
foods

Article

Dynamic Modeling of the Impact of Temperature Changes on
CO2 Production during Milk Fermentation in Batch Bioreactors

Jožef Ritonja 1,* , Andreja Goršek 2, Darja Pečar 2 , Tatjana Petek 1 and Boštjan Polajžer 1
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Abstract: Knowledge of the mathematical models of the fermentation processes is indispensable
for their simulation and optimization and for the design and synthesis of the applicable control
systems. The paper focuses on determining a dynamic mathematical model of the milk fermentation
process taking place in a batch bioreactor. Models in the literature describe milk fermentation in batch
bioreactors as an autonomous system. They do not enable the analysis of the effect of temperature
changes on the metabolism during fermentation. In the presented extensive multidisciplinary study,
we have developed a new mathematical model that considers the impact of temperature changes on
the dynamics of the CO2 produced during fermentation in the batch bioreactor. Based on laboratory
tests and theoretical analysis, the appropriate structure of the temperature-considered dynamic model
was first determined. Next, the model parameters of the fermentation process in the laboratory
bioreactor were identified by means of particle swarm optimization. Finally, the experiments with the
laboratory batch bioreactor were compared with the simulations to verify the derived mathematical
model. The developed model proved to be very suitable for simulations, and, above all, it enables
the design and synthesis of a control system for batch bioreactors.

Keywords: bioprocess engineering; fermentation process; batch bioreactors; dynamical non-linear
mathematical model; model identification; particle swarm optimization; simulation

1. Introduction
1.1. Basic Terms and Topic Relevance

Biotechnology is an engineering and science discipline with enormous importance
and potential [1]. The world biotechnology market was estimated at USD 369.62 billion
in 2016 [2] and USD 414.50 billion in 2017 [3]. For comparison, it was four times larger
than the worldwide production of electric motors (USD 96.97 billion in 2017) [4]. The
global biotechnology market is projected to reach USD 727.1 billion by 2025 (the global
electric motor market is estimated to reach USD 136.5 billion by 2025). Additionally, in
many cases, waste from agriculture or renewable raw material is used as source material in
the industrial applications of biotechnology. This is the reason that biotechnology is also
essential—to lower dependence on fossil fuels and to reduce greenhouse gas emissions.
It is expected that the usage of biotechnology for industrial systems can reduce energy
consumption by 20%, water consumption by 75%, and carbon dioxide pollution by 50% [5].

Bioprocess engineering is a biotechnology sub-discipline that is responsible for trans-
ferring the discoveries of science results into practical processes, systems, or products
that can serve the needs of society [6]. Although the production of biopharmaceuticals
is the most visible, bioprocess engineering also has a dominant position in the existing
fermentation industries responsible for ethanol production (used for beverages, fuel), lactic
acid (for milk products), carbon dioxide, hydrogen gas, butanediol (in pharmaceuticals
and cosmetics applications), propanediol (for production of biopolymers), succinic acid
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(in the chemical, pharmaceutical, food and agricultural industries), and aspartic acid (for
production of polymers) [7].

Industrial fermentation is the primary bioengineering process. It represents a planned
use of microorganisms (bacteria, yeasts, molds, or algae) or cells (animal or plant cells) to
make products advantageous to humans [8].

Industrial fermentation is executed in bioreactors. Bioreactors are classified based on
their construction and, consequently, their mode of operation. There are three types of
bioreactor: batch bioreactors, fed-batch bioreactors, and continuous bioreactors [9]. The
characteristic of batch bioreactors is that, during the implemented biological process, the
bioreactor’s content has no contact with external substances or organisms. That means it is
closed during the operation, and no inlet or outlet from the bioreactor is possible. Such an
operation mode allows non-complicated construction of batch bioreactors, which is seen
in low production costs and simple maintenance. This is the reason for the prevalence
of batch bioreactors. In fed-batch bioreactors, it is possible to add substances during the
execution of the fermentation process. All products wait in the bioreactor till the conclusion
of the biological process. Continuous bioreactors (or flow bioreactors) enable the inlet and
outlet of substances or organisms into/from the reactor as a flow.

1.2. Problem Identification and Aim of the Study

A simple mode of operation and an associated undemanding and inexpensive con-
struction and maintenance represent the great advantage of batch bioreactors. However,
their great disadvantage is that we cannot add or remove external substances during the
operation, and consequently, we cannot control the dynamics of the metabolism. The
microorganism, substrate, and fermentation product concentrations change during the
fermentation and, in the current batch bioreactors, depend only on the initial concen-
trations. Although it is not possible to add or remove individual substances during the
operation of batch bioreactors, we can change the temperature during the execution of the
fermentation in the modern batch bioreactor. This fact led us to the assumption that we
could influence the metabolism during the fermentation process in batch bioreactors by
changing the inner temperature. To analyze the influence of the changing temperature
and to develop a control system that would ensure that the metabolism will follow the
reference, we need an appropriate mathematical model. The development of the dynamic
mathematical model of milk fermentation in a batch bioreactor, which would describe the
influence of the temperature changes on CO2 production, was the main goal of our study.

1.3. Related Works and Literature Review

Over recent decades, enormous development has occurred in the fields of Design,
Synthesis, and Implementation of Automatic Control for Bioprocess Engineering. A thor-
ough review of the relevant literature in the field of Control of Fermentation Processes
in Bioreactors is performed in [10]. Interestingly, however, in most studies in the field of
Control of Fermentation Processes, a fundamental kinetic mathematical model [11] is still
used, both for theoretical and numerical analysis [12–14]. The derivation of a parametric
mathematical model of the fermentation process, which also describes the influence of
temperature changes on the time course of concentrations of microorganisms, substrate,
and fermentation product, is a relatively new field. Although there are many studies
showing the influence of temperature on the fermentation processes of different species,
these are limited mainly to the observation and numerical evaluation of the influence of
different (constant) temperatures on the course of the fermentation process and do not
result in deriving a parametric mathematical model [15–17].

Mathematical modeling of the fermentation process in bioreactors is highly current,
as shown by numerous new publications. Reference [18] shows the implementation of the
computational fluid dynamics model of a bioreactor. In [19], the stability analysis of a fun-
damental kinetic mathematical model of a continuous bioreactor is shown. Reference [20]
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shows how mathematical modeling can be usefully applied in designing and optimizing
bioreactors.

The authors of this paper started working on a parametric dynamical mathematical
model that describes the impact of temperature variation on the fermentation dynamics
in the year 2018. The influence of temperature change on fermentation dynamics was
experimentally observed and described first in [21]. In [22], the authors introduce a new
supplementary transfer function that considers the impact of temperature variation on
a bioprocess. A conventional control system was developed, and a tuning method was
proposed on the basis of this model. In [23], the derived mathematical model was used for
the optimization of the control system. In all cases, a mathematical model was derived for
probiotic beverages’ fermentation.

The mathematical model presented in [21–23] is a “hybrid” mathematical model con-
sisting of an autonomous non-linear model and a non-autonomous linear model connected
in parallel. The non-linear model describes the influence of initial conditions on the course
of fermentation variables, and the linear model is used to model the impact of temperature
changes on their responses. The derived model proved to be a very accurate description of
what happened during the fermentation process. This model allows efficient analysis of
the fermentation process, but it is demanding to design and synthesize control systems
due to its complicated structure. In order to increase the compactness of the model and,
thus, increase the suitability of the model for the needs of design and synthesis of control
systems, we developed a temperature-considered dynamic mathematical model of the milk
fermentation process, which is uniform and does not consist of two parallel sub-models.
The derived model is presented in this article.

1.4. Paper Contributions

The premise that the control of the metabolism during the fermentation is possible
by changing the temperature in the bioreactor leads to the conclusion that, also for batch
bioreactors, we can develop a control system, which will control the fermentation process
during the operation. The paper’s first contribution is the confirmation of this premise
by experiments on a laboratory batch bioreactor. The logical continuation of this finding
is the intention to determine the mathematical model that will allow the design and
synthesis of the control system. The paper’s second contribution is the derivation of the
appropriate mathematical model. The developed model is required to accurately describe
the phenomenon during the fermentation process, and, at the same time, the model must
be structurally suitable for the development of the control system.

2. Materials and Methods

In our study, we focused on the dynamic modeling of the fermentation process in batch
bioreactors. Therefore, the subsequent chapters describe in more detail the considered
fermentation process and the batch bioreactor, along with the necessary equipment for
measurements.

2.1. Fermentation Process

The presented study considers milk fermentation with kefir grains. Traditionally,
kefir is produced by inoculating kefir grains, which are a mixture of proteins, polysac-
charides, mesophilic, homofermentative, and heterofermentative lactic acid streptococci,
thermophilic and mesophilic lactobacilli, acetic acid bacteria, and yeast. Fermentation of
the milk by the inoculum proceeds for ca. 24 h, during which time homofermentative
lactic acid streptococci grow rapidly, initially causing a drop in pH. This low pH favors the
growth of lactobacilli but causes the streptococci number to decline. The presence of yeasts
in the mixture, together with fermentation temperature (21–23 ◦C), encourages the growth
of aroma-producing heterofermentative streptococci. As fermentation proceeds, the growth
of lactic acid bacteria is favored over the growth of yeasts and acetic acid bacteria.
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Before the fermentation, kefir grains (40 g) were activated for 5 successive days,
washed daily with cold water and put into 500 mL of fresh pasteurized whole fat milk
at room temperature. To start the fermentation, 500 mL of fresh pasteurized whole fat
milk was preheated in the fermenter to the desired temperature and then inoculated with
40 g of active kefir grains. For the presented fermentation, the full activated (5 days
activation) kefir grains were used. Different fermentation processes were obtained by
means of differently activated kefir grains.

During the fermentation, carbon dioxide, acetic acid, diacetyl, acetaldehyde, ethyl
alcohol, and several other substances are formed, and these give the products their charac-
teristic fresh taste and aroma.

Milk fermentation with kefir grains propagation is an inherently very complex process
because of the specific nature of the microbial metabolism, as well as the non-linearity of
its kinetics. Therefore, monitoring and control are extremely important to develop models
that are able to provide an accurate description of the progress of the process.

2.2. Laboratory Equipment

We needed an appropriate laboratory system to determine how the temperature
changes affect the time responses of the substance concentrations of the fermentation
process. For this purpose, a laboratory system was built, which enabled controlled temper-
ature changes in the bioreactor and dynamic measurement of concentrations of substances
during the fermentation process. The laboratory system consists of a batch bioreactor with
a heating/cooling thermal system, a measurement system, and a data acquisition system.
All parts are described below.

2.2.1. Batch Bioreactor

The fermentation process was primarily analyzed in the computer-controlled labora-
tory batch bioreactor RC1e from Mettler Toledo (Greifensee, Switzerland). The laboratory
bioreactor has additional equipment for the identification of model parameters. The studied
batch bioreactor is described in detail in [10,22,23].

2.2.2. Heating/Cooling System

For the identification of the parameters of the mathematical model, an integrated
heating/cooling system was used, which controls the temperature of the bioreactor’s
mixture. Silicone oil represents the heat transfer agent. The oil is circulated through the
bioreactor’s double jacket in a closed circulation system. The temperature control system
keeps the temperature of the bioreactor’s contents at the reference value [23]. Compared
to the dynamics of the fermentation process, the response of the heating/cooling system
is very fast. The identified time constant of the heating/cooling system is approximately
6 min.

2.2.3. Dissolved Carbon Dioxide Measurement System

In the studied fermentation process, the carbon dioxide (CO2) dissolved in the biore-
actor’s medium is the fermentation product. CO2 is a product of the cellular metabolism of
microorganisms. Assuming a growth medium with a sufficient carbon source, the mea-
sured CO2 concentration profile could also be the indicator of the fermentation progress.
Thus, dissolved CO2 was chosen as the output and identified as an observable variable.
The distribution of the CO2 in the bioreactor medium is very homogeneous. The sensors
for the measurement of CO2 concentration are reliable and accurate. The multi-parameter
measuring device SevenMulti from Mettler Toledo with modular expansion possibilities
was used as a basic unit. For the monitoring of dissolved CO2 concentration in liquid media,
the SevenMulti apparatus was connected to the ISE51B ion-selective electrode. Electrode
potential response to CO2 concentration is, in a semilogarithmic scale, a straight line over
two decades of the concentration (5·10−4 g/L to 2·10−2 g/L). A change in temperature
causes the electrode response to shift and change slope (temperature variation 5 ◦C change,
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slope approx. 1.7%). The detailed principles of the measurement system are described
in [10].

2.2.4. Data Acquisition Equipment

For the connection of the SevenMulti basic device and the ion-selective electrode
sensor, an expansion module was added to the basic unit. The analog 1st order low pass
filter for the elimination of sensor noise is integrated into the expansion module. For
the transfer of measured signals from the SevenMulti basic unit to PC, the basic device
was equipped with a USB communication module. For the transfer of the measured
temperature signal and the reference temperature signal from the heating/cooling system
to PC, a dSpace 1103 PPC controller board was utilized. The controller is equipped with
16 bit A/D and D/A converters as well as serial and CAN interfaces [10].

For the comprehensive measurement of several quantities over a long time period and
for the necessary signal processing, software LabX direct pH 2.3, Mettler Toledo (Greifensee,
Switzerland) was installed on PC. This is professional equipment used for data logging
and data analysis. The selected sampling time was 10 min. This was sufficient due to the
slow dynamics of the fermentation process. During the performing the experiments, the
sampling time was changed and adjusted to the dynamics of the measured signal. Mea-
sured data was saved into Excel, Microsoft Office 365 (USA) documents, transferred into
MATLAB R2021a, MathWorks (USA), and processed using MATLAB with its Optimization
toolbox functions [10]. A block diagram of the batch bioreactor with measurement system
is displayed in Figure 1.
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2.3. Fundamental Mathematical Model of the Fermentation Process in Batch Bioreactor

Fermentation is a process whereby microorganisms induce a substrate to break down
into a fermentation product. Microorganisms, substrates, and fermentation products are
present in all fermentation.

The fermentation process is a complex non-linear system with mainly unknown struc-
tures and unknown time-varying parameters. In the fermentation process, a multitude of
biochemical reactions occurs, representing the kinetics inside a microorganism, in addition
to physical transfer rates [9]. The adaptation of the microorganisms to the environment
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through mutations represents an additional challenge. These are the reasons for the ab-
sence of mathematical models, useful from an engineering viewpoint, which would take
into account the numerous factors which influence the growth of microorganisms and the
execution of the fermentation process.

However, we can find in the literature various mathematical models of different
complexity describing the dynamics of fermentation processes in batch bioreactors. These
models are mostly based on the mass balances of substances that occur in fermentation. A
fundamental kinetic model is written in the state-space form of 3rd order (1)–(3) [10,23],

.
x1(t) =

µm

(
1 − 1

Pi
x3(t)

)
x2(t)
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Si
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2 x1(t) (1)
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)
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Si
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2 + β

x1(t) (3)

where the state space variables and the model parameters are:

x1(t)—the microorganisms’ concentration (g/L),
x2(t)—the substrate’s concentration (g/L),
x3(t)—the fermentation product’s concentration (g/L)
µm—the maximum microorganisms’ growth rate (h−1),
Pi—the product inhibition constant (g/L),
Sm—the substrate saturation constant (g/L),
Si—the substrate inhibition constant (g/L),
A—the parameter that describes the relation between product yield and microorganism
growth, and
β—the growth independent constant (h−1).

The mathematical model presented in (1)–(3) is autonomous. The model has no input
variable. This corresponds to the actual realization of batch bioreactors because they do
not have an input quantity to be used for control of the fermentation process. All three
substances of the bioprocess are placed in the bioreactor at the start of the fermentation.
During the fermentation, it is not possible to add to or remove any of them. The dynamics
of the fermentation process depend only on the quantity and quality of substances used
and the type of batch bioreactor. Accordingly, the transients of the model are obtained as
the response to the initial values of the model variables and depend on the parameters of
the mathematical model.

During the fermentation process, the quantity of the microorganisms and product
increase, and the amount of substrate decreases. The quantities of substances are measured
and applied in the model as concentrations.

In the case of an autonomous fermentation process (the fermentation process that
depends only on initial concentrations, where the temperature is constant during the whole
fermentation process), all parameters of the fundamental kinetic mathematical model are
constant throughout the entire duration of the fermentation process.

The presented fundamental kinetic mathematical model of the fermentation process en-
ables simple and efficient simulation and analysis of the time courses of the concentrations
of microorganisms, substrate, and product in the case of different initial concentrations.
The main disadvantage of this model is its inability to consider the effect of temperature
change on the fermentation process, which is necessary for control system purposes.



Foods 2021, 10, 1809 7 of 20

This model does not allow the evaluation of the impact of temperature changes on the
time courses of concentrations of individual substances during the fermentation process,
which is necessary for the design and synthesis of suitable control systems. Therefore, it is
necessary to derive a new mathematical model of the fermentation process in the batch
bioreactor, which will evaluate the influence of temperature change.

3. Results
3.1. Experimental Analysis of the Fermentation Process
3.1.1. Responses of the Autonomous Process

First, an analysis was carried out of how the diverse constant temperatures affect
the time course of the CO2 production. The same initial values for all substances of
the fermentation process were used in all experiments. The bioreactor has a constant
temperature during the whole fermentation process. The obtained results were expected,
meaning that a more responsive fermentation course and a greater end amount of the
CO2 concentration were achieved at a higher constant temperature. The equal findings
were obtained in experiments with different fermentation processes. Figure 2 shows the
measured time courses of the CO2 for the various constant temperatures of the studied
bioreactor.
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3.1.2. Responses of the Non-Autonomous Process

In the second phase, the impact of the temperature changes during the fermentation
was studied. In this phase, many tests were also carried out (different amplitudes, slopes,
signs, and different moments of temperature change). It was visible from all experiments
that an increase in the temperature speeds up the fermentation, and a temperature decrease
decelerates it. The influence of the step change of the temperature on the time course of
the CO2 concentration is presented in Figure 3. The figure shows the transient response of
the CO2 concentration when temperature changes from 22 ◦C to 27 ◦C. The time course of
the CO2 for the constant temperature (T = 22 ◦C) during the entire fermentation was also
added to this graph.
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3.2. Analysis of Correlation between Parameters and Responses of Mathematical Model

The aim of the paper was to find a non-autonomous mathematical model whose
input variable would be the desired temperature of the heating/cooling system, and the
model’s state variables would be the concentrations of microorganisms, substrate, and
fermentation product. The starting point for the development of such a model was the idea
that the temperature in the bioreactor affects the parameters of the associated mathematical
model. As a basis for the development of a new mathematical model, the presented
fundamental kinetic mathematical model (1–3) was used. The correlation between the
fermentation process and the parameters of the fundamental kinetic mathematical model
(1–3) was determined using systematic and extensive simulations. It has been shown that
it is significant to analyze the impact of the model’s parameters on the time course of the
CO2 concentration of the fermentation product (variable x3(t) in (1)–(3)). Figures 4–9 show
the influence of all mathematical model parameters (1)–(3) on the time course of the CO2
concentration, separately. To obtain these results, modified values of the parameters of
the mathematical model were presumed. Constant values of the model’s parameters were
used during the particular simulation of the fermentation process. Results are shown in
the following Figures:

• the impact of the maximum microorganisms’ growth rate µm on the CO2 concentration
x3(t) is shown in Figure 4,

• the impact of the product inhibition constant Pi on the CO2 concentration x3(t) is
shown in Figure 5,

• the impact of the substrate saturation constant Sm on the CO2 concentration x3(t) is
shown in Figure 6,

• the impact of the substrate inhibition constant Si on the CO2 concentration x3(t) is
shown in Figure 7,

• the impact of the parameter of the product yield in consequence of microorganism
growth α on the CO2 concentration x3(t) is shown in Figure 8,

• the impact of the independent product yield β on the CO2 concentration x3(t) is shown
in Figure 9.
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The goal of the present work was to find the connection between the parameters of
the mathematical model and the dynamics of the fermentation process. We were interested
in discovering which parameter of the mathematical model had a high impact on the
fermentation process dynamics. Based on mathematical models of different fermentation
processes in different batch bioreactors, we carried out an extensive systematic numerical
analysis. The analyzed fermentation processes have similar impacts of parameter changes
on fermentation process dynamics. The main conclusions of all simulations were:

• the impact of the product inhibition constant Pi and the substrate inhibition constant
Si on the fermentation process transient and steady-state is very small,

• the substrate saturation constant Sm has a very small impact on the fermentation
process steady-state and a small impact on the fermentation process transient,

• the parameter that describes the product yield that is independent of the microorgan-
isms’ growth β has a very small impact on the fermentation process transient and a
small impact on the fermentation process steady state,

• the maximum microorganisms’ growth rate µm has a significant impact on the fermen-
tation process transient and very small impact on the fermentation process steady-
state,

• the parameter that describes the relation between product yield and microorganisms’
growth α has a significant impact on the fermentation process steady-state and very
small impact on the fermentation process transient.

Determination of parameters that have an impact on the dynamics and statics of
the fermentation process is also possible using sensitivity analysis [24–26]. Sensitivity
analysis allocates model uncertainty to the various sources of uncertainty, facilitating the
targeted reduction of output uncertainty. Sensitivity analysis methods have provided
numerous interesting results in a wide variety of different applications. Its advantage is
visible especially in systems with a large number of parameters.

3.3. Temperature-Considered Model of the Fermentation Process in Batch Bioreactor

From the comparison of the experimental and simulation results, we can see that the
temperature changes have a similar effect on the experimentally obtained courses of the
fermentation product (Figure 2) as changing the parameters µm and α on the numerically
calculated courses (Figures 4 and 8). Based on the results in Sections 3.1 and 3.2, we can
conclude that the temperature change significantly affects parameters µm and α, while
it does not have a large effect on other parameters. It can be seen from Figure 4 that the
maximum microorganisms’ growth rate µm affects the fermentation speed but does not
affect the steady-state value of the fermentation product achieved at the end of fermentation.
In contrast, the parameter α affects the steady-state value of the fermentation product and
does not significantly affect the transient phenomenon, as shown in Figure 8.

This means that in the case of variable temperature in the bioreactor, the parameters
µm and α will no longer be constant, but their values will change according to the tem-
perature in the bioreactor. Therefore, we added a differential equation to the fundamental
mathematical model of the fermentation process, with which we calculate the temperature
in the batch bioreactor. The temperature in the bioreactor is described by a new variable
x4(t). Instead of constant parameters µm and α, we introduce temperature-dependent pa-
rameters µmϑ(t) and αϑ(t). In [27], it was shown that there is a static relationship between
temperature and the parameters of the mathematical model. Since the temperature during
the fermentation varies in a relatively small range (too high or too low temperatures can
damage the microorganisms), we used a linear dependence between temperature deviation
and model parameters deviation. Consequently, we expressed temperature-dependent
parameters µmϑ(t) and α ϑ(t) with following static functions:

µmϑ(t) = µm
(
1 + kµm(x4(t)− ϑ0)

)
(4)

αϑ(t) = α (1 + kα(x4(t)− ϑ0)) (5)
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where the new parameters in the linear static equations are:

x4(t)—the temperature in the bioreactor (◦C),
ϑ0—the temperature of the bioreactor’s contents at the beginning of the fermentation
process (◦C), where normally ϑ0 is equal to the outside temperature,
kµm—the coefficient that outlined the effect of the temperature changing on the maxi-
mum microorganisms’ growth rate µm (◦C)−1,
kα—the coefficient that describes the impact of the temperature change on the parameter
that describes the relation between product yield and microorganism growth (◦C)−1,
µmϑ(t)—the temperature-dependent maximum microorganisms’ growth rate (h−1), and
αϑ(t)—the temperature-dependent parameter which expresses the connection between
product yield and microorganism growth (h−1).

The new temperature-considered model was obtained by supplementing the fun-
damental model with an additional differential equation for calculating the temperature
in the bioreactor and by replacing the constant parameters µm and α with temperature-
dependent ones, as described by the Equations (4) and (5). The derived mathematical
model is expressed with the following equations:

.
x1(t) =

µm
(
1 + kµm(x4(t)− ϑ0)

)(
1 − 1

Pi
x3(t)

)
x2(t)

Sm + x2(t) + 1
Si
(x2(t))

2 x1(t) (6)

.
x2(t) = −

µm
(
1 + kµm(x4(t)− ϑ0)

)(
1 − 1

Pi
x3(t)

)
x2(t)

Sm + x2(t) + 1
Si
(x2(t))

2 x1(t) (7)

.
x3(t) =

(
α

(1+kα(x4(t)−ϑ0))µm(1+kµm (x4(t)−ϑ0))
(

1− 1
Pi

x3(t)
)

x2(t)

Sm+x2(t)+ 1
Si
(x2(t))

2 + β

)
x1(t) (8)

.
x4(t) =

1
Tϑcs

(u(t)− x4(t)) (9)

where additionally to the symbols in (1)–(5):

u(t)—indicates the reference temperature of the bioreactor’s temperature control system
(◦C), and
Tϑcs—is the time constant of the simple 1st order model of the controlled heating
system (h).

The newly developed model considers the influence of temperature on the transient
and steady-state of the fermentation process, which is why we named this model the
temperature-considered model. The developed enhanced model (6–9) represents the
transition between different models (1–3).

When developing and testing the temperature-considered model, instead of linear
expressions (4) and (5), we tried different non-linear analytical expressions to describe the
dependence of the model parameters on the temperature in the bioreactor. Tested functions
were identified in such a way that they enable good fitting of the mathematical model’s
responses to the measured trajectories [21]. The selected linear functions represent a good
compromise—they are easy to identify and, at the same time, allow a good description of
the progress during the fermentation process.

The significant advantage of the temperature-considered model (6–9) is its ability
to allow an analysis of the impact of temperature changes on the fermentation process
dynamics and steady-state characteristics. The derived mathematical model (6–9) is in
structure partially similar to the basic fundamental model (1–3), but in its functionality
the newly derived model (6–9) is incomparable to the fundamental model (1–3). The
fundamental model (1–3) is an autonomous model and allows only simulations of responses
of the concentrations to the initial values of fermentation substances. On the contrary,
the model (6–9) represents a non-autonomous model of non-linear differential equations,
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which additionally enables the calculation of the courses of concentrations of bioreactor
substances in the case of temperature variations in a bioreactor. Therefore, model (6–9) is
suitable for the design of fermentation control systems based on temperature changes in
the bioreactor, which is not possible with model (1–3).

3.4. Parameters Identification of the Temperature-Considered Model

The parameters of the mathematical model µm, Pi, Sm, Si, α, β, kµm, kα, and Tϑcs (all in
Equations (1)–(9)) depend on the quality and quantity of the substances, and of the external
operating parameters. In the case of unchanged external conditions, the parameters remain
more or less constant during the fermentation process [21]. The parameters of the mathe-
matical models for the fermentation processes in the laboratory or industrial bioreactors
can be calculated by different optimization methods from the measured trajectories of the
bioreactors’ substances. In our study, the particle swarm algorithm was used to obtain the
parameters of the mathematical model.

Particle swarm is a population-based algorithm [28]. Particle swarm optimization
(PSO) is originally attributed to [29]. During the optimization the swarm of particles
varies throughout the selected area. The optimization algorithm calculates the objective
function at each step. After their calculation, the algorithm sets the new particles’ velocities.
The algorithm moves each particle to the best-founded location. PSO is a metaheuristic
procedure that may provide a sufficiently good solution to an optimization problem, in
case of few, incomplete, imperfect, or no assumptions about the problem being optimized.
PSO can search very large spaces of candidate solutions. PSO does not use the gradient of
the problem being optimized, which means that it does not require that the optimization
problem be differentiable. However, PSO does not guarantee that an optimal solution is
ever found.

Functions from MathWorks MATLAB/Optimization Toolbox library were used for
faster realization of the PSO for the calculation of the model’s parameters. Matlab function
particleswarm.m is based on the algorithm described in [29], using modifications suggested
in [30,31]. Details of the PSO algorithm in the particleswarm.m function are written in [32].

The optimization was accomplished from the measured time course of the CO2 concen-
tration. For the objective function requires, the error between the measured and calculated
response was computed. The integral absolute error (IAE) objective function was im-
plemented to calculate the fitting of the mathematical model with the laboratory batch
bioreactor [10].

Because we approximately estimated the range of values of the model’s parameters,
we constrained the area where the algorithm was searching for optimal solutions. The
optimization algorithm changed the parameters of the mathematical model (6–9) for so
long in order to reach the minimum of the IAE function. Optimization was finished when
the relative change of the objective function reached the stopping criterion suggested in
the default defined value.

For the determination of the temperature-considered model, it was necessary to
identify nine parameters of the mathematical model. PSO can be used to identify all
parameters simultaneously, but we can also identify the model’s parameters in several
stages. With the help of a systematic trial procedure, we found that the best results are
obtained by separating the parameters identification into two phases. In the first phase,
the parameters µm, Pi, Sm, Si, α, and β were identified. In the second phase, the remaining
parameters kµm, kα, and Tϑcs were calculated.

3.4.1. Identification of the Parameters µm, Pi, Sm, Si, α, and β

In the first stage of the optimization procedure, the parameters µm, Pi, Sm, Si, α,
and β were identified. These represent the fundamental part of the mathematical model,
which coincides with the constant temperature environmental conditions. This models
the fermentation process’s transient and steady-state behavior resulting from the initial
concentrations of the substances in the bioreactor.
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First, the initial values of the microorganisms, substrate, and fermentation product for
the fermentation process in the studied batch bioreactor were measured. The measured
values are written in Table 1.

Table 1. Initial values of the fermentation process in the studied bioreactor.

Variable Value

the initial value of the microorganisms’ concentration x1(0) = 2.6 mg/L
the initial value of the substrate’s concentration x2(0) = 9.0 mg/L
the initial value of the product’s concentration x3(0) = 0.1 mg/L

the initial temperature of the bioreactor’s contents x4(0) = 22 ◦C

After that, the fermentation process was carried out. Only the dissolved CO2 concen-
tration needed to be measured. The dissolved CO2 concentration represents the fermenta-
tion product and is the most important substance in the bioreactor. During the fermentation
process, all external conditions (temperature, stirrer’s speed) were constant. The measured
time course of the dissolved CO2 concentration for constant temperature 22 ◦C is shown in
Figure 2. The PSO with IAE objective function was applied to calculate the parameters of
the fundamental part of the model, valid for the constant bioreactor’s temperature. The
IAE function was calculated as the integral of the absolute error between the measured
course of the dissolved CO2 concentration (Figure 2) and the calculated state-space variable
x3(t) of the non-linear mathematical model (1–3). The PSO algorithm changed the values of
the identified model µm, Pi, Sm, Si, α, and β for so long that the objective function reached
a minimum. The time course of the objective function during the PSO procedure is shown
in Figure 10.
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As can be seen from Figure 10, less than 60 iterations were required to calculate the
parameters µm, Pi, Sm, Si, α, and β of the fundamental part of the mathematical model. All
identified parameters are presented in Table 2.
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Table 2. Parameters of the Mathematical Model for the Fermentation Process in the Studied Bioreactor.

Parameter Value

the maximum microorganisms’ growth rate µm = 2.1 h−1

the product inhibition constant Pi = 0.75 g/L
the substrate saturation constant Sm = 0.03 g/L
the substrate inhibition constant Si = 1.0 g/L

the parameter of the product yield related to microorganisms’ growth α = 0.38 g/L
g/L

the parameter of the product yield independent of the
microorganisms’ growth β = 0.002 h−1

the temperature of the bioreactor’s contents during the
fermentation process ϑ0 = 22 ◦C

3.4.2. Identification of the Parameters kµm, kα, and Tϑcs

In the second stage of the optimization, the parameters kµm, kα, and Tϑcs were identified.
These parameters are important for the supplementary part of the mathematical model,
which describes the influence of the variable temperature on the fermentation process
transient and steady-state behavior. The parameters kµm and kα characterize the impact
of the variable temperature on the modifying of the parameters µmϑ(t) and αϑ(t). The
parameter Tϑcs specifies the temperature time constant that describes the alternating of the
temperature in the bioreactor as a result of the reference temperature of the bioreactor’s
temperature control system.

To identify these parameters, a fermentation process was carried out again. This time,
we changed the reference temperature during the fermentation process. The step change of
the temperature from 22 ◦C to 27 ◦C arises at t = 3 h. The time course of the dissolved CO2
during the fermentation with changeable temperature is shown in Figure 3. Again, the
PSO with IAE objective function was used for the identification of the model parameters.
The IAE objective function was calculated as the integral of the absolute error between
the measured course of the dissolved CO2 concentration (Figure 3) and the calculated
state-space variable x3(t) of the non-linear mathematical model (3–6). The PSO algorithm
changed the values of the identified model kµm, kα, and Tϑcs for so long that the objective
function reached a minimum. During the optimization, the parameters µm, Pi, Sm, Si, α,
and β have values that were identified in the first stage of the identification procedure
(Table 2). The time course of the objective function during the PSO procedure is shown in
Figure 11.
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Figure 11 shows that less than 25 iterations were required for the calculation of the
parameters kµm, kα, and Tϑcs of the supplemental part of the mathematical model. The
identified parameters are presented in Table 3.

Table 3. Additional parameters of the augmented mathematical model for the fermentation process
in the studied bioreactor.

Parameter Value

the coefficient of the impact of the temperature changing on the
maximum growth rate µm

kµm = 0.14 (◦C)−1

the coefficient of the impact of the temperature changing on the
parameter α kα = 0.03 (◦C)−1

the time constant of the 1st order model of the controlled heating
system Tϑcs = 0.1 h

the temperature of the bioreactor’s contents at the beginning of the
fermentation process ϑ0 = 22 ◦C

To estimate the temperature-considered mathematical model parameters, we can
also use the computationally less demanding sensitivity method [24–26]. Its advantage is
especially evident in models with a large number of parameters.

3.5. Simulation Results of the Temperature-Considered Model

The simulation results of the identified temperature-considered model of the fermen-
tation in the laboratory bioreactor are shown in Figure 12. Presented are the time responses
of the microorganisms, substrate, and product in the case of constant temperature (solid
lines) T = 22 ◦C, and the same variables in the case of the bioreactor’s reference temperature
step change from 22 ◦C to 27 ◦C in t = 3 h (drawn with dashed lines). It is evident that
temperature changes generate substantial variations in the dynamics of all quantities of the
fermentation process. The time course of the actual temperature in the bioreactor follows
the reference temperature step change. The delay in the actual temperature is small—it
corresponds to the short time constant of the controlled heating system Tϑcs = 0.1 h.
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3.6. Comparison of Simulations and Experimental Results

The matching of the response of the measured CO2 concentration in the laboratory
bioreactor with the response of the CO2 concentration calculated with the identified tem-
perature considered model is displayed in Figures 13–15.
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The results of the fermentation process with a constant temperature 22 ◦C are pre-
sented in Figure 13. It can be seen that in the case of a constant temperature, the time course
of the produced CO2 is continuous. The response of the identified mathematical model
matches very well with the measured response of the laboratory bioreactor. Matching is
seen in all three phases of the fermentation process: in the starting induction phase, in the
successive exponential growth phase and in the subsequent stationary phase and the end
dying phase.
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Figure 14 shows the results of the fermentation with the changeable bioreactor’s
temperature. Note, in the experiment and in the simulations, the step increase of the
reference temperature from 22 ◦C for 5 ◦C occurred at t = 3 h. The consequence of the step
change in temperature in the bioreactor is visible in the different slope of the time course at
the time of the change. In this case, the matching of the responses of the identified model
and the laboratory measurements is also very good.
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Figure 14 shows a comparison of simulations and measurements for the input signal,
which was previously used to identify model parameters. It makes sense to test the accuracy
of the identified mathematical model for a new signal dataset. This is the case where the
test input signal is different from the input signal used for identification. Figure 15 shows
the results of the fermentation where the step increase of the reference temperature from
22 ◦C for 5 ◦C occurred at t = 6 h. Simulation and experimental results are presented. As
in the previous cases, both responses match very well. The non-continuity in time course,
smaller as in the previous case, is seen at t = 6 h. Figures 14 and 15 confirm the empirical
findings that the effect of temperature change on CO2 production is bigger at the beginning
of the fermentation (high growing rate) and smaller in the second part of the fermentation
process (low growing rate).
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The simulation results show that the derived model can justifiably be used for bio-
process analysis, simulations, and control system development. The identification (with
optimization techniques) of the parameters of the presented model is not complicated
but can take a lot of time. For identification purposes, a fermentation experiment with a
constant temperature must first be performed. After that, the fermentation process must be
carried out again. This time the temperature must change during fermentation.

4. Discussion and Conclusions

The study’s main contribution is the development of a new dynamic model that
considers the impact of temperature changes on the fermentation process dynamics and
steady-state characteristics. The most important features of the presented temperature-
considered model are:

• The derived model is a fourth order non-linear state-space model,
• The model’s input is the reference variable of the heating/cooling system, the model’s

state-space variables are the concentrations of microorganisms, substrate and product,
and the temperature in the bioreactor,

• The derived model is compact and suitable for the analysis of the fermentation process,
for simulations, and for the implementation of the control system.

• The derived model represents a further development of the models presented in
the authors’ previous publications [10,21,22]. The advantage of the new model is
in its simpler structure—previous models were based on a combination of a non-
linear model for calculating the response to initial conditions and a linear model for
calculating the response to temperature change.
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• The derived model has nine parameters that depend on the biochemical substances
and the determination of parameters for a specific bioreactor is possible by identifi-
cation. For parameters’ identification, it is necessary to carry out the fermentation
process at least twice: once with a constant temperature and once with a change
in temperature during the fermentation. The paper does not discuss the theoretical
possibility of determining the model parameters from the biochemical data. Particle
swarm optimization was used for the identification of the mathematical model.

• An important finding obtained from the derived model analysis is that the application
of adaptive control theory for non-linear systems is reasonable for developing a
control system that will control the fermentation process along the prescribed reference
trajectory [33].

• Identification and analysis of the mathematical model were made on different fermen-
tation processes on two different batch bioreactors. The obtained results of a multitude
of experiments and calculations confirmed the presented findings.

• The article shows the use of scientific methods for the needs of engineering research.
Our expectations are that academics and engineers will use the developed mathemati-
cal model for the design and synthesis of advanced control systems.
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