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Abstract

Recent developments in high throughput genomic assays have opened up the possibility of

testing hundreds and thousands of genes simultaneously. However, adhering to the regular

statistical assumptions regarding the null distributions of test statistics in such large-scale

multiple testing frameworks has the potential of leading to incorrect significance testing

results and biased inference. This problem gets worse when one combines results from

different independent genomic experiments with a possibility of ending up with gross false

discoveries of significant genes. In this article, we develop a meta-analysis method of com-

bining p-values from different independent experiments involving large-scale multiple test-

ing frameworks, through empirical adjustments of the individual test statistics and p-values.

Even though, it is based on various existing ideas, this specific combination is novel and

potentially useful. Through simulation studies and real genomic datasets we show that our

method outperforms the standard meta-analysis approach of significance testing in terms of

accurately identifying the truly significant set of genes.

Introduction

In genomic experiments and association studies, meta-analysis is a popular tool for pooling

results from multiple experiments and studies to reach an overall decision. In recent times,

rapid progress in technology has led to major development of high throughput genomic assays.

This means that hundreds and thousands of genes are now being analyzed at the same time.

Thus, the level of simultaneous inference has undergone a huge surge over the last decade.

Development of novel meta-analysis approaches is crucial for such settings since the sample

size of individual experiments are generally small compared to the number of genes leading to

low power of statistical detection from them after adjusting for multiplicities. However, there

has not been much change in the meta-analysis methods to accommodate this large-scale

aspect of the underlying inference and the possibility of underlying hidden factors that act as

confounders. For example, in testing for the significance of genes in disease studies, more or

less the same meta-analysis methods are being applied to experiments involving hundreds and

thousands of genes as were initially developed for experiments involving a few number of
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candidate genes. One common practice is to use Fisher’s method [1] for combining the p-val-

ues from different testing problems involving the same overall hypothesis. The individual p-

values are calculated for one gene at a time and the negative log-transformed p-values are com-

bined to form a chi-squared test statistic under the assumption that they are individually uni-

formly distributed under the null hypothesis. However, as pointed out by Efron [2], in large-

scale multiple testing problems, the “marginal” or “empirical” distribution of the p-values may

not be uniformly distributed. Consequently, the distributional assumption of Fisher’s com-

bined test statistic becomes questionable. To draw “better” inference, adjustments are needed

to ensure that all the p-values from individual experiments are uniformly distributed so that

the Fisher’s method of combining the individual p-values can be properly implemented.

In single hypothesis test framework, the main aim is to reject the null hypothesis in favor of

some “interesting” alternative hypothesis with high power, say 80%. But in large-scale multiple

testing framework involving, say, 10,000 hypotheses related to 10,000 genes, rejection of 80%

of 10,000, i.e. 8,000, null hypotheses is no longer a desired outcome. Rather, the aim of such

large-scale testing framework is to identify a small set of “interesting” cases or genes, usually

less than 10%, which can be pursued for further investigation. The advantage of having large

number, e.g., 100 or more, of hypotheses over a single hypothesis is that it enables the estima-

tion of empirical null distribution avoiding the dependency on theoretical asymptotic null dis-

tribution, as pointed out by Efron [2]. The use of this empirical null is more appropriate for

addressing the goal of large-scale hypotheses testing problems. This is particularly relevant in

large observational studies which are often characterized by the presence of unobserved vari-

able effects (e.g., batch effects) or unmeasured/missed confounding factors. Unlike the theoret-

ical null, the empirical null distribution, automatically, takes into account the effects of the

additional variation (and also small to moderate biases). This can have an even more serious

consequence in meta-analyses of large scale genomic experiments where a number of poten-

tially low-powered study results are combined in order to achieve significance. A motivating

example can be found in [3] where the authors have discussed the fact that not adjusting for

the potential confounder effects can lead to poor results of meta-analysis as shown in their

genomic meta-analysis of a number of studies involving major depressive disorder. However,

a p-value combination method such as Fisher’s method [1] may lead to incorrect findings if at

least one of such study contains hidden sources of variation leading to a violation of the theo-

retical null distributional assumption for that component study. A relevant example of such

inferences based on Fisher’s method can be found in the meta-analysis of lung cancer data in a

later section of this article.

In particular, a possible consequence of combining unadjusted or incorrectly adjusted p-

values through Fisher’s method [1] in a large-scale multiple testing situation is the prevalence

of large number of false discoveries when some underlying hidden variable plays the role of a

confounder. Occurrences of false discoveries are common in large scale DNA microarray

experiments where the aim is to detect genes that are differentially expressed between two or

more biological conditions. A good example in this context can be the well-known study of [4]

which aimed to identify the differentially expressed genes between two types of genetic muta-

tion of breast cancer, namely, “BRCA1” and “BRCA2” mutations. In this study 3266 genes

were analyzed, out of which 51 genes turned out to be significant initially at the p-value cut-off

of 0.001. Later on it was shown that the chosen cut-off is expected to produce substantial false

positives, and the authors had to lower the cut-off resulting in the lower number of significant

genes. Details of this study results can be found in [5]. This highlights the possibility of inaccu-

rate scientific conclusions due to the occurrences of false discoveries in large-scale experi-

ments. A possible remedy to this problem is to make adjustments using the false discovery rate

(FDR), developed by [6], which have been widely used in methods for analyzing data from
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genomic experiments [7–10]. However, using the aforementioned breast cancer microarray

data, Efron [2] showed that even adjusting for FDR may not be enough to restrict false discov-

eries if the underlying assumption of the standard normal distribution of the test statistic is

under suspicion. Instead, he advocated using the “empirical null” in order to make the calls

while using a local false discovery rate calculation. Motivated by this, we develop a meta-analy-

sis method called Empirically Adjusted Meta-analysis (EAMA) that does not combine the raw

p-values–they are first transformed, where the amount of transformation depends on the dis-

crepancy between the empirical and the theoretical null (e.g., uniform distribution in case of

p-values), before they are Fisher-combined. Of course, a multiple hypothesis method such as

Benjamini–Hochberg (1995) [6] is applied at the end to make the significance calls. We show

that this procedure is very effective in reducing the FDR and increasing specificity in a variety

of situations which are affected by the presence of some hidden confounders.

Experimental framework

Simulation studies

In order to evaluate the performance of our proposed method (EAMA), described in the

Methods section, for accurate identification of significant genes, we simulated datasets mim-

icking multiple genomic experiments. We simulated continuous expression datasets as

obtained from microarray experiments, as well as, count datasets which are found in next gen-

eration sequencing experiments. Besides, we also considered the possible presence of some

unknown hidden variables or confounders that often impact the results of the genomic experi-

ments. It is our interest to check the performance of EAMA in circumstances affected by the

presence of hidden variables or confounders. Details of the data generation methods are

described below.

Generation of continuous data (microarray based gene expression). We generated a

number of simulation studies involving multiple genomic experiments. We had datasets

obtained from M = 10 independently generated experiments, where each experiment had data

on G = 1000 genes and N = 20 subjects distributed equally over two groups (for example, case

and control). The first 10 subjects were considered to be in one group and the remaining 10

subjects in the other. The (log) expression levels of G genes for a typical experiment m were

generated as follows.

Let Yijk be the (log) expression value corresponding to the ith gene belonging to the kth sub-

ject and jth group. The (log) expression values (Yijk) of genes were generated using a linear

model as given below:

Yijk ¼ mþ Gi þ Vj þ ðGVÞij þWijk þ eijk ð1Þ

where μ denotes the general mean effect in the model, Gi is the effect of the ith gene, Vj is the

effect of the jth group, (GV)ij is the interaction effect of the ith gene and the jth group, Wijk is the

effect of a latent confounder on the ith gene of the kth subject in the jth group, eijk is the error

component corresponding to the ith gene of the kth subject in the jth group.

Here,

i ¼ 1; 2; . . . ; G; j ¼ 1; 2; k ¼
1; . . . ; 10 for j ¼ 1

11; . . . ; N for j ¼ 2

(

For each of the M independent experiments, the gene (log) expression profiles were gener-

ated as mentioned above. For our simulation studies on microarray data, the following two

simulation settings were considered.
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Setting 1: In this setting, we simulated the microarray datasets for each experiment using

(1) assuming that there was no effect of any hidden confounder in the model. To achieve this,

we set Wijk = 0 for 1� i� G; j = 1,2; k = 1,2,. . ., N in (1).

For simplicity, we further assumed that all the main effect terms were zero. That is, we set

μ = 0, Gi = 0 for 1� i� G and Vj = 0 for j = 1,2 in (1). The eijks denote mean zero random

errors. We generated these random errors eijk, in (1), independently from N(0, 0.82) distribu-

tion under the assumption that all the genes in the datasets were independent.

In our simulations, we set 70 genes as differentially expressed between the two groups of

subjects. In particular, we considered the differences in magnitudes of differential (log) expres-

sions of these 70 genes between the two groups to be 8. For this, the interaction effects between

the genes and the groups were generated as given below:

For 1� i� 20, (GV)i1 = −4, (GV)i2 = 4

For 21� i� 70, (GV)i1 = 4, (GV)i2 = −4

For 71� i� G, (GV)i1 = (GV)i2 = 0

This data generation was repeated for each of the M independent experiments.

Setting 2: In this setting, we wanted to evaluate the performance of EAMA in the presence

of hidden confounder in the model. The effects of the latent variable (W) in (1) were generated

in this setting in such a way that it varied not only over the two groups of subjects and

different groups of genes but also over different experiments. So, here we generated Wijk as

Wijk = uijkI(sijk = 1), where sijk ~ Bernoulli(0.4). When sijk = 0, Wijk = 0, which implied that

there was no effect of the latent confounder on the ith gene of the kth subject in the jth group.

On the other hand, when sijk = 1, Wijk = uijk, i.e., the effect of the latent confounder was given

by uijk for the ith gene of the kth subject in the jth group. Here, uijk was generated depending on

the gene, subject group, and experiment ID (m) as follows:

ui1k �

Nð� 1þm; 0:012Þ for 1 � i � 20; k ¼ 1; 2; . . . ; 10

Nð2þm; 0:012Þ for 21 � i � 70; k ¼ 1; 2; . . . ; 10

Nð5þm; 0:012Þ for 71 � i � G; k ¼ 1; 2; . . . ; 10

8
><

>:

and

ui2k �

Nð� 1þ dþm; 0:012Þ for 1 � i � 20; k ¼ 11; 12; . . . ;N

Nð2þ dþm; 0:012Þ for 21 � i � 70; k ¼ 11; 12; . . . ;N

Nð5þ dþm; 0:012Þ for 71 � i � G; k ¼ 11; 12; . . . ;N

8
><

>:

Here, δ denotes the magnitude of the difference between the means of the distributions of

uijk in the two groups. For our simulation scenarios, we considered δ = 4 unless mentioned

otherwise. Generation of Wijk using the above design represents a situation where the gene

expression values depend on the group status of the subjects and also on some unobserved fea-

tures of the experiment (for example, age and gender of the subjects, geographical location of

the experiment, etc.) which are often present in observational studies. We generated eijks, in

(1), independently from N(0, 0.052) distribution. All the other variables in (1) were generated

in the same way as in Setting 1 for each of the M independent experiments.

After generating the microarray datasets, the set of differentially expressed genes were

identified for each of the M experiments using “limma” in Bioconductor [11] and the corre-

sponding raw p-values of all the genes under study were stored. Note that while identifying

the set of differentially expressed genes using “limma” we did not consider the effect of any
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unmeasured/hidden confounding factors that may be present in the simulation model. This is

because, although affecting the outcome, these factors remain unaccounted in practice, the

very reason that they are labelled as “hidden” or “latent”. We then applied our method EAMA

to obtain the set of significant genes.

We also considered a simulation scenario where the magnitude of differential expression

among the set of differentially expressed genes was reduced. Moreover, we simulated a sce-

nario where we introduced an effect of a hidden variable which does not act as a confounder.

The above-mentioned scenarios are described below.

i) Reduction in the difference in magnitude of the expression levels of the genes. We

considered the situation where the magnitude of the difference in the (log) expression levels of

the 70 differentially expressed genes between the two groups was reduced. This was reflected

through the reduction of magnitudes of the interaction effects between genes and groups in

(1). Here the interaction effects (GV) were generated as given below:

For 1� i� 20, we set (GV)i1 = −2, (GV)i2 = 2

For 21� i� 70, we set (GV)i1 = 2, (GV)i2 = −2

For 71� i� G, we set (GV)i1 = (GV)i2 = 0

So, the difference in magnitude of the (log) expression levels of the differentially expressed

genes between the two groups was 4 instead of 8 as considered in the previous scenario.

ii) Presence of a hidden variable which does not act as a confounder. In addition to Set-

ting 1 and Setting 2, we also checked the situation where a hidden variable, although present

and affects the outcome, does not act as a confounder. We refer to this setting as Setting 3.

Here we considered a simulation scenario where the distribution of the latent variable (W) in

(1) is the same in the case and the control groups of subjects i.e. the effect of the hidden vari-

able on the outcome does not vary significantly between the two groups of subjects. Here, Wijk

= uijk I(sijk = 1), where sijk ~ Bernoulli(0.4) and uijk was generated for the mth experiment as:

uijk �

Nð2þm; 0:12Þ for 1 � i � 20; k ¼ 1; 2; . . . ;N

Nð2þm; 0:12Þ for 21 � i � 70; k ¼ 1; 2; . . . ;N

Nð2þm; 0:12Þ for 71 � i � G; k ¼ 1; 2; . . . ;N

; j ¼ 1; 2

8
><

>:

The differences in magnitudes of differential (log) expressions of the 70 differentially

expressed genes between the two groups were 2.

In addition to the above simulation scenarios, we also considered several other variations

by introducing correlation among some of the genes under study, increasing the number of

genes involved, and changing the number of independent experiments. Moreover, we consid-

ered a simulation scenario where the effect of the confounder exists in individual experiments,

but the confounding effect tends to get nullified on combining all the experiments. Details of

these aforementioned analyses can be found in the Supporting information (see S1 Text).

Generation of count data (NGS based gene expression). We also generated realistic

NGS-like datasets for our simulation experiments using a popular NGS-simulator called Sim-

Seq [12]. SimSeq generates read counts in two treatment groups for a known set of differen-

tially expressed genes based on a real RNA-sequencing dataset. Here, we generated a count

data using SimSeq and kidney renal clear cell carcinoma data as the source dataset [13]. The

kidney renal clear cell carcinoma dataset consisted of 20,531 genes and 144 paired samples

with tumor and non-tumor replicate. We filtered the kidney renal clear cell carcinoma dataset

by including only those genes which had more than one hundred non-zero read counts so that

the simulated dataset did not include all zero read counts. From the reduced source dataset we

Meta-analysis for large-scale hypothesis testing in genomic experiments
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generated read counts with G = 5000 genes and N = 60 subjects distributed equally over two

groups. Out of these 5000 genes, 1000 genes were differentially expressed.

Similar to the previous simulated scenarios involving expression datasets, we also assumed

that there existed an effect of a hidden confounder in the count dataset. In order to achieve

this, we independently generated another set of read counts using SimSeq with 5000 genes and

60 subjects as before where 1000 genes were differentially expressed. For the ith gene, jth group

and kth subject we generated a random observation sijk from Bernoulli(0.4), i = 1,. . .,5000,

j = 1,2, and k = 1,. . .,60. When sijk = 1, we added the two read counts and divided the resulting

sum by two in order to maintain the original magnitude of the read counts, for the ith gene in

the jth group for the kth subject. We then rounded the result to nearest integer. If sijk = 0, we

retained the original read count for the ith gene, jth group and kth subject. In this way, sijk deter-

mine whether there exists an effect of the hidden variable on the ith gene in the jth group for

the kth subject. We repeated this whole process for M = 10 experiments.

After generating the count datasets, the set of differentially expressed genes were identified

for each of the M experiments using edgeR in Bioconductor [14, 15] and the corresponding

raw p-values of all the genes under study were stored. Then we applied our method EAMA to

obtain the set of significant genes.

Lung cancer datasets

We considered five publicly available lung cancer gene expression datasets: Bhattacharjee [16],

GSE11969 [17], GSE29016 [18], GSE30219 [19] and GSE43580 [20]. These datasets were previ-

ously analyzed by [21] on a classification framework. Each of the datasets were normalized and

filtered by [21]. All the five datasets were merged so that each of them had the same set of

genes. We used the processed and merged datasets, which are available in the online Support-

ing informaton (S1 Datasets) as well as at https://zenodo.org/record/16006.

Each dataset had normalized expression levels for 7200 genes. Although, information

regarding lung cancer type, smoking status, age and gender for the patients was available for

our analysis, we only used the information about the cancer type of the patients.

Results

Simulated data

We called a gene differentially expressed if the corresponding “Benjamini-Hochberg” [6]

adjusted p-value was less than 0.05. The performance of EAMA was assessed using four perfor-

mance assessment measures: sensitivity, specificity, false discovery rate (FDR) and false non-

discovery rate (FNR) as defined below:

1. Sensitivity (or true positive rate or recall): Proportion of genes that were correctly identified

as differentially expressed among all the differentially expressed genes.

2. Specificity (or true negative rate): Proportion of genes that were correctly identified as non-

differentially expressed among all the non-differentially expressed genes.

3. False discovery rate (FDR, or 1 minus precision): Proportion of genes that were incorrectly

identified as differentially expressed among the set of identified differentially expressed

genes.

4. False non-discovery rate (FNR): Proportion of genes that were incorrectly identified as

non-differentially expressed among the set of identified non-differentially expressed genes.

Meta-analysis for large-scale hypothesis testing in genomic experiments
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The values of all the above four measures were calculated for EAMA based on 500 indepen-

dent Monte-Carlo simulations. For comparison, we also obtained the results from a naïve

meta-analysis which does not apply the empirical adjustment (null transformation) to the raw

p-values. The naïve method combines the raw p-values using Fisher’s method [1] and adjust

the resulting p-values using “Benjamini-Hochberg” method of multiplicity correction [6].

Continuous data (microarrays). First, we considered the results from the scenario

involving 10 independent experiments and 1000 uncorrelated genes where 70 genes were dif-

ferentially expressed. The difference in magnitudes of the (log) expressions of these 70 genes

between the two groups was 8.

Fig 1 shows the plots of sensitivity, specificity, FDR, and FNR of EAMA and that of the

naïve method for each of the two simulation settings. From Fig 1, we found that the perfor-

mances of EAMA and the naïve method were very similar in Setting 1 (no hidden confounder

in the model) in terms of all the four performance measures. However, there was a wide differ-

ence between the performances of the two competing methods in Setting 2 (presence of hidden

Fig 1. Performance assessment with 10 experiments, 1000 uncorrelated genes and absolute differences

in differential expressions as 8.

https://doi.org/10.1371/journal.pone.0187287.g001
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confounder in the model) as evident from Fig 1. The sensitivity of the EAMA was similar to

that of naïve method, while the specificity of EAMA was much better than that of the naïve

method. The most drastic difference was observed in the FDR measure in Setting 2. Here

EAMA outperformed the naïve method by a large margin in terms of FDR, as the FDR of the

naïve method was unacceptably high compared to that of EAMA.

From this simulation study, it appeared that the performances of EAMA and the naïve

method were similar when there was no latent factor present in the study. But in the presence

of some hidden variables which act as confounders and had significant effects on the expres-

sion levels of the genes, EAMA performed reasonably well in terms of having low FDR whereas

the naïve method had unacceptably high FDR values. This result justifies our expectation that

the EAMA, based on the empirical null distribution adjustment, lead to an accurate inference

by accounting for the excess variations caused by the latent factors which were missed by the

theoretical null based naïve method.

The performances of EAMA and that of the unadjusted (naïve) meta-analysis method were

assessed using sensitivity, specificity, FDR, and FNR measures in each of the two simulation

settings where the difference in magnitude of the (log) expression levels of the differentially

expressed genes between the two groups was 8. Number of experiments involved in each set-

ting was 10 and the number of genes (uncorrelated) considered was 1000.

i) Effect of reducing the difference in magnitude of the expression levels of the genes.

In this case, too, we observed similar performances of EAMA and the naïve method in terms

of sensitivity, specificity, and FNR in both the settings (see Fig 2). However, the difference

between the FDR values of EAMA and the naïve method became higher with the performance

of the naïve method deteriorating. As a result, the EAMA outperformed the naïve method by a

very large margin. Interestingly, it appeared that the performance of the naïve method got

worse as the difference in the magnitudes of differential expression tend to decrease.

The performances of EAMA and that of the unadjusted (naïve) meta-analysis method were

assessed using sensitivity, specificity, FDR, and FNR measures in each of the two simulation

settings where the difference in magnitude of the (log) expression levels of the differentially

expressed genes between the two groups was 4. Number of experiments involved in each set-

ting was 10 and the number of genes (uncorrelated) considered was 1000.

Since the most impactful difference between the performances of EAMA and the naïve

method were obtained in terms of FDR in the presence of hidden variables acting as confound-

ers, we have plotted the FDR values of both methods for a varying range of the differential

effect (δ) of the confounder variable W in the two groups. S1 Fig in the online Supporting

information section gives an idea of the patterns of FDR of the two methods for varying effects

of the confounder.

ii) Effect of the presence of a hidden variable which does not act as a confounder (Set-

ting 3). We found that in Setting 3, where the latent variable no longer acts as a confounder,

EAMA had higher sensitivity than the naïve method while the naïve method appeared a bit

conservative with low sensitivity and FDR (see Table 1).

The online Supporting information section includes some additional simulation results cor-

responding to the cases of correlated genes, varying number of experiments, increased number

of genes and varying effect of hidden variable or confounder. The results with correlated genes

were found to be similar to what we obtained from the study of uncorrelated genes where

EAMA performed much better than the naïve method in terms of FDR in the presence of

latent factors in the study. See S2 Fig for details. Also, the relative performances of EAMA and

the naïve method did not change with reduced number of experiments (M = 5), as seen in S3

Fig, and increased number of genes (see S4 Fig). For the simulation setting where the con-

founding effects exist in in individual experiments but tend to get nullified on combining the
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individual experiments, we see that EAMA continued to perform better than the naïve method

in terms of having lower FDR (see S5 Fig).

Generation of count data (NGS data). The performances of EAMA and that of the naïve

meta-analysis method were assessed using the simulated count datasets as outlined in Experi-

mental framework section. The results are shown in Table 2. From this table, we found that

the EAMA and naïve method had similar performances in terms of sensitivity, specificity, and

FNR, while the major difference lied in the FDR. The FDR of EAMA was much lower than

Fig 2. Performance assessment with 10 experiments, 1000 uncorrelated genes and absolute differences

in differential expressions as 4.

https://doi.org/10.1371/journal.pone.0187287.g002

Table 1. Performance assessment of the two methods where a hidden variable does not act as a confounder.

Method Sensitivity Specificity FDR FNR

EAMA 0.517 0.995 0.0963 0.0351

Naive 0.337 0.999 0.023 0.0476

https://doi.org/10.1371/journal.pone.0187287.t001
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that of the naïve method, and hence EAMA had less false discoveries. The results were similar

to what we obtained in the studies involving continuous datasets.

Lung cancer data

We performed our meta-analysis based on the lung cancer datasets described under the Exper-

imental framework section using the lung cancer type of the patients. Here, we attempted to

identify the set of genes, which were differentially expressed between the two lung cancer

types: Adenocarcinoma (AD) and Squamous cell carcinoma (SQ). The number of patients in

each of the two types of lung cancer within each dataset is shown in Table 3.

We fitted linear model with the gene expression values of the patients as the response and

cancer type of the patients as the predictor, for each experiment separately. Using “limma” in

Bioconductor [11] we obtained the p-values corresponding to the main effect term for the

lung cancer type. So, we had five sets of p-values for each of the 7200 genes.

We identified the set of differentially expressed genes based on the five experiments using

both EAMA and the naïve method. Fig 3 shows the histogram of the original z-scores obtained

from Eq (2), while the two superimposed curves represent the empirical null distribution esti-

mated from Efron’s method [2] and the theoretical null distribution. Note that the estimated

mean and variance of the empirical null distribution turned out to be -0.487 and 4.67, respec-

tively, which were much different from the theoretical null parameters of 0 (mean) and 1 (vari-

ance), respectively.

The naïve method identified 5127 differentially expressed genes (more than 70% of the total

number of genes), even after adjusting for the “Benjamini-Hochberg” multiplicity correction

method [6]. On the other hand, our proposed method EAMA identified 1541 significantly dif-

ferentially expressed genes (approximately 21% of the total number of genes) after adjusting

for “Benjamini-Hochberg” method of multiplicity correction [6], hence reducing the possibil-

ity of gross false discoveries.

We further studied some of the genes that had been identified by the naïve method but not

by EAMA. For example, the gene with ID 472 was identified by the naïve method but not by

EAMA. We studied in details the expression pattern of this gene in each of the five datasets.

Fig 4 shows the violin plots of the gene with ID 472 for the two cancer types in each of the five

datasets.

Table 2. The performances of EAMA and that of the naïve method using the simulated count datasets.

Method Sensitivity Specificity FDR FNR

EAMA 0.870 0.968 0.129 0.032

Naïve 0.904 0.942 0.204 0.025

https://doi.org/10.1371/journal.pone.0187287.t002

Table 3. The number of patients in each of the two lung cancer types within each dataset.

Dataset Lung cancer type

Adenocarcinoma (AD) Squamous cell carcinoma(SQ)

Bhattacharjee 60 21

GSE11969 90 35

GSE29016 38 12

GSE30219 85 61

GSE43580 77 73

https://doi.org/10.1371/journal.pone.0187287.t003
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From Fig 4, we find that the gene with ID 472 was not differentially expressed between the

two lung cancer types in four of the five datasets. This suggested that the gene with ID 472, in

spite of being identified by the naïve method, was unlikely to be an important factor for the

discrimination between the two cancer types. Also, based on the individual analyses, the p-

value corresponding to this gene was significant only for the dataset “GSE30219”.

Another such example is the gene with ID 8200 which was identified as significant by the

naïve method but not by EAMA. Fig 5 shows the violin plots for the gene with ID 8200 for the

two cancer types in each of the five datasets.

From Fig 5 we can see that the gene with ID 8200 was not differentially expressed between

the two lung cancer types for four of the five datasets. As before, we can suggest that this gene

did not have a considerable impact in distinguishing the two cancer types, and it was reason-

able that EAMA had not identified such “unimportant” genes.

Discussion

High throughput technologies have enabled simultaneous analysis of thousands of genes in a

single experiment. Combining hypotheses testing results from the multiple genomic

Fig 3. Histogram of the original z-values along with the empirical null distribution.

https://doi.org/10.1371/journal.pone.0187287.g003
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experiments is a popular meta-analysis approach of identifying significant genes related to

some biological process. However, there is a distinct difference between the aims of meta-anal-

yses involving single hypothesis in each component experiment with that of large-scale multi-

ple hypotheses in each experiment. While the former targets in favoring the alternative

‘interesting’ hypothesis with high power, the latter is designed for the identification of a small

proportion of ‘interesting’ or ‘significant’ cases out of a large set of possible candidates. In this

Fig 4. The violin plots of the gene with ID 472 for the two cancer types in each of the five datasets.

https://doi.org/10.1371/journal.pone.0187287.g004
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article we have discussed the possibility of making erroneous conclusions from combining the

p-values calculated under standard theoretical assumptions from multiple genomic experi-

ments when each experiment involves simultaneous testing of enormous number of hypothe-

ses in presence of some hidden confounder variable. The presence of some confounder

variables can induce over-dispersion and/or bias that remain unaccounted by the theoretical

null assumptions. In particular, we have shown that even adjusting the p-values by taking into

Fig 5. The violin plots for the gene with ID 8200 for the two cancer types in each of the five datasets.

https://doi.org/10.1371/journal.pone.0187287.g005
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account the false discovery rates may not be enough to substantially diminish the false discov-

eries from the meta-analysis of large-scale multiple testing when hidden confounder variables

are present. We have proposed an alternative approach of modifying the p-values by construct-

ing empirical null distributions and combining these empirically adjusted p-values through

proper meta-analysis approach. Through simulation studies involving genomic experiments

we have shown that our proposed method has much better performance than the standard

meta-analysis approach of combining raw p-values from multiple experiments especially in

presence of hidden confounder variables. A possible example where the Fisher’s p-value com-

bination method may lead to incorrect findings can be found from our real data analysis. In

our meta-analysis of five lung cancer data sets, we have discussed examples where certain

genes were identified as differentially expressed by the standard method of Fisher’s p-value

combination, although individual analyses of the five lung cancer datasets reveal that the afore-

mentioned genes were not differentially expressed in most of the five component datasets.

This strongly raises the possibility of false discoveries using Fisher’s p-value combination due

to some unmeasured confounder in at least one of those datasets.

There have been some proposed model-based methods for gene-expression studies that

take into account the potential effects of confounders while carrying out genomic analyses.

One such model based approach, which is applicable for individual genomic studies, is the sur-

rogate variable analysis [22]. Such model-based approaches to account for the effects of the

confounders have also been applied for meta-analysis purposes [3]. However, in practice, it

may become difficult and complicated to model the effects of hidden confounders in large

observational studies due to various complex or unknown nature of the confounding effects.

In such situations, it might be more useful to empirically adjust for the effects of hidden con-

founders, through our proposed method, instead of going through cumbersome modeling

approaches.

In genome wide association studies (GWAS) there exist some other popular approaches of

meta-analysis apart from the Fisher’s method of p-value combination. One such popular

meta-analysis method is the METAL approach [23] which combines the p-values or effect

sizes of individual association studies by weighted combination and transformation into z-val-

ues where the weights depend on either the sample sizes or the estimated standard errors of

the effect sizes of the individual studies. This approach, although useful for meta-analysis of

GWAS, does not appropriately account for the effects of the potential confounders which are

likely to be present in large-scale observational studies. In this article, we have developed our

method of empirically adjusted meta-analysis based on the Fisher’s p-value combination due

to the flexibility and computational ease of the Fisher’s method. However, in case additional

information on effect sizes and corresponding standard errors are available for the individual

component studies, one can also implement our technique of empirical adjustment to METAL

for further improved meta-analysis results.

This article mainly focuses on developing meta-analysis approach for combining p-values

from multiple genomic experiments when the outcome of interest is affected by some hidden

variable that acts as a confounder with different effects between different groups under study.

In biological studies, mostly in observational studies, such hidden variables are very common

which play the roles of confounders. We have shown that in such scenarios our proposed

method performs much better than the standard naïve method of meta-analysis. However, it

may happen in certain situations that a hidden variable affects the outcome but does not have

a confounding effect, i.e. the effect of the hidden variable on the outcome does not vary signifi-

cantly between the different groups under study. We have considered multiple simulation set-

tings that addresses the abovementioned scenarios and the results show that the standard
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meta-analysis approach of combining raw p-values is a bit conservative having lower power

and FDR than our proposed method EAMA.

We have used empirical null distribution as outlined by [2] where the empirical null distri-

bution were estimated using a “central matching” approach (see Appendix as well as [24] for

details) of the R package “locfdr” [25]. There is an alternative option of estimating the null

distribution using the maximum likelihood method in the “locfdr” package (Details can be

found in [24]). In various simulation scenarios, the “central matching” approach of estimating

the empirical null distribution appeared to perform better than the maximum likelihood

approach. However, the overall results obtained through the maximum likelihood approach

are not significantly different from that obtained from the “central matching” approach and

are not shown here in details. One may note that although we have used FDR-adjusted p-val-

ues using Benjamini-Hochberg procedure [6], there are other options for adjustment of false

discovery rates including the use of q-values [26].

Methods

Empirically adjusted meta-analysis (EAMA)

Here, we provide a description of our proposed method (EAMA) in details. Let us suppose we

have G number of genes in our study. We are interested in finding out which of these G genes

contribute significantly to our outcome of interest. Suppose H = {Hg:1� g� G} be the collec-

tion of null hypotheses where Hg denotes the hypothesis that the gene g has no significant con-

tribution to the outcome of interest, 1� g� G. Also, suppose we have data from multiple

independent experiments. Let M be the number of independent genomic experiments. By

combining the results of these M independent experiments we aim to identify the genes which

contribute significantly to the outcome of interest.

Let us define PðiÞ ¼ p̂ðiÞg : 1 � g � G
n o

as the collection of p-values from the ith genomic

experiment, where p̂ðiÞg is the p-value corresponding to gene g (i.e. corresponding to the null

hypothesis Hg) in the ith experiment, 1� i�M, 1� g� G.

Using the inverse z-transformation, we get the collection of z-scores as

zðiÞ ¼ zðiÞg ¼ F� 1ðp̂ðiÞg Þ : 1 � g � G
n o

; 1 � i � M ð2Þ

The z-scores given in (2) may not follow a N(0, 1) distribution under the null hypotheses.

Here we modify the z-scores, given in (2), using the Efron’s technique of estimating an empiri-

cal null distribution [2] so that the resulting z-scores follow N(0, 1) distribution under the null

hypotheses. A brief detail on estimating the empirical null can be found in the Appendix. Fol-

lowing the steps of [2], suppose the empirical null distribution is obtained as f̂ 0 ¼ Nðm̂0; ŝ
2
0
Þ

using the R package “locfdr” [25]. Then the modified z-values are calculated as

~z ðiÞg ¼
zðiÞg � m̂0

ŝ0

; 1 � g � G; 1 � i � M ð3Þ

These empirically adjusted z-values, given in (3), can be assumed to follow a N(0, 1) distri-

bution under the appropriate null hypotheses. Finally, we convert the modified z-values into

the corresponding p-values as ~pðiÞg ¼ Fð~z ðiÞg Þ; 1 � g � G; 1 � i � M.

At this stage, we have a set of M p-values from the M independent experiments for each

gene g. But for proper inference on the overall effect of a gene, we need to have a single p-value

for that gene. So, for a typical gene g we combine the p-values from all of the M experiments to

obtain a single p-value using Fisher’s method [1] as given below:
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If ~pð1Þg ; ~pð2Þg ; . . . ; ~pðMÞg are the M p-values for the gene g obtained from the M
independent experiments, we combine these M p-values to get a single test statistic

Tg ¼ 2
PM

i ¼ 1
� logð~pðiÞg Þ
n o

, 1� g� G. Under the null hypothesis Hg: gene g does not con-

tribute significantly to the outcome, Tg follows a χ2 distribution with 2M degrees of freedom

assuming that the p-values ~pðiÞg follow uniform distribution. Using these we obtain a result-

ing set of G p-values ~p1; ~p2; . . . ; ~pGf g, where ~pg is the p-value corresponding to the test sta-

tistic Tg. In this way we are able to get a single p-value corresponding to each of the G genes.

To account for the large number of hypotheses being tested in the study, we apply the Benja-

mini-Hochberg [6] method of multiplicity correction to get a set of corrected p-values

p�
1
; p�

2
; . . . ; p�G

� 	
. It may be noted that other methods for multiplicity correction can also

be used. Finally, using the p-value p�g we decide whether the gene g has any overall signifi-

cant contribution to the outcome of interest.

Appendix

Estimation of the empirical null distribution

A brief discussion on estimating the null distribution, following [2], is as follows. Suppose that

there are N z -values which can be classified into two classes, “Uninteresting” or “Interesting”,

depending on whether or not zi is generated according to the null hypothesis. Also, assume

that the prior probabilities of the z-values belonging to the “Uninteresting” or “Interesting”

classes are p0 and p1 = 1 − p0 respectively, and that zi has density either f0(z) (null density) or

f1(z) (non-null) depending on its class. Then the mixture density of z is given by f(z) = p0f0(z) +

p1f1(z). Following Bayes theorem the a posteriori probability of belonging to the Uninteresting

class given z is obtained as Prob{Uninteresting|z} = p0f0(z)/f(z). The local false discovery rate is

then defined as f0(z)/f(z). The main idea is to estimate the density f0 from the central peak of

the observed histogram of the z-values. Under the assumption that f0 is density of a normal dis-

tribution with mean δ0 (not necessarily 0) and standard deviation σ0 (not necessarily 1), for z

close to zero, we can write logf zð Þ ¼ � 1

2

z� d0

s0

� �2

þ constant. Then δ0 and σ0 can be estimated

as δ0 = argmax{f(z)} and s0 ¼ � d2

dz2 logf zð Þ
� �� 1

2

d0
. Around z = 0, logf(z) curve is estimated

through a quadratic approximation which leads to the final estimation of δ0 and σ0. This is

done under the assumption that the central peak of the z-value histogram, presumably close to

zero, is mainly contributed by the null cases, and this method of estimating the null parameters

is termed as “central matching” method (see [24] for more details on this approach).
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