covariates in these regression models depend on
specific research aims. For example, at BSL, we can designate
cognitive function (measured by the neuropsychological tests) as
the response variable and associate it with a host of covariates
including brain injury (measured by various brain imaging
markers), HIV status (cohort), cART treatment, cardiovascular
risk score, and age. As an extension, linear mixed effects

regression (LMER) models are be applied to data collected at
all three visits from both cohorts. We use per-subject random
intercepts to account for serial correlations between multiple
time points. If needed, certain interaction terms may be included.
For example, we may include the interaction between visit
and age to account for potential pattern differences of cART
treatment effects between young and old subjects. In these LMER
analyses, parameters are estimated by the restricted maximum
likelihood (REML) criterion, and the statistical significance is
assessed by the adjusted ANOVA F-test provided by R package
lmerTest (122). For both cross-sectional multivariate regression
and longitudinal LMER analyses, the fitted linear coefficients,
their 95% confidence intervals, and the corresponding p-values
are reported.

Since multiple types of data are used in this study and many
of them are high-dimensional, it helps to use both domain
knowledge and data-driven methods to select compact models
and prevent model overfitting. For example, instead of including
all ROIs in inferential statistical analyses, we prioritize those
ROIs with known relationship with the outcome variables as
documented by previous literature or our preliminary studies.
Data driven methods, such as factor analysis, cluster analysis,
as well as statistical model selection methods for regression can
be used to further reduce the number of hypotheses to be tested
or covariates in regression models. Step-wise methods based on
Akaike Information Criterion (AIC) and/or Bayes Information
Criterion (BIC) can be used for models with low to moderate
numbers of covariates (p ≤ 20). For even larger models, we apply
penalized regression techniques such as LASSO (123), elastic net
(124), and SCAD (125), instead.

3. DISCUSSION

CSVD in HIV infected individuals is likely a multifactorial
disease where there is a convergence of traditional vascular risk
factors (hypertension, hyperlipidemia, diabetes, and age) and
HIV mediated chronic inflammation. The prevalence of CSVD
in HIV infected individuals over the age of 50 has been reported
with a wide range from 48 to 80% (7, 116). A recent study which
enrolled 456 HIV+ and 154 HIV- subjects found that 51.5% of
HIV+ vs. 36.4% of HIV- subjects had signs of CSVD (126). HIV
infection in this study is considered as an independent risk factor
for CSVD. CSVD and HIV infection may also have a synergistic
effect on brain function and increase the risk of cognitive
impairment in this vulnerable population. CSVD is associated
with an increased likelihood of HAND (10), though there is some
evidence that the contribution of CSVD to cognitive impairment
is independent of that of HIV infection itself (127). In the
cART era, individuals living with HIV infection have significantly
increased life expectancy; however, quality of life may be reduced
with significant rates of HAND. CSVD may be a modifiable
risk factor of disease morbidity; identifying reliable surrogate
biomarkers would be essential for targeting interventions.

3.1. Blood Biomarkers
Two recent reports have linked soluble markers released
by monocytes and endothelial cells with CSVD in the
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general population, including neopterin, sICAM-1, sVCAM-
1, osteoprotegerin, and Lp-PLA2 mass (11, 12). It is
interesting that neopterin, typically produced by activated
monocytes/macrophages, is also amarker of HIV-associated CNS
injury (128). Furthermore, monocyte activation is associated
with decreased cognitive function in HIV+ individuals (129)
and there is preliminary evidence that reductions in monocyte
activation following treatment with a C-C chemokine receptor
type 5 (CCR5) antagonist are associated with improvements in
cognitive function, particularly in the domains of attention and
working memory (130).

Lp-PLA2 is also secreted bymyeloid cells such asmacrophages
and is involved in cleavage of the oxidized phosphatidyl-
choline component of LDL particles and thus has been strongly
associated with atherosclerosis (131). Two additional markers
derived from monocytes have been implicated in atherosclerosis
and are elevated in HIV infection: sCD163 and HMGB1 (132–
136). CD163, a monocyte-specific scavenger receptor, is shed
during activation as soluble CD163 (sCD163) in HIV-infected
individuals prior to and after cART treatment (137). HIV+
patients exhibit elevated levels of sCD163 and neopterin in
an age-dependent manner (138–140), which is even more
concerning for atherosclerosis in older HIV+ individuals.

HMGB1 is a nuclear factor and a secreted protein (141).
HMGB1 is secreted by activated M8 (142) and also rapidly
leaked when membrane integrity is lost in permeabilized or
necrotic cells (143). Extracellular HMGB1 and its receptors,
RAGE, TLR2, and TLR4, have been implicated in mechanisms
of many inflammatory diseases, including sepsis, atherosclerosis,
and rheumatoid arthritis (144) by induction of senescence-
associated secretory phenotype via NF-kB activation (145).
Plasma levels of HMGB1 are elevated during the course
of HIV infection and possibly associated with high viral
load (135).

Platelets also play a major role in very early stages of
response to an injury by trauma or infection. Platelets are
very sensitive to inflammatory stimuli and are increasingly
recognized as important immune mediators. Increased platelet
activation is widely observed in patients with HIV infection
(13, 146–148). Their high numbers in circulation compared with
that of circulating leukocytes and ability to release pro/anti-
inflammatory mediators stored in secretory granules suggest
that platelets are critical players in the early phase of the host
immune response (149–152). Platelets regulate functions beyond
homeostasis and have been identified as a functional player in
both innate and adaptive immune systems (153, 154). In the
immune system, one of these functions is to promote trafficking
of immune cells into injured tissues by upregulation of P-selectin
(CD62P) and CX3CR1, leading to enhanced rolling of leukocytes
along the vascular endothelium. Thus, activated platelets mediate
the interaction between the endothelium and circulating immune
cells and can participate in the pathology of the disease during
acute and chronic inflammatory conditions (155–158).

3.2. Magnetic Resonance Imaging
Beyond the standard clinical MRI sequences used to diagnose
CSVD in our study participants, we use a novel combination

of advanced MRI sequences to explore the underlying
pathomechanisms of HIV-associated CSVD. Several studies
have documented HIV-associated central nervous system (CNS)
injury and specifically white matter microstructure changes
(115, 159, 160), but these findings have not been evaluated in
the context of CSVD. Given the aging HIV population, the
prevalence of CSVD is going to increase, contributing to altered
brain connectivity and cognitive impairment (161, 162).

In order to interrogate these WM microstructural changes,
we use a HARDI sequence that allows the reconstruction
of quantitative microstructural metrics throughout the brain.
Studies have shown that in aging populations, FA decreases while
AD, MD, and RD increase (163). Similarly, NODDI metrics
have also shown to incur significant changes in older adults
compared to controls; ODI increases while ICVF and ISO tend
to decrease with aging (164). Given our rs-fMRI sequence, we
are able to obtain individual and group profiles of resting state
networks (RSNs) and CVR. Based on previous studies, we expect
RSNs to deviate in a cohort with chronic inflammatory processes
compared to controls (165).

The Human Connectome Project (HCP) is considered the
current gold standard for connectivity data and analyses (98).We
have taken advantage and adoptedmany of the recommendations
of the HCP, building a robust processing pipeline that will be
sensitive to SC and FC patterns thus reflective of cognitive
changes. For example, we are able use our diffusion sequence
to perform high quality streamline tracking to estimate the
WM fiber curves of our participants, allowing us to build more
reliable SC profiles than standard clinical diffusion sequences.
Group effects due to chronic inflammatory processes have
shown changes in SC that correlate with cognitive measures
(166). Additionally, we collect rs-fMRI with a low TR and high
spatial resolution, which gives us the flexibility to perform both
volumetric and surface-based image processing and analyses. As
such, we can build FC profiles for each participant, which have
also been shown to deviate from controls in the presence of
chronic inflammation and CSVD (161).

CVR via rs-fMRI is reflective of the ability of cerebral blood
vessels to respond to vasoactive stimuli, which has been shown
to correlate with cognitive decline in older adults and groups
impacted by vascular diseases (167). The approach we use to
measure CVR does not provide absolute quantification at the
voxel level. However, a recent study has demonstrated that it may
be possible to adjust relative CVR values by tissue referencing
across a population (168).

With the presence of WMHs, subcortical iron deposition
concentration has been shown to increase, likely due to oxidative
stress on the brain (169). QSM is sensitive to changes in iron
deposition and is likely useful to assess longitudinal changes
in tissue susceptibility concentration (88). Additionally, R2*
mapping is sensitive to tissue differences in tissue susceptibility
distribution. Incorporating measures from both QSM and R2*
mapping has the potential to assess iron related changes in the
brain, especially in the deep gray matter with high vasculature
(170).

Finally, perfusion metrics have been shown to be direct
measures of vascular health. Decreased regional CBF is seen in
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the early stages of HIV infection (171) and has been associated
with vascular risk factors such as increased triglyceride levels in
HIV+ men (172). Changes in arterial thickness and extra-cranial
vessel diameters have been shown in the context of HIV (173). By
incorporating measures of larger intra- and extra-cranial vessel
diameters (by MRA), we are able to assess the extent to which
HIV impacts blood flow in the context of CSVD. This study
allows us to relate the blood markers of vascular disease to
the presence of cognitive impairment, identify regional areas of
hypoperfusion, and determine how they relate to specific patterns
of cognitive dysfunction.

4. CONCLUSION

This study protocol description serves to outline a
comprehensive longitudinal study at the University of
Rochester to study the effects of aging and HIV on CSVD
and provide detailed data acquisition parameters for
others to implement similar neuroimaging studies at or
higher than the current standard for neuroimaging studies
about CSVD without contrast agents. We also provide a
comprehensive data processing pipeline, available on github,
and detail every step taken for future analyses. Specific
aims associated with this study will be addressed in a
series of baseline and longitudinal follow-up analyses upon
successful collection and processing of all data necessary for
each aim.
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