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Breaking the space-time symmetries in materials can markedly influence their electronic and optical properties. In 3R-stacked
transition metal dichalcogenides, the explicitly broken inversion symmetry enables valley-contrasting Berry curvature and
quantization of electronic angular momentum, providing an unprecedented platform for valleytronics. Here, we study the valley
coherence of 3R WS2 large single-crystal with thicknesses ranging from monolayer to octalayer at room temperature. Our
measurements demonstrate that both A and B excitons possess robust and thickness-independent valley coherence. The valley
coherence of direct A (B) excitons can reach 0.742 (0.653) with excitation conditions on resonance with it. Such giant and
thickness-independent valley coherence of large single-crystal 3R WS2 at room temperature would provide a firm foundation for
quantum manipulation of the valley degree of freedom and practical application of valleytronics.
1. Introduction

Valley degree of freedom known as valley pseudospin, the
local degenerate energy extrema in momentum space, can
open up new ways to encode and process binary information:
valleytronics [1–3]. Due to the intrinsic inversion symmetry
breaking and threefold rotational symmetry, monolayer
transition metal dichalcogenides (TMDCs), where a pair of
degenerate direct bands locate at the corners of the Brillouin
zone [4, 5], provide perfect playgrounds for valleytronics
[6–11]. However, the extremely low carrier mobility and
poor valley response at room temperature are significant
roadblocks to the valleytronic applications with monolayer
TMDCs [6, 12, 13]. Therefore, it is of the utmost impor-
tance to explore TMDCs with robust valley phenomena
and high carrier mobility at room temperature.

Few-layer TMDCs with a much higher mobility than
monolayer may be an unprecedented venue for valleytronics
since the carrier mobility increases with the increasing num-
ber of layers [12, 14]. For TMDCs, there are two distinct
semiconducting crystal structures that originated from the
different stacking orders, i.e., 2H and 3R stacking [13, 15].
The different lattice symmetries between 2H and 3R phases
result in contrasted valley properties, as described below in
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the case of bilayer. In the 2H-stacked bilayer TMDCs, the
lower layer is a π in-plane rotation of the upper layer, which
leads to the inversion symmetry restore. Therefore, topologi-
cal valley physics governed by the global symmetry is pro-
hibited [16], verified by both theoretical calculation [17]
and experimental valley Hall effect [18]. Although highly
selective circular polarization was observed in different 2H-
stacked bilayer TMDCs [18–21], such circular dichroism
stems from the hidden spin polarization and cannot signify
valley polarization [17, 22, 23], which can be clearly seen in
the diagram of the electronic structure (Figure 1(a)). The
layer rotation symmetry switches the K and K′ valleys but
leaves spin unchanged. The interband transitions in both
the K (K′) valley of the upper layer and K′ (K) valley of the
lower layer couple to σ- (σ+) circularly polarized light
(Figure 1(a)). Under circularly polarized radiation, such as
σ+, both the K′ valley of the upper layer and K valley of the
lower layer would be excited simultaneously, giving rise to
the zero valley polarization and coherence [17, 22]. As a con-
sequence, few-layer TMDCs with 2H symmetry are not a
good playground for valleytronic applications.

In marked contrast, 3R-stacked TMDCs with the layers
retaining the same orientation possess broken inversion sym-
metry [13, 24–26]. Figure 1(b) presents the schematics of
band structures and optical transition selection rules in
bilayer 3R-TMDCs. The interband transitions of the K (K′)
valley in both upper and lower layers exclusively couple to
σ- (σ+) circularly polarized light. Thus, 3R-stacked TMDCs
preserve the same valley-contrasting Berry curvature and
physical properties as the case of monolayer, demonstrated
recently in 3R MoS2 [13] and WS2 spiral nanostructures
[27] where the inversion symmetry is broken. Accordingly,
3R-stacked few-layer TMDCs provide an unprecedented
candidate for valleytronics and quantum logics [13, 28–30].

In addition to the well-known valley polarization at cryo-
genic temperature [6, 10, 31], an important step to test the
valley index as a potential information carrier is to demon-
strate the coherent manipulation of arbitrary valley states
with linearly polarized laser light at room temperature [32,
33]. Moreover, valley-dependent optical selection rules are
the necessary conditions for the generation of valley coher-
ence. As a consequence, valley coherence is usually less than
valley polarization and can reflect the quality and uniformity
of samples better [33]. In this paper, we demonstrate the giant
valley coherence in 3R-stacked WS2 large single-crystal at
room temperature. Our measurements show that the direct
excitons possess robust and thickness-independent valley
coherence up to 0.742, establishing a firm basis for the
manipulation of exotic valley degrees of freedom.
2. Results

Since natural bulk crystal TMDCs including MoS2, WS2,
MoSe2, and WSe2 are usually 2H phase [34], it is difficult to
obtain multilayer with 3R symmetry through mechanical
exfoliation. In this work, 3R-stacked WS2 layers were
obtained by a chemical vapor deposition (CVD) method
[35], using sulfur (S) and tungsten trioxide (WO3) powder
as precursors (described in Materials and Methods).
Figures 2(a)–2(c) show the white-light micrographs of repre-
sentative samples with different thicknesses. The domain size
can be larger than 100 μm for monolayer, bilayer, and trilayer
samples. The number of layers is first visually identified by
observing their interference color through the optical micro-
scope and later confirmed by Raman and photoluminescence
(PL) spectroscopy. Figure 2(d) displays the evolution of
Raman spectra versus the number of layers, excited by
1.96 eV radiation on resonance with the A exciton. From
the Lorentzian fitting, it can be seen clearly that the A1g(Γ)
mode of WS2 splits into N components for N layers, in good
agreement with previous results [35, 36]. Figure 2(e) presents
the thickness-dependent normalized PL results. The PL spec-
tra of bilayer and multilayer display three emission peaks
corresponding to indirect band-gap exciton I (lowest energy)
and direct-gap transition A (intermediate value) and B (high-
est energy), respectively. Note that the sharp peaks around
the B excitons stem from the phonon modes, while PL spec-
trum of monolayer WS2 consists of only a single narrow fea-
ture (A exciton), indicating that monolayer is a direct-gap
semiconductor. The absence of B exciton is due to the fact
that the energy of B exciton in monolayer is larger than exci-
tation photon energy (2.33 eV) [37]. Figure 2(f) shows the
peak positions and integrated PL intensities as a function of
layer numbers. With increasing the thickness, the energies
of excitons are softened and PL intensities dramatically drop.

It can be clearly seen that the layers in few-layer WS2
samples possess the same orientation (Figures 2(b) and
2(c)). This indicates that our WS2 samples should be 3R
phase [38, 39]. The stacking order of WS2 samples is further
examined through aberration-corrected annular dark-field
scanning transmission electron microscopy (ADF-STEM)
and second harmonic generation (SHG). Since the layers in
the 3R stacking samples maintain the same orientation but
shift along the in-plane direction, the tungsten atoms locate
at not only the corners of honeycomb lattices but also the
center of hexagonal lattices when the number of layers is
≥3 (Figure 3(a)) [24]. This is in marked contrast to 2H phase
that transition metal atoms of a given layer are sitting exactly
on top of the chalcogen atoms of its neighboring layer and the
metal atoms are only at the corners of hexagonal lattices.
Figure 3(b) is the atomic resolution ADF-STEM image of our
trilayer WS2 sample. Note that only tungsten atoms are
observed since the contrast is proportional to the square of
the atomic number. ADF-STEM image demonstrates that
tungsten atoms sit at both the corners and center of honey-
comb lattices, in fair agreement with the top view of trilayer
WS2 lattice with 3R symmetry (Figure 3(a)).

Optical SHG, arising from the second-order nonlinear
susceptibility tensor, is known as a sensitive probe to the
crystalline inversion symmetry [40–42]. In stark contrast to
the 2H-stacked TMDCs in which SHG intensity shows an
even-odd oscillation with a decay envelope [41, 43], the effi-
ciency of SHG from 3R-stacked TMDCs displays a quadratic
dependence on the number of layers as a result of atomically
phase-matched in-plane electric dipoles [24, 25]. Figure 3(c)
presents the layer-dependent SHG spectra of our WS2 sam-
ples under excitation wavelength of λex = 820 nm. The SHG
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Figure 1: Symmetry-dependent valley physics. (a) Schematics of band structures and optical transition selection rules in 2H-bilayer TMDCs.
Dashed arrows that connected the same spin between the upper and lower layers indicate interlayer hopping. (b) Schematics of band
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Figure 2: Microscopy characterizations of 3RWS2 with distinct thicknesses. (a–c) Optical micrograph of representative 3RWS2 samples with
different layers (1L-5L). Scale bar: 20 μm. (d) Raman spectra under 1.96 eV excitation, on resonance with the A exciton. Lorentzian fitting of
the A1g(Γ) phonon modes is shown. (e) Normalized PL spectra by the intensity of the A exciton. The spectra were taken under the same
conditions using 2.33 eV excitation. (f) Peak positions of excitons and integrated PL intensity as a function of layer numbers.
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Figure 3: Symmetry and structural characterizations. (a) Top view of the stick-and-ball lattice structure of trilayer 3R WS2. The blue and
yellow spheres represent W and S atoms, respectively. (b) Atomic resolution ADF-STEM image of 3R-stacked trilayer WS2. (c, d) Layer-
dependent (c) and power-dependent (d) SHG spectra of WS2 with 3R stacking under excitation of λex = 820 nm. The insets in (c) and (d)
show the parabolic increase of the SHG intensity with increasing the number of layer and power density, respectively.
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intensity scales quadratically with the number of layers (inset
in Figure 3(c)), in good harmony with 3R-stacked TMDCs
that harbor broken inversion symmetry [25, 26]. The
power-dependent SHG spectra of trilayer 3R WS2 are pre-
sented in Figure 3(d). The SHG intensity quadratically
increases with the excitation power (inset in Figure 3(d)), in
good agreement with the nonlinear optical principle [40].

As the symmetry analysis above, 3R-stacked few-layer
WS2 with inversion asymmetry may provide a perfect venue
for quantum valleytronics. Now, we measure the valley phys-
ical properties of 3R-stacked WS2 with distinct thicknesses at
room temperature. Since valley coherence is the optically
generated quantum coherent superpositions of valley polar-
ized excitons at K and K′ valleys and can well characterize
the valley quality [9, 33, 44], we carried out the valley coher-
ence measurement here. For each thickness, we measured at
least six samples which exhibit almost the same valley phe-
nomenon. Figure 4(a) shows the linearly polarized PL spectra
of representative 3R-stacked WS2 samples under a linearly
polarized excitation of 2.33 eV at room temperature and
two polarization configurations: copolarized (scattered and
incident light are parallel to each other, ei∥es) and crosspolar-
ized (scattered light is perpendicular to incident light, ei⊥es).
It can be seen unequivocally that I excitons have equal PL
intensity for either copolarized or crosspolarized detection.
In marked contrast, both A and B excitons display a pro-
nounced linear polarization following the excitation. We
quantify the valley coherence by the degree of linear polariza-
tion [9, 20]:

ρ = Ico − Icr
Ico + Icr

, ð1Þ

where Ico ðIcrÞ is the PL intensity of copolarized (crosspolar-
ized) configuration. Figure 4(b) shows the degree of linear
polarization calculated from polarization-resolved PL spectra
in Figure 4(a) with Equation (1). The degree of linear
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Figure 4: Layer-independent valley coherence under 2.33 eV excitation on resonance with the B exciton. (a) Linear-polarization-resolved PL
spectra of 3R-stacked WS2 from monolayer to pentalayer at room temperature. Red and black curves present copolarized configuration
(incident light polarization ei and scattered light polarization es are parallel to each other) and crosspolarized (incident light polarization
and scattered light polarization are perpendicular to each other), respectively. Sharp peaks around B excitons are Raman peaks from
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(N)-dependent degree of linear polarization for B (magenta symbols), A (blue symbols), and I (red symbols) excitons. The distinct
values within the same thickness are originated from different samples.

5Research
polarization reaches the extremum when photon energy
coincides with either A exciton or B exciton.

Figure 4(c) presents the evolution of valley coherence
as a function of the layer number under 2.33 eV excitation.
The distinct date points are obtained from different sam-
ples. The degree of linear polarization for I excitons is null.
In stark contrast, both A and B excitons display prominent
valley coherence that is almost independent on the number
of layers, in good harmony with previous analyses that 3R-
stacked few-layer TMDC samples possess the same valley
physics with monolayer limit. The linear-polarization-
resolved PL spectra of the 8-layer WS2 sample refer to
Supplementary Materials (available here). Average valley
coherence for A and B excitons is 0.355 and 0.653, respectively,
indicated by the dashed horizontal lines in Figure 4(c). We
speculate that the larger valley coherence for B exciton is
due to the fact that the 2.33 eV excitation is on resonance
with the B exciton.

If the larger valley coherence for B exciton, excited by
2.33 eV radiation, is indeed caused by the fact that the excita-
tion light is on resonance with it, the degree of linear
polarization for A exciton will be greatly increased when
the excitation photon energy is on resonance with it. We
tune the energy of linearly polarized excitation light to
1.96 eV which is near the A exciton. Figure 5(a) presents
the linearly polarized PL spectra of representative mono-
layer and multilayer 3R WS2 samples recorded at room tem-
perature, with the red (black) curve denoting copolarized
(crosspolarized) detection configuration. Figure 5(b) shows
the corresponding degree of linear polarization determined
from Equation (1) and polarization-resolved PL intensities
in Figure 5(a). As the energy of emission photon approaches
the A exciton, valley coherence increases monotonically and
reaches the maximum when emission photon coincides with
the A exciton.

Figure 5(c) shows the thickness-dependent degree of lin-
ear polarization under 1.96 eV excitation. Compared with
2.33 eV excitation, valley coherence of A exciton is strongly
enhanced with 1.96 eV excitation. Except for monolayer, the
valley coherence of A exciton under 1.96 eV excitation
is 0.742 which is more than twice that excited by 2.33 eV radi-
ation. The lower valley coherence of A exciton for monolayer
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is due to the fact that the energy of A exciton in monolayer is
larger than excitation energy (Figure 2(f)).

3. Discussion

In conclusion, we have observed the valley physics of non-
centrosymmetric 3R-stacked WS2 large single-crystal at
room temperature by linear-polarization-resolved PL spec-
tra. 3R-stacked WS2 possess robust and layer-independent
valley coherence up to 0.742 at room temperature. The giant
and thickness-independent valley coherence for multilayer
3R WS2 will push forward the development and application
of valley quantum logics and optovalleytronic devices based
on two-dimensional crystals with inversion asymmetry.

4. Materials and Methods

4.1. Chemical Vapor Deposition. Triangular WS2 domains
were grown on the Si/SiO2 (300 nm) substrates in a home-
made furnace with a 50 cm diameter quartz tube. 1.5 g sulfur
(Alfa Aesar, purity 99.99%) powder was contained with a
corundum boat and put at the upstream of the quartz tube.
The distance from the corundum boat to the zone I center
is 20 cm, and 2 g WO3 (Alfa Aesar, purity 99.8%) was loaded
in another corundum boat and put into the zone II center.
Subsequently, ultrahigh purity argon gas (35 sccm) was intro-
duced into the quartz tube. The furnace was heated to 600°C
(zone I) and 950°C (zone II) rapidly; in this case, S, WO3, and
Si/SiO2 were kept at 120, 950, and 900°C, respectively. After
50min, the furnace was cooled down to room temperature
naturally.

4.2. Raman and PL Spectroscopy. The Raman and PL spectra
were acquired in ambient conditions using a micro-Raman
spectrometer (Horiba LabRAM HR Evolution) in a confocal
backscattering configuration (confocal pinhole of 100 μm).
Laser power on the sample during Raman measurement
was kept below 100μW in order to avoid sample damage
and excessive heating. The backscattered signal was collected
by an Olympus 100x objective lens and dispersed by a
600 g/mm grating for PL measurement and a 1800 g/mm
grating to achieve Raman spectral resolution better than
1 cm-1.

4.3. Scanning Transmission Electron Microscopy (STEM)
Characterization. The atomic resolution STEM characteriza-
tions were acquired from an aberration-corrected JEOL
ARM300F transmission electron microscope which was
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operated at 80 kV with a convergence angle at 18mrad and
collection angles at 54~220mrad.
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