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Abstract: Inhibition of fructose absorption may suppress adiposity and adiposity-related diseases
caused by fructose ingestion. Eucalyptus leaf extract (ELE) inhibits intestinal fructose absorption (but
not glucose absorption); however, its active compound has not yet been identified. Therefore, we
evaluated the inhibitory activity of ELE obtained from Eucalyptus globulus using an intestinal fructose
permeation assay with the human intestinal epithelial cell line Caco-2. The luminal sides of a cell
monolayer model cultured on membrane filters were exposed to fructose with or without the ELE.
Cellular fructose permeation was evaluated by measuring the fructose concentration in the medium
on the basolateral side. ELE inhibited 65% of fructose absorption at a final concentration of 1 mg/mL.
Oenothein B isolated from the ELE strongly inhibited fructose absorption; the inhibition rate was 63%
at a final concentration of 5 µg/mL. Oenothein B did not affect glucose absorption. In contrast, the
other major constituents (i.e., gallic acid and ellagic acid) showed little fructose-inhibitory activity. To
our knowledge, this is the first report that oenothein B in ELE strongly inhibits fructose absorption
in vitro. ELE containing oenothein B can prevent and ameliorate obesity and other diseases caused
by dietary fructose consumption.

Keywords: eucalyptus leaf extract; fructose absorption; oenothein B; polyphenol; hydrolyzable
tannins; ellagitannin; glucose transporter 5; Caco-2 cell; polyvinylpolypyrrolidone

1. Introduction

Fructose consumption has increased in the past five decades because of the use of
high-fructose corn syrups as sweeteners in beverages and processed foods [1,2]. Sucrose is
also ingested in large amounts, as it is traditionally used in many foods and beverages [3].
Excess fructose intake induces adiposity [1,2,4,5], fructation (a kind of glycation caused
by amino-carbonyl reactions with fructose) [5,6], and insulin resistance [2,5,7,8], which
can lead to the development of nonalcoholic fatty liver disease (NAFLD) [9,10], diabetes
mellitus [1,7], and hypertension [1,11]. Malik et al. have reported that consumption
of beverages sweetened with sugar and/or artificial sweeteners is positively related to
mortality [12]. The World Health Organization has suggested that the consumption of such
sugars should be reduced to less than 10% of the total energy intake but insists that it is
desirable to reduce it to within 5% (roughly 25 g (six teaspoons) per day) in a published
guideline for sugar intake [13].
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Fructose is more lipogenic than glucose in the liver because its metabolic pathway does
not include the step catalyzed by 6-phosphofructokinase, the main rate-controlling enzyme
in glycolysis; therefore, large amounts of ingested fructose can be rapidly metabolized
without metabolic regulation [14]. Fructose serves as the carbon source for both the glycerol
and acyl portions of triacylglycerol molecules, leading to de novo lipogenesis [2,5].

Fructose is passively incorporated from the luminal side of the intestine across mem-
branes by glucose transporter 5 (GLUT5), one of the facilitative GLUT family members [15].
GLUT5 is the sole fructose-specific transporter and does not transport glucose or galactose;
transapical transport of fructose in the intestine is mediated primarily via GLUT5 [11,15].
Furthermore, GLUT5 plays an initial role in the development of hypertension induced by
fructose consumption [11]. A clinical trial on isocaloric fructose restriction in diets demon-
strated that children with obesity showed a consistent decrease in de novo lipogenesis in
the liver within a short period. Subsequently, their hepatic and visceral fat levels were
improved [16]. In a similar study in obese children, glucose and lipid metabolism were
improved [17]. In a trial, diets of overweight adults with fatty liver were supplemented
with glucose or fructose daily. After 6 weeks, a significant decrease in the intrahepatic
lipid content was observed in the glucose group compared to the fructose group [18]. A
restriction of fructose intake in the diet for 24 weeks reduced waist circumference and
fasting blood glucose concentration in overweight and obese adults [19]. Therefore, in-
hibiting GLUT5 could be an important strategy for preventive medicine or for therapeutic
intervention for the foregoing diseases caused by excessive fructose ingestion.

The evergreen tree Eucalyptus globulus Labill (Myrtaceae), native to Tasmania, Aus-
tralia, is globally distributed. Eucalyptus leaves are used to prepare herbal tea in Europe [20]
and are traditionally used as a natural remedy for diabetes mellitus in South America and
Africa [21]. The extract of the leaves (eucalyptus leaf extract; ELE) has recently been used
as a functional food or in cosmetics because of its beneficial effects, such as antioxida-
tive [22,23], anticaries [24], and anti-skin-aging properties [25]. The safety of ELE was
reported by the Japanese Ministry of Health, Labor and Welfare based on the results of
several mutagenesis assays, mouse bone marrow micronucleus assays, and a 90-day re-
peated dose toxicity study [26]. We previously reported the safety assessment of oral ELE
administration for 4 weeks in adult men [27]. Furthermore, we reported that ELE inhibits
fructose absorption in the intestine and suppresses the accretions of visceral fat and hepatic
triacylglycerols induced by excessive fructose ingestion in rats [28]. This inhibitory effect on
intestinal fructose absorption has also been observed in human subjects [29]. However, the
inhibitory constituent of fructose absorption in ELE has not yet been identified. Therefore,
we aimed to identify the active constituents of ELE by performing an in vitro intestinal
fructose absorption assay using the human intestinal epithelial cell line Caco-2.

2. Results and Discussion
2.1. Inhibitory Activities of ELE on Fructose Absorption

Dietary fructose is incorporated into the intestinal tract through GLUT5 at the apical
side of the cells and transported to the portal vein via GLUT2 at the basolateral side [15,30].
Caco-2 cell line spontaneously differentiates into enterocytes, which possess various char-
acteristics of the small intestine, such as brush border membrane enzymes and nutrient
transporters, including GLUT5 [31]. The cell line has been used in various fructose transport
studies [32]. We examined the effects of ELE and its constituents on fructose permeation
across an intestinal epithelial cell monolayer model from the luminal side to the basolateral
side using Caco-2 cells to identify the active constituent of the extract. Before evaluating
the inhibitory effect of ELE on fructose absorption using Caco-2 cells, we confirmed that
GLUT5 regulates fructose absorption in this model; we verified that cytochalasin B [33], a
GLUT2 inhibitor, does not affect fructose absorption at a final concentration of 100 µmol/L
(the inhibitory rate on glucose absorption was 31%).
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ELE strongly inhibited fructose absorption at a final concentration of 1 mg/mL in
Caco-2 cells (Table 1). At this dose, ELE-treated cells did not show different morpho-
logical features, as confirmed by transepithelial/endothelial electrical resistance (TEER)
and microscopic analyses; before and after fructose permeation, the TEER values of the
blank and ELE (1 mg/mL) were retained by 91% and 81%, respectively. Many studies
have reported various polyphenols derived from edible plants with inhibitory activity
against fructose absorption [32,34–43]. We examined the effects of the ELE with reduced
polyphenolic substances. Polyvinylpolypyrrolidone (PVPP) has high affinity for polyphe-
nols, and, therefore, the removal of PVPP using centrifugation, following the treatment,
removes polyphenols from the extract [44]. PVPP treatment considerably reduced the
total polyphenol content and PVPP-treated ELE (yield, 26%) showed weak inhibition on
intestinal fructose absorption (Table 1), suggesting that polyphenols were the main active
constituents of the ELE.

Table 1. Total polyphenol content and inhibitory effects of ELE on fructose absorption.

Sample Total Polyphenols (%) Dose (mg/mL) Inhibition 1 (%)

ELE 30 1 65
PVPP-treated ELE 5 0.26 <20

1 Each value represents the mean of two experiments.

2.2. Identification of the Fructose Absorption Inhibitor in ELE

The profiles of the ELE constituents were analyzed using HPLC with a diode-array
detector (DAD). Figure 1a shows the three-dimensional chromatogram between 220 and
400 nm. Among the detected compounds, oenothein B (1), gallic acid (2), ellagic acid (3),
quercetin 3-O-β-D-glucuronide (4), and kaempferol 3-O-β-D-glucuronide (5) were identified
as the major constituents of ELE with a similar profile as that presented in a previous
report [23]. Figure 2 shows the chemical structures of the compounds 1–5. We evaluated
the inhibitory activity of these constituents on fructose absorption (Table 2). Among them,
compound 1 strongly inhibited fructose absorption. We also evaluated the effect of 1 on
glucose absorption, because ELE administration barely affected the postprandial increase
in blood glucose levels in vivo [28,29]. This constituent did not affect glucose absorption
(data not shown).

Compound 1 is a hydrolyzable tannin characterized by the presence of a glucopyranose
core that is esterified by polyphenolic acids, such as a hexahydroxydiphenoyl (HHDP)
unit and compound 2. Tannins, including compound 1, have diverse biological effects,
such as antioxidant, anti-inflammatory, antitumor, enzyme inhibitory, and antimicrobial
effects [45]. To our knowledge, compound 1 is the first to be identified as an inhibitor of
fructose absorption from hydrolyzable tannins.

Compounds 2 and 3, which are hydrolysates of hydrolyzable tannins, barely inhibited
fructose absorption. Compounds 4 and 5 also showed a similar trend. Satsu et al. have
reported that compound 2 and quercetin (aglycon of compound 4) did not inhibit fructose
incorporation into Caco-2 cells, whereas kaempferol (aglycon of compound 5) showed
a weak inhibition [41]. We also examined the inhibitory effect of quercetin on fructose
permeation and found little inhibition (less than 30%) at a dose of 50 µg/mL.

Gonçalves et al. stated that modulating intestinal fructose absorption via GLUT5
and/or GLUT2 might provide a novel pharmacologic strategy for diseases caused by
excessive fructose consumption [30]. Recent studies have shown that ingestion of fructose
beyond the fructose clearance capacity of the intestine leads to leakage of incorporated
fructose into the portal vein, thus forcing the liver to metabolize the excess fructose to
produce fat. When an appropriate amount of fructose is taken up by individuals, it
is converted to other substances by metabolic enzymes, such as ketohexokinase, in the
intestinal tract, and de novo lipogenesis in the liver is mitigated [46]. Restriction of fructose
intake improved lipid metabolism and obesity in certain dietary intervention trials [16–19].
Therefore, limiting fructose intake even slightly might be beneficial for people who consume
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excessive amounts of fructose. Many studies have reported that polyphenol intake reduces
the risk of diseases, such as obesity and type 2 diabetes mellitus. Loureiro et al. suggest
that inhibition of intestinal absorption of glucose and fructose is a potent mechanism that
could help manage these diseases [40]. Although the inhibitory effects of compound 1 on
intestinal fructose absorption need to be confirmed in in vivo experiments, ELE containing
1 is expected to have preventive and inhibitory effects on fructose-derived obesity and
related diseases.
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Figure 2. Chemical structures of the major constituents of the ELE.

Table 2. Inhibitory effect of constituents of eucalyptus leaf extract on fructose absorption.

Sample Dose (µg/mL) Inhibition 1 (%)

Oenothein B (1) 5 63
Gallic acid (2) 50 <20
Ellagic acid (3) 50 <30

Quercetin 3-O-β-D-glucuronide (4) 50 <30
Kaempferol 3-O-β-D-glucuronide (5) 50 <30

1 Each value represents the mean of two experiments.

We previously reported that compound 1 is a major constituent and a significant
chemical marker of the E. globulus leaf; it is a rare natural product and can be detected
easily without interference from other peaks on the ELE chromatogram [23]. We considered
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that compound 1 may be the main constituent of the ELE possessing inhibitory activity for
fructose absorption.

Next, we attempted to develop a quantitative analysis method for compound 1. The
peak for compound 1 appeared almost independently in the chromatogram of the ELE
recorded at 270 nm (Figure 1b), although a small contamination peak was observed around
the retention time of 7.5 min. We isolated compound 1 as an analytical standard from
ELE using preparative methods described previously [23]. The peak for compound 1 was
identified using HPLC coupled to electrospray ionization mass spectrometry (ESI-MS).
The peak for compound 1 appeared around 7.24 min in the chromatograms of the ELE
(Figure 3a) and the isolated compound 1 (Figure 3b). The MS/MS fragmentations of the
peaks that appeared around 7.24 min also showed almost the same patterns upon the
comparison of the following ions: [M-2H]2− at m/z 783.00 as a precursor ion and product
ions at m/z 765.00, 300.85, and 275.00 [47,48] between the ELE (Figure 3c) and isolated
compound 1 (Figure 3d).
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Figure 3. Comparisons of the UV chromatograms and MS/MS profiles of ELE and the purified
oenothein B (1). (a,c), ELE; (b,d), purified compound 1. (a,b) show HPLC chromatograms recorded at
270 nm. (c,d) show MS/MS profiles in the negative ion mode at m/z 765.00 (black), 300.85 (blue), and
275.00 (pink).

Baert et al. [47] reported the UV calibration curve of 1 with linearity for concentra-
tions ranging from 0.3 to 150 µg/mL (R2 = 0.9984) and a limit of quantitation (LOQ) of
0.88 µg/mL. However, solutions of the isolated substance showed large variabilities in
the low-concentration group (<10 µg/mL). Although we speculate that 1 in high-purity
and low-concentration solutions is nonspecifically adsorbed onto the surfaces of the ex-
perimental tubes in a manner similar to the adsorption of unstable peptides [49], further
research is necessary in this regard. In the future, we may establish a validated method for
the quantitative analysis of ELE.
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3. Materials and Methods
3.1. Materials

The leaves of E. globulus, used as the test material, were obtained from K. Kobayashi &
Co. (Kobe, Japan). The extract of 100 g of dried leaves was obtained using 1 kg of ethanol–
water (1:2, v/v) under reflux for 2 h. The obtained extract was filtered, evaporated to dryness
in vacuo, and used as ELE throughout the experiments. The yield was approximately 20%
of the leaves. HPLC- and LC/MS-grade solvents were purchased from Nacalai Tesque,
Inc. (Kyoto, Japan). Compounds (Figure 2; oenothein B (1), quercetin 3-O-β-D-glucuronide
(4), and kaempferol 3-O-β-D-glucuronide (5)) used as test samples in the sugar absorption
assays were isolated from ELE [23]; cytochalasin B and gallic acid (2) were purchased
from Fujifilm Wako Pure Chemical Co. (Osaka, Japan) and ellagic acid (3) from Sigma-
Aldrich Japan (Tokyo, Japan). Other reagents mentioned elsewhere in the text with the
manufacturer’s name not specified were purchased from Nacalai Tesque, Inc. (Kyoto,
Japan) or Fujifilm Wako Pure Chemical Co. (Osaka, Japan).

3.2. Cells

The human intestinal epithelial cell line Caco-2 was obtained from Dainippon Sum-
itomo Pharma (Osaka, Japan). The cells were cultured according to a previous method
(described in Section 27.5.4 of that report [50]). BD Falcon cell culture inserts and 6-well
cluster plates (BD Biosciences, Franklin Lakes, NJ, USA; Catalogue No. 353090) were
used for cultivation of Caco-2 cells and the fructose absorption assay. In brief, subcul-
tured cells were allowed to reach confluence in Dulbecco’s modified Eagle’s medium
(DMEM; Sigma-Aldrich Japan, Tokyo, Japan; Catalogue No. D5796) containing 10% fetal
calf serum (Biowest, Nuaillé, France) and 1% nonessential amino acids (Sigma-Aldrich,
Tokyo, Japan; Catalogue No. M7145), and seeded on the inside of the insert at a density
of 2 × 105 cells/insert. The DMEM was changed both apically (inside the insert) and
basolaterally (the plate) every 3–4 days. Cells were allowed to differentiate for 3 weeks.

3.3. Measurement of Fructose and Glucose Absorption Inhibitory Activity

After confirming the purity to be >95% by reversed-phase HPLC, the isolated com-
pounds 1, 4, and 5 were used for subsequent experiments. Each sample solution was
prepared by dissolution of test sample in 10% dimethyl sulfoxide.

The fructose absorption assay was conducted according to a previous method (de-
scribed in Section 27.5.4 [50]). Briefly, both the inside and outside of the inserts were
washed with 1 mL of phosphate-buffered saline without magnesium and calcium (pH 7.4).
Dulbecco’s phosphate-buffered saline (1 mL; pH 7.4; Gibco, Langley, OK, USA; catalog no.
21300-025), which is glucose-free, was used as a medium for the absorption experiment,
and was added to the plate and the inside of the insert. The cells were incubated for 30 min
at 37 ◦C in a humidified incubator containing 5% CO2. Monolayer formation by Caco-2
cells was confirmed by measuring TEER of the medium between the plate and in the inside
of the insert using the Millicell-ERS Voltohmmeter (Millipore, Bedford, MA, USA). Next,
10 µL of sample solution was added to the medium on the inside of the insert, followed by
incubation for 5 min at 37 ◦C in a humidified incubator containing 5% CO2. Subsequently,
10 µL of 100 mM fructose solution (final concentration, 1 mM) was added to the medium
on the inside of the insert, and the cells were incubated for an additional 3 h at 37 ◦C at
the same conditions. The TEER was measured again, and the medium in the plate was
collected and stored at −20◦C in a sterile tube. The fructose concentration in the medium
was analyzed using a previously described fructose-dehydrogenase-based method [28,50].
To examine the inhibitory effect of the sample on glucose absorption, we added 100 mM
glucose, instead of fructose, solution to the medium in the inside of the insert, after 10 µL
of the sample solution was added and preincubated for 5 min at 37 ◦C in a humidified
incubator containing 5% CO2. The plates were incubated for 3 h under the same conditions
as those of the fructose absorption assay. The glucose concentration (final concentration,
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1 mM) in the medium was analyzed using the Glucose CII Test Wako kit (Fujifilm Wako
Pure Chemical Co., Osaka, Japan).

3.4. Treatment of ELE with PVPP

An ELE (1 g) aliquot was mixed with 10 g PVPP (Polyclar VT; ISP Japan, Tokyo,
Japan) in 30% ethanol (v/v). This mixture was stirred at room temperature (25 ◦C) for 1 h.
Subsequently, the mixture was centrifuged at 1000× g for 15 min at 25 ◦C and filtered. A
PVPP-treated ELE was obtained by concentration in vacuo and lyophilization of the filtrate
(yield, 26%).

3.5. Measurement of Total Polyphenol Content

The total polyphenol content of ELE and PVPP-treated ELE was measured in terms of
gallic acid equivalents according to a previously described method [51] with modifications.
Test samples and gallic acid were dissolved in purified water and sonicated for 5 min.
Anhydrous sodium carbonate was used for preparing 20% Na2CO3 solution (w/v). Sample
solution (500 µL) was mixed with 500 µL of Phenol Reagent Solution (acid degree, 1.8 N;
Nacalai Tesque, Inc., Kyoto, Japan), and 1.5 mL of 20% Na2CO3 solution was added
immediately. After vortexing, each solution was allowed to stand at room temperature
(25 ◦C) for 20 min, after which the absorbance was respectively measured at 720 nm.

3.6. HPLC-DAD-ESI-MS Analysis of ELE

The samples were dissolved in a water/methanol (50:50; v/v) solution and filtered
through a TORAST Disc GLCTD-HPTFE1322 hydrophilic PTFE membrane filter (pore size,
0.22 µm; Shimadzu GLC Ltd., Kyoto, Japan). The filtrate was added to a glass vial (TORAST-
H Glass Vial; Shimadzu GLC Ltd., Kyoto, Japan) and set on a vial tray in the autosampler at
4 ◦C. ELE analysis was conducted using Shimadzu Nexera X2 (Shimadzu Co., Kyoto, Japan)
equipped with SPD-M30A (Shimadzu Co., Kyoto, Japan) as DAD according to previously
reported methods [23,52] with slight modifications. The conditions of LC using a Cosmosil
5C18-PAQ packed column (Nacalai Tesque, Inc., Kyoto, Japan; 5 µm, 150 mm × 2.0 mm
i.d.) were as follows: column temperature, 40 ◦C; flow rate, 0.7 mL/min; and injection
volume, 3 µL. UV spectra were recorded over a range of 220–350 nm and chromatograms
were acquired at 270 nm. The time programs of the mobile phase were conducted with a
linear gradient in reversed-phase mode using a water/formic acid (1000:1; v/v) solution as
solvent A and acetonitrile as solvent B. The gradient program was 0–16% B in A in 9 min,
16–45% B in A in 11 min, 45–95% B in A in 1 min, 95% B in A for 2 min, and 95–100% B in A
in 1 min.

The identification of compound 1 was conducted according to previously reported
methods [47,48]. The mass spectroscopy equipment LCMS-8050 (Shimadzu Co., Kyoto,
Japan) was connected to Shimadzu Nexera X2 following DAD in series. The LC eluate
was introduced directly into the ESI interface without splitting. ESI-MS was operated
in the negative ion mode using Ar as the collision gas at 350 kPa with the following
settings: probe voltage, −2.5 kV; nebulizing gas (N2) flow, 3.00 L/min; drying gas (N2)
flow rate, 10 µL/min; curved desolvation line voltage, default values; curved desolvation
line temperature, 200 ◦C; heating gas (N2) flow rate, 10 L/min; block heater temperature,
450 ◦C; interface temperature, 400 ◦C; and analysis mode, multiple reaction monitoring.
The identification of 1 (m/z 783.00) representing [M-2H]2− was confirmed by comparing the
observed molecular ions and their retention times. The product ions m/z 765.00 (collision
energy, 23 V), 300.85 (collision energy, 43 V), and 275.00 (collision energy, 39 V) obtained
from m/z 783.00 as a precursor ion were also analyzed for the identification.

4. Conclusions

Taken together, the findings of this study showed that oenothein B (1), a major con-
stituent and a significant marker characteristic to E. globulus leaves, is an active constituent
of the ELE and inhibits fructose absorption in intestinal cells, as observed during an in vitro
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intestinal permeability model assay. To the best of our knowledge, this is the first study to
report that oenothein B in ELE strongly inhibits intestinal fructose absorption. ELE can be
manufactured stably and inexpensively, owing to the ease of availability of the E. globu-
lus leaves as the ELE source since this species is distributed worldwide. ELE containing
oenothein B is expected to prevent and ameliorate obesity and diseases such as NAFLD,
diabetes mellitus, and hypertension that are caused by the dietary consumption of fructose.
However, the amount of oenothein B in ELE could not be assessed. In the future, we wish
to validate a method for the quantitative analysis of ELE.
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