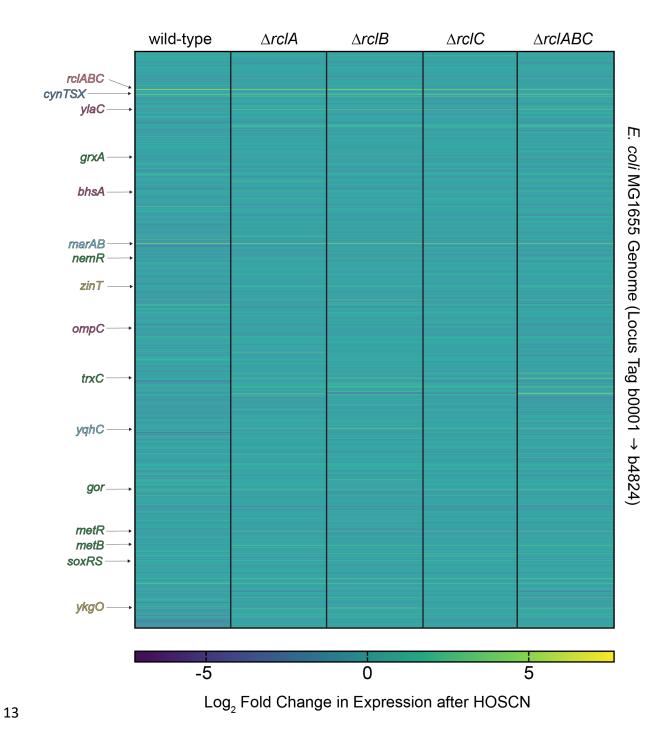
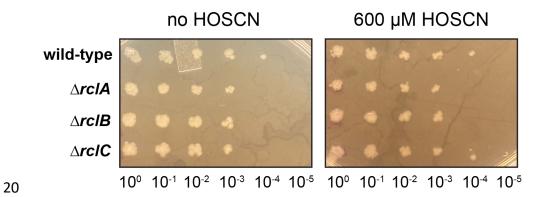
1 SUPPLEMENTAL INFORMATION 2

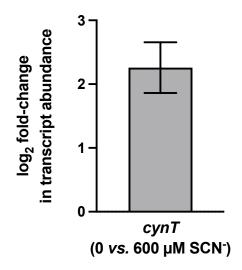

- 3 Genome-wide characterization of hypothiocyanite stress response in *Escherichia coli*
- 5 Julia D. Meredith a, Michael J. Gray a, #

4

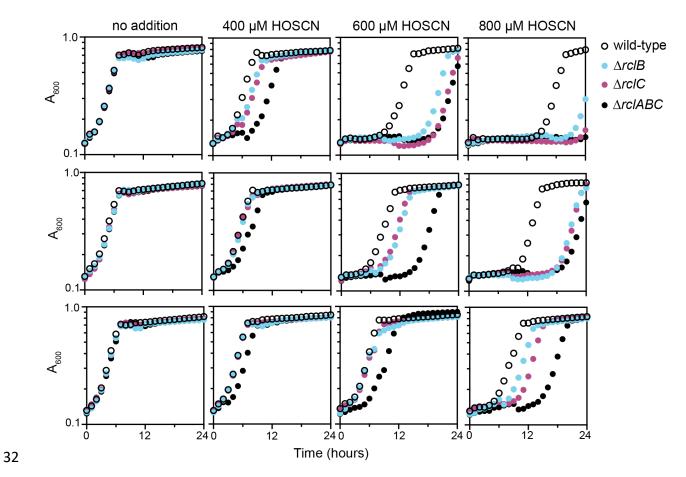
6

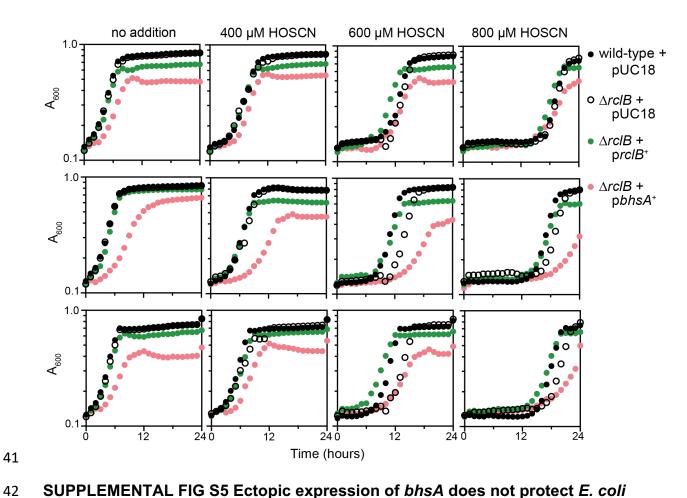

9

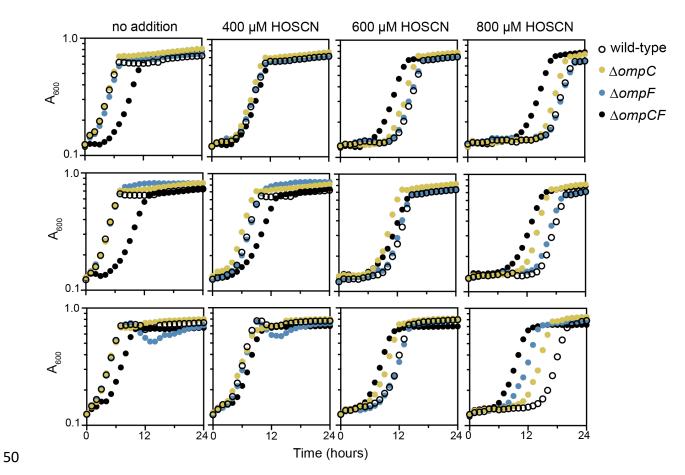
- 7 a Department of Microbiology, School of Medicine, University of Alabama at
- 8 Birmingham, Birmingham, AL 35294
- 10 Running Head: The genetic response of *E. coli* to hypothiocyanite
- [#] Address correspondence to Michael J. Gray, <u>mjgray@uab.edu</u>



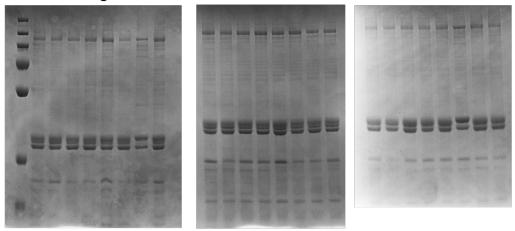
SUPPLEMENTAL FIGURE S1 Heatmap of the *E. coli* transcriptomic response to HOSCN. (A different visualization of the data shown in FIGS 1 and 3.) The *E. coli* transcriptional response to 600 μ M HOSCN in strains MG1655 (wild-type), MJG1958 (MG1655 $\Delta rclA$), MJG0047 (MG1655 $\Delta rclB$), MJG0013 (MG1655 $\Delta rclC$:: cat^+) or


- MJG0901 (MG1655 $\Delta rclABC$), represented as a heatmap. Full RNA-seq results are in
- 19 SUPPLEMENTAL DATA SET 1.

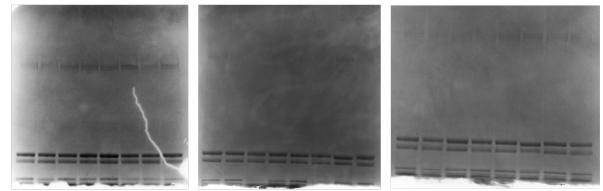

SUPPLEMENTAL FIG S2 600 μ M HOSCN does not kill *E. coli*. *E. coli* MG1655 wild-type, MJG1958 (MG1655 $\Delta rclA$), MJG0047 (MG1655 $\Delta rclB$), and MJG0013 (MG1655 $\Delta rclC::cat^+$), were inoculated into M9 minimal medium containing 600 μ M HOSCN, incubated 15 min at 37°C, and then 10-fold serial dilutions were spotted on LB agar and incubated overnight at 37°C before imaging.


SUPPLEMENTAL FIG S3 SCN- induces expression of *cynT*. qRT-PCR was performed using *cynT*-specific primers on RNA isolated from wild-type *E. coli* after exposure to 600 μM SCN- for 15 minutes (n=2, error bars=range).

SUPPLEMENTAL FIG S4 RcIB and RcIC are required for HOSCN stress resistance in *E. coli*. (Triplicates of the experiment shown in FIG 2.) *E. coli* MG1655 wild-type, MJG0047 (MG1655 $\Delta rcIB$), MJG0013 (MG1655 $\Delta rcIC::cat^+$), and MJG0901 (MG1655 $\Delta rcIABC$) were inoculated into M9 minimal medium containing the indicated concentrations of HOSCN and incubated at 37°C with shaking for 24 hours in a Tecan Sunrise plate reader, measuring A₆₀₀ every 30 minutes. Each graph shows the mean of four technical replicates.



SUPPLEMENTAL FIG S5 Ectopic expression of *bhsA* does not protect *E. coli* against HOSCN. *E. coli* MG1655 wild-type or MJG0047 (MG1655 $\Delta rclB$) containing the indicated pUC18-derived plasmids (p $rclB^+$ = pRCLB3; p $bhsA^+$ = pBHSA1) were inoculated into M9 minimal medium containing the indicated concentrations of HOSCN and incubated at 37°C with shaking for 24 hours in a Tecan Sunrise plate reader, measuring A₆₀₀ every 30 minutes. Each graph shows the mean of two technical replicates.



SUPPLEMENTAL FIG S6 Mutations in *ompC* and *ompF* protect *E. coli* against HOSCN stress. (Triplicates of the experiment shown in FIG 5.) *E. coli* MG1655 wild-type, MJG2411 (MG1655 $\Delta ompC$), MJG2412 (MG1655 $\Delta ompF$), and MJG2429 (MG1655 $\Delta ompC$ $\Delta ompF$:: kan^+) were inoculated into M9 minimal medium containing the indicated concentrations of HOSCN and incubated at 37°C with shaking for 24 hours in a Tecan Sunrise plate reader, measuring A₆₀₀ every 30 minutes. Each graph shows the mean of four technical replicates.

A 12% Bolt™ gels

B 8% Bolt™ gels

SUPPLEMENTAL FIG S7 HOSCN stress does not have major impacts on the abundance of OmpC, OmpF, or OmpA in *E. coli*. (Complete gel images from triplicates of the experiment shown in FIG 8.) *E. coli* MG1655 wild-type, MJG0047 (MG1655 $\Delta rclB$), MJG0013 (MG1655 $\Delta rclC::cat^+$), and MJG0901 (MG1655 $\Delta rclABC$) were grown at 37°C with shaking to A₆₀₀ = 0.3 in M9 minimal medium, then 200 μ M HOSCN was added to treatment samples. Cultures were incubated at 37°C with shaking to A₆₀₀ = 1.2 – 1.3, then outer membrane protein fractions were isolated and separated on (A) 12% or (B) 8% acrylamide BoltTM SDS-PAGE gels (Invitrogen) and visualized by Coomassie Blue staining.

SUPPLEMENTAL TABLE S1 Two-way ANOVA analysis of gene expression, protein abundance, and periplasmic oxidation data in FIGS 1, 4, 8, and 9, complete results. Two-way ANOVA was used to compare all treatments (GraphPad Prism 10). All CPM+1 values used to generate FIGS 1 and 4 (see SUPPLEMENTAL DATA SET 1) were log₁₀-transformed before statistical analysis.

pairwise alignment tool (1) was used to compare RclB to each of the other DUF1471 proteins in *E. coli* MG1655 (2)(see **FIG 6**), plus the structural homolog RcsF (see **FIG 7**). Note that YdgH contains three DUF1471 domains, each of which is indicated by its amino acid position within that protein and was compared to RclB separately.

Protein	% Identity	% Similarity	Score	function
RclB	100	100	378	hypothiocyanite resistance protein
YhcN	28	49	80	involved in hydrogen peroxide,
				cadmium, and acid stress response
McbA	31	52	76	modulates biofilm formation
YbiJ	28	43	69	unknown
BhsA	29	52	64	modulates outer membrane
				permeability in response to copper
				stress
YjfN	26	43	49	suicide activator of DegP protease,
				promotes OmpA degradation
YahO	21	41	45	involved in radiation resistance

YjfY	25	39	37	unknown
YdgH	19	28	36	unknown
(259-				
314)				
YdgH	20	29	32	unknown
(119-				
174)				
BsmA	25	40	28	lipoprotein involved in acid and
				peroxide stress resistance in biofilms
YdgH	23	35	27	unknown
(35-90)				
RcsF	18	30	17	lipoprotein that interacts with OmpA,
				OmpC, and OmpF to sense
				membrane damage

SUPPLEMENTAL REFERENCES

80

- Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, Tivey ARN, Lopez
 R, Butcher S. 2024. The EMBL-EBI Job Dispatcher sequence analysis tools
- framework in 2024. Nucleic Acids Res 52:W521-W525.
- 85 2. Karp PD, Paley S, Caspi R, Kothari A, Krummenacker M, Midford PE, Moore LR,
- Subhraveti P, Gama-Castro S, Tierrafria VH, Lara P, Muniz-Rascado L,
- Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Sun G, Ahn-Horst TA, Choi

- H, Covert MW, Collado-Vides J, Paulsen I. 2023. The EcoCyc Database (2023).
- 89 EcoSal Plus 11:eesp00022023.