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Fractal geometry has been applied widely in the analysis of medical images to characterize the irregular complex tissue structures
that do not lend themselves to straightforward analysis with traditional Euclidean geometry. In this study, we treat the nonfractal
behaviour of medical images over large-scale ranges by considering their box-counting fractal dimension as a scale-dependent
parameter rather than a single number. We describe this approach in the context of the more generalized Rényi entropy, in which
we can also compute the information and correlation dimensions of images. In addition, we describe and validate a computational
improvement to box-counting fractal analysis. This improvement is based on integral images, which allows the speedup of any
box-counting or similar fractal analysis algorithm, including estimation of scale-dependent dimensions. Finally, we applied our
technique to images of invasive breast cancer tissue from 157 patients to show a relationship between the fractal analysis of these
images over certain scale ranges and pathologic tumour grade (a standard prognosticator for breast cancer). Our approach is general
and can be applied to any medical imaging application in which the complexity of pathological image structures may have clinical
value.

1. Introduction

Many biological phenomena exhibit chaotic or fractal-like
behavior, and these features have been studied extensively [1–
5]. One area of widespread use has been the application of
fractal geometry in the analysis of medical images as it lends
itself naturally to the pragmatic characterization of irregular
non-Euclidean structures found in medical imaging [6–9].
However, care must be taken when applying fractal analysis
to natural objects [10]. The quintessential requirement for
an object to be a fractal is for the object to exhibit a form
of self-similarity to arbitrarily small scales. As such, actual
fractals do not exist in nature, since there is a fundamental
natural limitation to the scaling behaviour of natural objects
when their substructures approach the atomic scale. Even
real renderings of mathematical fractals cannot be truly
fractal because of the finite resolution of the rendering. In
general, the scaling behaviour of natural objects depends on
the scale at which the objects are considered. Despite this
limitation, most fractal analysis techniques have focused on
characterizing the fractal behaviour of natural objects by

finding an interval of scales in which these objects have an
approximately constant scaling behaviour [3].

Some authors have noted the danger in making this
interpretation because of the possibility of illusory “fractal”
behaviour where none is actually present [11], as well as the
difficulty in defining the interval of scales over which the
object has a consistent scaling behaviour [12]. To limit these
difficulties, our approach in recent studies was to manually
pick the interval of scales based on physical considerations
(i.e., range of the sizes of the histological structures of
interest) and the linearity of the dependence of entropy on
scale [13–16].

Another approach used by others to resolve this difficulty
has been to model the scale dependence of the fractal
dimension in a rendering of a mathematical fractal by
fitting a functional model to the dimension as a function
of scale and interpreting the fit parameters as meaningful
fractal dimensions for the renderings [17, 18].The conceptual
arguments behind these models are derived for renderings
of mathematical fractals, and they may not necessarily hold
for images of natural objects. However, the authors of these
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studies are aware that natural objects do not fit the mold of
real mathematical fractals.

In this study, we adopt the view expressed by others
that the fractal dimension of a natural object changes with
scale. Assuming that physically meaningful information in
an image is contained in the scaling behaviour of the image
in a certain interval of spatial dimension, then a thorough
and objective approach to extract this information would be
to assess the clinical relevance of different scale ranges and
determine an absolute scale at which the fractal dimension
is relevant for a given medical imaging application. That is,
the spatial scale interval chosen for the analysis of medical
images would be selected on the basis of patient classification
performance and patient outcome for diagnostic and prog-
nostic applications, respectively, rather than the resemblance
of the image structures to a fractal at these image scales.

In order to address the shortcomings of existing tech-
niques, we propose an approach to analyzing the scaling
behaviour as a function of scale itself, providing an estimate of
the fractal dimension as a scale-dependent parameter rather
than a single fixed value. We present this fractal analysis
approach in the context of the more generalized Rényi
entropy [19], in which we can also compute the information
and correlation dimensions of images [20].

In addition, we describe a novel fractal analysis algorithm
based on integral images [21] which speeds up the computa-
tion of these generalized dimensions by orders of magnitude,
and we validate our algorithm and approach by applying it
to increasingly complex data, producing meaningful results
throughout. We also illustrate our method with the analysis
of a set of histology images acquired from tissue samples of
breast tumours with modified Bloom-Richardson grades of
1, 2, and 3, in which we determine the spatial scale inter-
vals that exhibit statistically significant differences in fractal
dimensions between the different tumour grades. Looking
forward, this approach provides a rapid tool to determine an
absolute scale at which the generalized fractal dimensions are
relevant and may allow for objective interimage comparison
of medical images acquired at different resolutions.

2. Fractal Dimension

Fractal dimension (FD) is a generalization of the intuitive
notion of topological dimension and allows for noninteger
dimensions; for example, a point, a line, and a plane have both
topological and fractal dimensions of 0, 1, and 2, respectively.
However, fractal objects such as the Koch snowflake and
Sierpinski carpet both have a topological dimension of 1 but
have fractal dimensions of 1.26 and 1.89, respectively. The
fractal dimension of an object is fundamentally a reflection
of its scaling behaviour. Hence, to provide an estimate of the
fractal dimension of a real image, we first need to define
a scale-dependent function 𝑓(𝐴, 𝜖), with pixel intensities
𝐴(𝑥, 𝑦) defined for (𝑥, 𝑦) ∈ 𝑆, where 𝑆 is the area contained
in the image and 𝜖 is the analysis scale. For mathematical
fractals, the fractal dimension is usually defined as

𝐷 ≡ − lim
𝜖→0

𝑓 (𝐴, 𝜖)

log (𝜖)
. (1)

However, for a real image it is meaningless to analyze an
infinitely small scale by letting 𝜖 → 0, and so at any given
scale we can define the fractal dimension as

𝐷 (𝜖) ≡ −
𝜕𝑓 (𝐴, 𝜖)

𝜕 log (𝜖)
. (2)

The function 𝑓
𝑏
(𝐴, 𝜖) corresponding to the box-counting

dimension is commonly used in medical imaging because of
its conceptual and algorithmic simplicity. In this method, the
parameter 𝜖 is the side length of the square boxes into which
the image is partitioned, and 𝑓

𝑏
(𝐴, 𝜖) is the logarithm of the

number of squares of this size in the image that contains at
least one pixel that is a part of a structure of interest.

2.1. Generalized Dimensions. The box-counting function
𝑓
𝑏
(𝐴, 𝜖) is a special case of a more generalized class of

functions, the Rényi entropies [19], which also generalize
Shannon entropy. The Rényi entropy 𝐻

𝛼
of order 𝛼 of a

probability distribution {𝜇
𝑖
} is given by

𝐻
𝛼
≡

1

1 − 𝛼
log(∑

𝑖

𝜇𝛼
𝑖
) . (3)

The values {𝜇
𝑖
} are the set of natural measures of the

probability distribution. For an image data set 𝐼(𝑥, 𝑦) and a
scale 𝜖, the values {𝜇

𝑖
} are found by dividing the image into

𝜖×𝜖 squares, and for each square by finding the proportion 𝜇
𝑖

of the total image intensity that is contained in the 𝑖th square:

𝜇
𝑖
≡
∫
𝑆𝑖

𝐼 (𝑥, 𝑦)

∫
𝑆

𝐼 (𝑥, 𝑦)
, (4)

where 𝑆
𝑖
is the domain of the image contained in the 𝑖th

square. Definition (4) implies ∑
𝑖
𝜇
𝑖
= 1 because the set 𝑆 is

entirely covered by the subsquares 𝑆
𝑖
.

The fractal dimensions𝐷
𝛼
=−lim

𝜖→0
𝐻
𝛼
/ log(𝜖) obtained

by using different orders 𝛼 generate themultifractal spectrum
[6] of an image. There are three values of 𝛼 that have clear
physical significance [22]. When 𝛼 = 0, we treat the term
𝜇𝛼
𝑖
in (3) as the limit of 𝜇𝛼

𝑖
as 𝛼 → 0. Hence, for 𝜇

𝑖
̸= 0,

𝜇0
𝑖
= lim

𝛼→0
𝜇𝛼
𝑖
= 1, while for 𝜇

𝑖
= 0, 𝜇0

𝑖
= lim

𝛼→0
𝜇𝛼
𝑖
= 0.

The entropy 𝐻
0
is therefore the logarithm of the number

of nonzero values of 𝜇
𝑖
in the image, which is the same as

logarithm of the number of nonempty squares of size 𝜖 in the
image, equaling the box-counting function 𝑓

𝑏
from before.

The Rényi entropy of order 0 will thus yield the box-counting
dimension𝐷

0
of the image.

If 𝛼 = 1, we again treat (3) as a limit when 𝛼 → 1. In
this case, by using L’Hôpital’s rule for the limit as 𝛼 → 1, the
Rényi entropy reduces to the Shannon entropy as follows:

𝐻
1
(𝜖) = −∑

𝑖

𝜇
𝑖
log (𝜇

𝑖
) . (5)

The dimension 𝐷
1
obtained from the Shannon entropy is

known as the information dimension of the image. This
measure of the fractal dimension gives the rate at which
information is gained about the structure of the image as the
resolution of the image increases.



Computational and Mathematical Methods in Medicine 3

00 1

1

2

2

3

3

1

2

3

4 1 2 3 4

0.6 0.60.6

0.6

0.6

0.4 0.4

0.4

0.20.2

(a) (b)

0.2

0.8 0.8

1 1.6

1.2 2.4 3.4 4.6

3.2 4.4 5.81.8

2

y2
y2y1

y1

x1

x2

x1

x2

x x

y

y

Figure 1: An illustration of an intensity image (a) being summed to produce an integral image (b).The sum of the elements of (a) in the dotted
red box gives the corresponding element of (b). After (b) is computed, the sum of the elements of (a) in the dashed blue box, with 2 < 𝑥 < 3,
1 < 𝑦 < 4, can be found by using (11). In this particular example, the sum equals 0.6, while 𝐵

3,4
− 𝐵
3,1
− 𝐵
2,4
+ 𝐵
2,1
= 5.8 − 4.6 − 1.8 + 1.2 also

equals 0.6.

The third value of𝛼with a clear physicalmeaning is𝛼 = 2,
which gives rise to𝐷

2
, the correlation dimension of the image,

addressing the number of neighbours a point of the structure
has as a function of scale. That is, 𝐷

2
gives the power law

that relates the number of other image pixels that are within
a range 𝜖 of a given pixel to the value of 𝜖.

In essence, larger 𝛼 values assign a greater weight to the
brighter parts of the image being analyzed.This is particularly
useful for the analysis of medical images in which both the
spatial structure and relative intensity of edge structures may
carry useful information about the image.

3. Methods and Materials

3.1. Scale Dependence of Fractal Dimension. As mentioned in
the introduction, natural objects do not exhibit true fractal
behaviour, as their scaling behaviour depends on the scale
at which the objects are considered. Hence, we propose an
objective approach to determine the scale or scale interval
in which the different orders of fractal dimensions may have
physical relevance (e.g., diagnostic or prognostic value in
medical imaging).

To estimate the fractal dimension 𝐷
𝛼
(𝜖) as a function

of scale, we use definition (2) and measure the entropies
𝐻
𝛼
(𝜖) given by (3). To differentiate the entropy with respect

to the analysis scale, we use the locally weighted regression
and smoothing scatterplots (LOWESS)method [23], which is
widely used in situations where a good theoretical model for
the observed data does not exist. A low-order polynomial is
fitted to a weighted subset of the data around each data point,
and then all parameters (such as the derivatives) of the fitted
curve can be extracted from this polynomial. In our case,
we are interested in the first derivative of the entropy with
respect to scale, which immediately gives a scale-dependent
estimate of the fractal dimension of the image.The advantage
of this method over direct numerical differentiation is its
vastly enhanced robustness to noise, while its advantage over
a fit to the entropy or numerical derivative data, as used by
others [17, 18], is in its greater flexibility and scale resolution,
as well as a lack of assumptions that may not be valid for
images of natural objects.

3.2. LOWESSMethod. To estimate parameters of a scatterplot
of a data set 𝑌 = {𝑦(𝑥)} given as a function of 𝑋 = {𝑥}

using the LOWESS method [23], for each 𝑥
0
∈ 𝑋, we fit

a polynomial 𝑝 to the data in such a way as to minimize
the weighted sum of the squared residuals 𝑅 given by 𝑅 =

∑
𝑥∈𝑋
(𝑦(𝑥) − 𝑝(𝑥))2 ⋅ 𝑤

𝑥0
(𝑥), where 𝑤

𝑥0
(𝑥) is a weighting

function. The fitted curve 𝑓(𝑥) is then approximated around
𝑥
0
by the polynomial 𝑝. In particular, for 𝑥 ≈ 𝑥

0
, we estimate

the 𝑛th derivatives of 𝑓 and 𝑝 as equal for 𝑛 ≤ deg(𝑝).
The function𝑤 is central to the LOWESSmethod, since it

makes the regression locallyweighted.The simplest weighting
function 𝑤 that can be used makes the fit around a point 𝑥

0

local a Gaussian with a standard deviation 𝜎:

𝑤
𝑥0
(𝑥) = exp [−(

𝑥 − 𝑥
0

𝜎
)
2

] . (6)

Larger values of 𝜎 will smooth out the fit more than smaller
values, producing a fit that is more resistant to noise at the
cost of resolution in 𝑥. In the case of scale-dependent fractal
analysis, the input data𝑥 and𝑦 to the LOWESSmodel are𝑥 =
log(𝜖) and 𝑦(𝑥) = 𝐻

𝛼
(𝜖), from which we can obtain 𝐷

𝛼
(𝜖) =

−𝑓󸀠(𝜖).

3.3. Rapid Computation of the Natural Measures. The
most common operation encountered in the box-counting
approach to fractal image analysis is the determination of
the natural measure 𝜇

𝑖
given in (4) of a certain rectangular

(usually square) subset 𝑆
𝑖
of the image. If the subset 𝑆

𝑖
is

bounded by 𝑥
1
< 𝑥 < 𝑥

2
and 𝑦

1
< 𝑦 < 𝑦

2
, while the entire

image is bounded by 0 < 𝑥 < 𝑥
𝑀

and 0 < 𝑦 < 𝑦
𝑀
, finding

the natural measure is equivalent to calculating

𝑝
𝑖
= ∫
𝑆𝑖

𝐼 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = ∑
𝑥1<𝑎≤𝑥2

𝑦1<𝑏≤𝑦2

𝐴
𝑎,𝑏
, (7)

𝑃 = ∫
𝑆

𝐼 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = ∑
0<𝑎≤𝑥𝑀

0<𝑏≤𝑦𝑀

𝐴
𝑎,𝑏
, (8)

𝜇
𝑖
=
𝑝
𝑖

𝑃
. (9)

For example, in Figure 1, the sum of the image intensity
𝑝
𝑖
in image𝐴 over the dotted (red) rectangle bounded by 0 <

𝑥 < 1 and 0 < 𝑦 < 3 is equal to 𝑝
𝑖
= 𝐴
1,1
+ 𝐴
1,2
+ 𝐴
1,3
=

0.6 + 0.4 + 0.6 = 1.6.
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Direct summation of the image intensity over a rectangle
has computational cost proportional to the area of the
rectangle. A method to speed up the summation is to first
compute the following integral image (also known as the
summed area table) [21]:

𝐵
𝑥,𝑦
= ∑
0<𝑎≤𝑥

0<𝑏≤𝑦

𝐴
𝑎,𝑏
.

(10)

This computation reduces the subsequent summation in (7)
to a simple arithmetic operation (e.g., see Figure 1):

𝑝
𝑖
= ∑
𝑥1<𝑎≤𝑥2

𝑦1<𝑏≤𝑦2

𝐴
𝑎,𝑏
= 𝐵
𝑥2 ,𝑦2

− 𝐵
𝑥1 ,𝑦2

− 𝐵
𝑥2 ,𝑦1

+ 𝐵
𝑥1 ,𝑦1

,
(11)

where we define 𝐵
𝑥0
= 0 and 𝐵

0𝑦
= 0 for all 𝑥 and 𝑦.

The usefulness of this algorithm lies in its ability to
speed up natural measure computation. The computational
complexity of a näıve algorithm, in which for each scale 𝜖 we
determine the natural measures, (4), by directly summing the
image intensity is of order𝑂(𝐴 ⋅ 𝑠), where 𝐴 is the area of the
image and 𝑠 is the number of different values of 𝜖 considered.
However, by using the integral image algorithm approach,
the computational complexity falls to 𝑂(𝐴) since the cost of
computing the natural measures at a scale 𝜖 is approximately
equal to 𝐴/𝜖2 and ∑

∞

𝜖=1
1/𝜖2 = 𝜋2/6 ≈ 1.6 is small.

The integral image approach is particularly advantageous for
large values of 𝜖 where a large number of summations are
replaced with only a few subtractions. For a typical fractal
scale analysis, the integral image approach is 10 to 100 times
faster than the näıve algorithm.

3.4. Algorithm. Our method was implemented in MATLAB
Version 7 (TheMathWorks, Inc., Natick,MA,USA).The steps
of the method are as follows.

(i) Select the analysis scales 𝜖 and entropy order 𝛼
values.The choices made are based on purely physical
considerations, for example, the range of sizes of the
structures of interest in the image being analyzed. To
be general, one can begin by analyzing a wide range
of 𝜖 and 𝛼 values and select the physically meaningful
subset of scales and orders.

(ii) Normalize the original image 𝐴 by dividing every
element by the sumof the pixel intensities of the entire
image, giving the natural measure contained in each
image pixel.

(iii) Calculate the integral matrix 𝐵 for the normalized
image 𝐴. For each scale 𝜖, rescale the image using the
integral matrix. That is, calculate the matrix

𝑅
𝑥,𝑦
=

𝑖=𝑥𝜖

𝑗=𝑦𝜖

∑
𝑖=(𝑥−1)𝜖+1

𝑗=(𝑥−1)𝜖+1

𝐴
𝑖𝑗
. (12)

(iv) For each value of 𝛼, raise the natural measure matrix
𝑅 to the power 𝛼 except for 𝛼 = 1 obtaining𝑀

𝑖𝑗
= 𝑅𝛼
𝑖𝑗
;

for 𝛼 = 1, we calculate thematrix𝑀
𝑖𝑗
= −𝑅
𝑖𝑗
⋅ log(𝑅

𝑖𝑗
).

(v) Use (3) and (5) to give𝐻
𝛼
= (1/(1−𝛼)) log(∑𝑀

𝑖𝑗
) for

all 𝛼 ̸= 1, while for 𝛼 = 1,𝐻
1
= ∑𝑀

𝑖𝑗
.

Our method was tested on the following data sets:
exact renderings of deterministic strictly self-similar fractals,
randomized renderings of deterministic fractals, randomized
renderings of statistically self-similar fractals, and a set of
breast histological tissue samples.

3.5. Breast Cancer Tissue Specimens. In a previous study [16],
we had retrospectively selected 408 patients with primary
invasive ductal carcinoma (IDC) of the breast from Calgary
regional hospitals after appropriate ethics approval from
the institutional review board. The breast tissue from these
patients was used to construct tissuemicroarray (TMA) cores
(each with a 600 𝜇m diameter) stained with pan-cytokeratin
to highlight the morphology of epithelial architecture. The
number of cores per patient ranged from one to three. Images
of the cores were acquired with an effective magnification
of 6.3x using an AxioCam HR digital camera (Carl Zeiss,
Inc.) mounted on an optical microscope (Zeiss Axioscope).
The images were saved at the camera’s native resolution
of 1300× 1030 pixels in tagged image file format (tiff). In
this previous study [16], we found the box-counting fractal
dimension of the breast cancer TMA core images to be
an independent and statistically significant prognosticator.
However, the study did not include an explicit examination of
the role of the scale range on the fractal dimensions computed
from the images. Instead, fractal dimension was computed
from plots of the slope of 𝑓

𝑏
(𝐴, 𝜖) versus log(𝜖) over a scale

range of (𝜖 = 10–50 𝜇m), which was chosen based on a visual
assessment of the range of the linear region of a small random
sample of plots taken from the whole image set.

In this study, we selected all the cases from our previous
study set of 408 patients [16] that satisfied the conditions of
having exactly three evaluable TMA core images and con-
tained pathologic grade information. This selection resulted
in a set consisting of a total of 157 patients in the following
tumour grade categories: 56 grade 1, 84 grade 2, and 17
grade 3 tumours. We applied our method to these cases,
and the analysis was used to demonstrate the capabilities
of the algorithm and to check that our previous choice for
the scale range was a judicious one. The grayscale images
of the tissues were converted into black-and-white outline
images by thresholding. An example of the overall analysis
process for a breast cancer tissue core is shown in Figure 2.
To determine the optimal thresholding level for the edge
detection, we varied the threshold level for each image
to maximize the fractal dimension in the 10–50 𝜇m scale
interval.

The motivation for using three cores per patient (chosen
from different tumour regions) was to ensure that we had
a representative sample of a heterogeneous tumour. For the
final analysis, we selected the one core from each patient that
had the greatest average fractal dimension in the 10–50 𝜇m
scale range. The rationale for choosing the core with the
greatest fractal dimension is that it is likely representative
of the portion of a possibly heterogeneous tumour that has
deviatedmost fromnormal epithelial breastmorphology, and
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Figure 2: An illustration of the overall analysis process. (a) Grayscale image of a breast tissue sample (600 𝜇m in diameter). (b) Black and
white thresholded version of (a). (c) Outlines of (b). (d) Image entropies determined from (c). (e) Scale-dependent fractal dimensions for this
tissue sample.

therefore it is themost probable indicator of abnormal and/or
aggressive tumour growth with metastatic potential. For the
analysis, we produced a single curve of fractal dimension as
a function of scale 𝜖 for each patient. We averaged the fractal
dimensions within each tumour grade category.

3.6. Statistics. We performed the statistical analysis using
the MATLAB Statistics Toolbox 7.4 (The MathWorks, Inc.,
Natick, MA, USA). We quantified the differences between
the three tumour grade categories using the nonparamet-
ric Kruskal-Wallis analysis and a multiple comparison test
(MATLAB functions kruskalwallis and multcompare, resp.).

4. Results

4.1. Assessment of Scale-Dependent Algorithm on Renderings
of Strictly Self-Similar Fractals. Figure 3 shows the results
of our approach applied to renderings of strictly self-similar

mathematical fractals. For the Koch snowflake, Pascal trian-
gle, and Sierpinski carpet, the estimated fractal dimensions
are consistently within 0.1 of the Hausdorff dimension of
themathematical fractal being rendered throughout the scale
range of 10 to 250 pixels. Note that both the mean and
maximumdeviations of themeasured fractal dimension from
the Hausdorff dimension decrease with increasing fractal
dimension, increasing value of 𝜎 in (6), and have a minimum
in the range of 20 to 50 pixels, where neither the small
nor large-scale granularities of the image affect the estimate
of the fractal dimension. In this smaller interval of scales,
the measured fractal dimensions have a root-mean-squared
deviation of 0.074, 0.040, 0.086, and 0.029 for 𝜎 = 0.3 and
0.045, 0.018, 0.052, and 0.034 for 𝜎 = 1.0 from the Hausdorff
dimension, respectively, for the four fractals presented.

For the Koch island boundary (Figure 3(d)), a jump of
fractal dimension from 1 to 1.5 (theHausdorff dimension) can
be seen at 𝜖 ≈ 4 pixels. This behaviour is consistent with the
real structure of the rendering, which at small scales consists
of straight line segments of 4–8 pixels long. Hence, below
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(a) 998× 1152 pixel rendering of the
boundary of a Koch snowflake
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(c) Scale dependence of fractal dimension of (a)

(d) 2000× 2000 pixel rendering of
the boundary of a Koch island
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(f) Scale dependence of fractal dimension of (d)

(g) 1460× 1460 pixel rendering of
Pascal’s triangle (mod 3)
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(i) Scale dependence of fractal dimension of (g)

Figure 3: Continued.
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(j) 2187× 2187 pixel rendering of
the Sierpinski carpet
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(l) Scale dependence of fractal dimension of (j).

Figure 3: Results of applying our algorithms to four renderings of mathematical fractals. The entropies in (b), (e), (h), and (k) are in nats,
which are the natural units for information and entropy, with base 𝑒 rather than 2: 1 nat ≈ 1.44 bits, and are plotted for 𝛼 = 0, 1, 2. All the
fractal dimension plots (c), (f), (i), and (l) use 𝜎 = 0.5 in (6), except for (i) where 𝜎 = 0.3 for the circles. Horizontal bar indicates Hausdorff
dimension𝐷

𝐻
of each mathematical fractal.

a scale of 4 pixels, the rendering is really linear and hence has
a fractal dimension of 1 at this scale.

In Figure 3(i), we compare the estimate of fractal dimen-
sions produced by using the values of 0.3 and 0.5 for 𝜎 in
(6). The larger value of 𝜎 produces a smoother dependence
of fractal dimension on scale, which is close to the Hausdorff
dimension of Pascal’s triangle. On the other hand, the smaller
value gives an estimate which is more locally accurate,
showing the nonuniform scaling behaviour of the rendering,
which can be seen in the oscillations in the fractal dimension
as a function of scale. In fact, this inhomogeneous scaling
behaviour is seen in all four of the sample renderings.
These oscillations occur because the real renderings of the
fractals have discrete characteristic scales. For example, the
Pascal’s triangle mod 3 rendering (Figure 3(g)) consists of
black and white triangles of several discrete scales: 3, 9, 27,
81, 243, and 729 pixels. Around each of these scale values,
the fractal dimension experiences a large drop. This drop
occurs because when the analysis scale grows through each
of these scales, the white triangles in the rendering become
“invisible” to the box-counting algorithm, causing a smaller
than expected drop in the entropy 𝐻

𝛼
and consequently

causing a dip in the box-counting dimension. However,
between these characteristic scales, the image becomes nearly
2-dimensional, just like the plane in which the image is
contained, because the analysis cannot “see” any change in
the image features.

4.2. Assessment of Scale-Dependent Algorithm on Renderings
of Statistical Fractals. We further tested our algorithmon two
kinds of statistical fractals, which are generated by random
processes, but nonetheless possess a statistical form of self-
similarity.

4.2.1. Randomized Sierpinski Triangle. An approximation to
a Sierpinski triangle can be generated by an iterative random
process known as the “chaos game” [24]. In each step of the
game, one new point is added to the rendering of the triangle.
We employed this method with a variable number of itera-
tions (from 𝑛 = 10 to 𝑛 = 106) to generate several Sierpinski
triangle approximations, with an example for 10000 points
shown in Figure 4(a). When the structure is rendered with
only a few points, the structure of the randomized triangle
is essentially point-like or 0-dimensional at small scales. For
example, with only 1000 points in a 2000× 2000 pixel image,
the expected mean distance between points is 2000/√8𝑛 =
23 pixels; indeed, the fractal dimension measured for 𝑛 =
1000 begins to grow around that scale, but already has the
Hausdorff dimension log(3/2) scaling behaviour at larger
scales above 100 pixels.

In this case, we can see that our algorithm correctly
identifies the scaling behaviour of the fractal renderings: the
large-scale behaviour of the fractal quickly reaches the correct
scaling power law, while the smaller-scale features are really
0-dimensional. However, as more and more points are added
to the approximation, the fine-scale structure of the fractal is
filled in, and the fractal dimension approaches its ideal value
at all scales.

4.2.2. Brownian Surfaces. The fractal dimension of nine
1025× 1025 pixel renderings of Brownian surfaces with
dimensions 2.1 through 2.9 were evaluated by finding cross-
sections through the images (which should have a dimension
that is one dimension less than the surfaces themselves).
The results of this analysis are shown in Figure 5. Several
features can immediately be seen from Figure 5(c). All of the
outlines are inherently 1-dimensional at small scales because
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Figure 4: (a) 2000 pixel× 2000 pixel rendering of a statistical Sierpinski triangle (104 points). Each point in the statistical fractal is rendered
as a small grey disk for clarity. (b) Scale dependence of (box counting) fractal dimension of statistical Sierpinski triangles rendered with the
indicated number of points (legend). The value 𝜎 = 0.3 is used in (6). Horizontal bar shows Hausdorff dimension𝐷

𝐻
= log(3/2) ≈ 1.585.

of their linear structure. The Brownian surface outlines (i.e.,
Figure 5(b)) pack the image more densely as the scale
of the image increases, causing the fractal dimensions to
approach 2 for all the cross-sections. These features are not
due to a flaw in the algorithm, but rather reflect the true
behaviour of the curves obtained by slicing through the
Brownian surfaces.Thebehaviour of othermeasures of fractal
dimension, such as other components of the multifractal
spectrum, is similar to the box-counting dimension shown
in the figure. The fractal dimensions match the expected
values most closely in the 10–40 pixel range, with a root-
mean-square error of less than 0.06 in this interval. This
example illustrates the great sensitivity of fractal dimension
measures to the scale at which they are computed and
the consequent need for a scale-dependent measure of the
fractal dimension to quantitatively estimate this sensitiv-
ity and choose an appropriate scale or scale range for
analysis.

4.3. Application of Scale-Dependent Method to Breast Tissue
Samples. It is readily apparent that the curves of the averaged
fractal dimensions within each tumour grade category are
similar at small scales below 5 𝜇m but rapidly differentiate
at larger scales Figure 6(a). In addition, there seems to be
a larger difference between grades 1 and 2 at smaller scales
and a larger difference between grades 2 and 3 at larger
scales.

The Kruskal-Wallis analysis showed that statistically sig-
nificant differences exist between at least 2 of the 3 tumour
grade groups for fractal dimensions averaged over scale

ranges of 15–50 𝜇m (𝑃 < 0.0001) and 100–150 𝜇m (𝑃 <
0.008). The multicomparison test showed that a statistically
significant difference (𝑃 < 0.0005) exists between grades
1 and 2 and 1 and 3 in the 15–50 𝜇m scale range and
a statistically significant difference (𝑃 < 0.05) between
grades 1 and 3 and 2 and 3 in the 100–150 𝜇m scale range
(Figure 6(a)). Figures 6(a), 6(b), and 6(c) also show the fractal
dimension distributions for the different grades and scale
ranges in the form of boxplots. For these plots, the middle
50% of the data lie within the boxes, the lines within the
boxes are the median values, the lines above and below the
boxes show the upper and lower 25 percent of the data,
respectively, and the crosses outside the boxes show outliers.
The results illustrate the way scale range can affect the results
and how different ranges can be useful for distinguishing
different groups (e.g., grades 2 and 3 were not significantly
different in the smaller 15–50 𝜇m scale range, but differences
become more significant in the 100–150 𝜇m larger-scale
range).

In a previous study using a scale range of 10 to 50 𝜇m, it
was found that FD < 1.56, 1.56 < FD < 1.75, and FD > 1.75,
correlated to high, intermediate, and low survival from breast
cancer [16]. The results of this study are consistent with the
previous finding, as higher tumour grade is also correlated
to poorer survival, and grades 1, 2, and 3 correspond to
similar FD ranges (Figure 6). It is important to note that
any comparisons with other results reported in the literature
will only be meaningful if a similar scale range is used for
finding the fractal dimension and if the tissues’ specimens
are stained using the same stain and tissue preparation
technique.
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Figure 5: (a) 1025× 1025 pixel rendering of a Brownian surface of dimension 2.5. (b)Outlines of (a), which have a theoretical fractal dimension
of 2.5 − 1 = 1.5. (c) Scale dependence of fractal dimension of (a) along with 8 other Brownian surfaces of different fractal dimensions. The
theoretical dimensions of the outline images are indicated in the legend.

5. Conclusion

In this study, we have described two novel ideas for the
application of fractal analysis to medical images: fractal
dimension as a scale-dependent scaling parameter of a
statistical distribution and an application of the integral
image method for rapid evaluation of fractal dimensions.
The notion of considering fractal dimension as a model-
free scale-dependent parameter is a fundamental shift in
perspective on investigations of fractal image analysis. By
forgoing a specific model for how an image should behave,
we allow ourselves to extract as much information as possible
from the image. Hence, the true power of our method lies
in its ability to determine the appropriate scale range or
ranges that need to be analyzed using fractal methods for

any particular application. In testing our algorithms on both
real fractal structures and medical images, we showed the
algorithm’s reliability in measuring fractal dimensions and
in picking up subtle scale-dependent features in the fractal
dimensions. More specifically, our analysis of invasive breast
cancer tissue cores from 157 patients has shown that the
ability to differentiate images of different grades of cancer
depends on the scale at which images are analyzed. As
tumour grade is a prognosticator for breast cancer survival,
it is evident that the analysis scale has an impact on the
prognostic value of a fractal analysis approach, a point which
has not been systematically studied or appreciated previously.
Future studies are needed to further validate and extend
the breast cancer results using an independent set of tissue
images.
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Figure 6: (a) Fractal dimensions of breast histology images (averaged over all images in each grade) as a function of the image scale.The two
scale intervals (15–50 𝜇mand 100–150 𝜇m) used as examples are indicated by the vertical dashed lines. (b), (c) Boxplots of fractal dimensions
in the scale interval 15–50 𝜇m and 100–150 𝜇m, respectively. See main text for statistical analysis.
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