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INTRODUCTION 
 

Pancreatic ductal adenocarcinoma (PDAC) is a life-

threaten disease with lowest survival rates among major 

cancers and its mortality rate per years is increasing 

from 9th to 7th [1]. Positive results of computed 

tomography (CT) often only occurs on terminal PDAC 

patients, with a delayed diagnosis and poor prognosis of 

patients [2]. Additionally, the poor prognosis of PDAC 

patients is also due to high recurrence rate and early 

distant metastasis [3]. Aiming to prompt diagnosis and 

treatment, some advanced effect procedures have been 

put forward, including nucleic acid in circulating cancer 

cells, long non-coding RNA in extracellular vesicle, and 
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ABSTRACT 
 

With the progress of precision medicine treatment in pancreatic ductal adenocarcinoma (PDAC), 
individualized cancer-related examination and prediction is of great importance in this high malignant tumor, 
and antibody-dependent cell phagocytosis (ADCP) with changed pathways highly enrolled in the 
carcinogenesis of PDAC. High-throughput data of pancreatic ductal adenocarcinoma were downloaded and 
160 differentially expressed ADCP-related genes (ARGs) were obtained. Secondly, GO and KEGG enrichment 
analyses show that ADCP is a pivotal biologic process in pancreatic carcinogenesis. Next, CALB2, NLGN2, 
NCAPG and SERTAD2 are identified through multivariate Cox regression. These 4 genes are confirmed with 
significant prognostic value in PDAC. Then, a risk score formula is constructed and tested in PDAC samples. 
Finally, the correlation between these 4 genes and M2 macrophage polarization was screened. Some pivotal 
differentially expressed ADCP-related genes and biologic processes, four pivotal subgroup was among 
identified in the protein-protein network, and hub genes was found in these sub group. Then, an ADCP-
related formula was set: CALB2* 0.355526 + NLGN2* -0.86862 + NCAPG* 0.932348 + SERTAD2* 1.153568. 
Additionally, the significant correlation between M2 macrophage-infiltration and the expression of each 
genes in PDAC samples was identified. Finally, the somatic mutation landscape and sensitive chemotherapy 
drug between high risk group and low risk group was explored. This study provides a potential prognostic 
signature for predicting prognosis of PDAC patients and molecular insights of ADCP in PDAC, and the formula 
focusing on the prognosis of PDAC can be effective. These findings will contribute to the precision medicine 
of pancreatic ductal adenocarcinoma treatment. 
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some pivotal clinical characteristics [4–6]. Besides 

these, some individualized diagnostic methods based on 

sequencing and specific biological functions needs to be 

identified. 

 

Among the different anti-tumor immune responds, 

antibody-based tumor therapy is an origin component. 

Specifically, there are three pivotal mechanisms in 

antibody-based tumor therapy, including antibody-

dependent cellular cytotoxicity (ADCC), antibody-

dependent cell phagocytosis (ADCP) and complement-

dependent cytotoxicity (CDC) [7]. 

 

ADCP immunological therapies are described as the 

novel engine in precise treatment, because malignant 

cells could be precisely destroyed by the directly 

binding of antibodies and the viability for macrophage-

depended phagocytosis, which is effective in the 

treatment of most tumors [8]. Some antibodies have 

been filtered and proved having directly effect on ADCP 

with favorable therapeutic outcome [8]. An EGFR- 

targeting IgG antibody called Cetuximab, has been 

discovered it can increase the efficacy of gemcitabine 

therapy and radiotherapy in pancreatic cancer [9, 10]. 

Since then, plenty of clinical trials were developed 

about the potential safety and effectiveness for 

cetuximab in the treatment of pancreatic cancer, most of 

the clinical trials showed positive results [11, 12]. 

 

The mechanisms by which cancer cells evade 

phagocytosis are not fully understood. Recently, Roarke 

A. Kamber et al. developed a platform and identified 

some genes that impede antibody-dependent cellular 

phagocytosis (ADCP). Besides CD47 and other known 

factors in cancer cells, the authors also found many 

ADCP regulatory factors by the complementary 

genome-wide CRISPR knockout overexpression 

screening platform. The author found that these 

regulatory factors are directly related to ADCP and play 

an important role in tumor malignant phenotype [13]. 

 

In our current study, we screened the expression level of 

ADCP regulatory factors identified by the above study 

from Roarke A. Kamber et al. in TCGA pancreatic 

cancer datasets and identified differently expressed 

genes (DEGs) with their potential functional pathways 

and hub genes above them. Then, through the 

combination of survival data in TCGA database and 

statistical analysis with cox proportional hazards 

regression model, a cluster of ADCP-related genes were 

identified with an ADCP-related risk formula in 

pancreatic cancer. The diagnostic and prognostic value 

of each screened genes and the risk formula were 
identified by survival analysis and receiver operating 

characteristic curve. Then, these findings were validated 

in related GEO datasets and clinical samples from 

PDAC patients. Additionally, the correlation between 

cancer-related macrophage and the screened genes was 

identified. Finally, somatic mutation landscape and 

sensitive chemotherapy drug between high risk group 

and low risk group was explored. Our findings reveal 

some pivotal ADCP-related genes in the development 

of PDAC and their impact on prognosis of PDAC 

patients. Additionally, these findings indicate ADCP-

related risk formula could monitor ADCP and predict 

clinical outcomes in PDAC patients and lead to further 

research on precision therapy. 

 

RESULTS 
 

Screening differential expression ARGs in GTEx 

and TCGA-PAAD sequencing data 

 

The flow chart of our study has been illustrated in 

Figure 1. Among the expression of ARGs in GTEx and 

TCGA database, logFC > 2 with adjusted p value < 0.05 

was defined as the differential ARGs. As shown in 

Figure 2, 160 genes were identified as the differential 

ARGs. The details of these genes are shown in 

Supplementary Table 1. 

 

Identification of significant pathway and hub genes 

 

Then, based on the identified 160 differential ARGs, 

enriched GO pathway analysis was executed with 

clusterprofile package in R software and enriched GO, 

disease specific and tissue specific analysis is executed 

through Metascape (Figure 3). Some pivotal cellular ion 

channel is significantly enriched in screened ARGs, 

including metal ion transmembrane transporter activity, 

passive transmembrane transporter activity, 

ligand−gated calcium channel activity and ion channel 

activity (Figure 3A and 3B). In addition, disease 

specific analysis shows a wide range of cancer related 

disease was enrolled in these ARGs, including 

hepatocellular carcinoma, malignant neoplasm of 

mouth, and carcinoma of pancreas, invasive (Figure 

3C). The tissue specific analysis also showed these 

screened ARGs significantly participate in pancreatic 

biologic process (Figure 3D).  

 

The interaction among these ARGs with significant 

enriched pathway was shown in (Figure 3E), and 

several pathways were related to tumor immunity, 

including mitotic cell cycle process, regulation of T cell 

activation, adaptive immune response, and positive 

regulation of immune response. (Figure 3F) shows four 

pivotal subgroup was identified in the protein-protein 

network, and hub genes was found in these sub group, 

including FCER2, CABP1, CALB2, FGF3, RYR2, 

SPC24, CDC20, NUF2, KIF18A, POLR2F, SOX2, 

RTEL1, IRF4, H4C8, H3C4, TNP1. 
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Identification of prognosis-related ARGs 

 

The relevance among the mRNA level of ARGs and 

clinical outcomes were calculated through univariate 

cox regression (P < 0.05). 11 prognosis-related ARGs 

were identified in TCGA-PAAD cohort (Figure 4A). 

Then, the 11 screened prognosis-related ARGs was 

analyzed through multivariate cox regression, and 

CALB2, NLGN2, NCAPG and SERTAD2 was 

identified as the significant prognosis-related genes in 

TCGA-PAAD cohort (Figure 4B). 

 

Construction and validation of the risk formula 

based on screened prognosis-related ARGs 

 

Combining the multivariate analysis and the coefficient 

ratio of the 4 screened ARGs (Supplementary Table 2), 

a risk formula was constructed to estimate the risk of 

PDAC patients: CALB2* 0.355526 + NLGN2* -

0.86862 + NCAPG* 0.932348 + SERTAD2* 1.153568. 

 

The expression of CALB2, NLGN2, NCAPG and 

SERTAD2 was performed in Figure 5A. The risk score 

was calculated, and then high risk patients and low risk 

patients were divided by median expression (Figure 5C 

and 5D). The prognosis of high risk patients is 

significantly poorer than low risk patients in TCGA-

PAAD cohort (Figure 5B and 5E). Additionally, 

combining with the clinical features in TCGA-PAAD, 

the prognostic value of risk score was examined by 

univariate cox and multivariate cox regression (Figure 

5F and 5G). Diagnostic value of the risk formula was 

identified in TCGA-PAAD through ROC analysis 

(Figure 5H). All of the 4 ARGs in the formula, 

including CALB2, NLGN2, NCAPG, SERTAD2, are 

identified with significant prognostic value in overall 

survival time of TCGA-PAAD patients (Figure 5I–5L). 

Among them, CALB2 and NCAPG were found having 

significant prognostic value in disease free time of 

TCGA-PAAD patients. (Figure 5M and 5N). 

 

Validation of the risk formula based on screened 

prognosis-related ARGs in silico and clinical samples 

 

Then, the risk formula was validated in GEO database 

with two datasets (GSE28735 and GSE62452) after 

batch normalization. The risk score of 114 tumor 

samples in this cohort was calculated and identified 

with significant prognostic value (Figure 6). 

Specifically, the expression of CALB2, NLGN2, 

NCAPG and SERTAD2 was performed in Figure 6A. 

The risk score was calculated, and then high risk 

patients and low risk patients were divided by median 

expression (Figure 6C and 6D). The prognosis of high- 

risk patients are significantly poorer than low risk 

patients in TCGA-PAAD cohort (Figure 6B and 6E). 

 

 
 

Figure 1. Flow chart of our study. 
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To execute further test for the risk formula in PDAC, 

the mRNA expression of CALB2, NLGN2, NCAPG 

and SERTAD2 in 95 tissues was detected by RT-PCR 

and risk score was calculated through the risk formula. 

The baseline of patients is shown in Table 1. Combining 

with the clinical features of 95 clinical tumor samples, 

the prognostic value of risk score was examined by 

univariate cox and multivariate cox regression 

(Figure 7A and 7B). Diagnostic value of the risk 

formula was identified in the 95 clinical tumor samples 

through ROC analysis (Figure 7C). The risk score of 

these 95 clinical tumor samples was calculated and 

identified with significant prognostic value (Figure  

7D–7H). 

 

 
 

Figure 2. (A) Heatmap of the differential ARGs in the combination of GTEx data and TCGA-PAAD data. (B) Barplot of each differential ARGs 

between normal samples (green) and tumor samples (red). 
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Figure 3. (A) Gene ontology (GO) analysis of the differential ARGs using R software. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) 

analysis of the differential ARGs using R software. (C) Disease specific analysis of the differential ARGs through Metascape online tool. (D) 
Tissue specific enrichment analysis through Metascape online tool. (E) Protein-protein interaction analysis with significant biologic signaling 
pathway through Metascape. (F) Hub subgroup of the whole interaction network with hub genes. 

 

 

 

Figure 4. (A) Univariate cox regression of the ARGs in TCGA-PAAD cohort. (B) Multivariate cox regression of the ARGs in TCGA-PAAD 
cohort. 
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Construction of nomogram with risk score in 

TCGA-PAAD cohort and our local cohort 

 

We used clinical characteristic and risk score in TCGA-

PAAD (Figure 8A) and our local clinical samples to 

further construct nomograms (Figures 8B). The 

nomogram was used to assess the 1-, 3-, 5 years or 1-, 

2-, 3- years survival rates of a single patient. The two 

nomograms indicated the risk formula is reliable, which 

could facilitate the clinical managements of PDAC. 

 

 
 

Figure 5. ADCP-associated risk score of PDAC patients and validation in TCGA cohorts. (A) Heatmap of the 4 screened ARGs in 

TCGA-PAAD cohort. (B) Survival analysis of high-risk group and low-risk group. (C) Number of patients in low risk group and high risk group. 
(D and E) The distribution of patients by risk score in TCGA-PAAD. (F) Univariate cox regression of clinical feature and risk score in TCGA-
PAAD. (G) Multivariate cox regression of clinical feature and risk score in TCGA-PAAD. (H) ROC of risk score in TCGA-PAAD (I–N) Overall 
survival analysis and disease free survival analysis of the 4 genes in risk formula in TCGA-PAAD. 
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Exploring the correlation between the screened 

ADCP-related genes and immune phenotype 

 

Then, the significant differential expression of the four 

screened genes between normal and tumor tissues was 

verified in PDAC patients through GEPIA database 

(Figure 9A). The significant correlation between each 

genes and exact main type of immune cells was 

calculated through cibersoft methods. CALB2, 

SERTAD2, NCAPG, NLGN2 was found only having 

 

 
 

Figure 6. Validation of ADCP-associated risk score in GEO cohorts. (A) Heatmap of the 4 screened ARGs in GSE28735 and 

GSE62452. (B) Survival analysis of high-risk group and low-risk group. (C) Number of patients in low risk group and high risk group. (D and E) 
The distribution of patients by risk score in GSE28735 and GSE62452. 
 

 
 

Figure 7. ADCP-associated risk score of PDAC patients and validation in our local cohorts. (A) Univariate cox regression of 
clinical feature and risk score in TCGA-PAAD. (B) Multivariate cox regression of clinical feature and risk score in TCGA-PAAD. (C) ROC of risk 
score in our local cohort (D) Heatmap of the 4 screened ARGs in TCGA-PAAD cohort. (E) Survival analysis of high-risk group and low-risk 
group. (F) Number of patients in low risk group and high risk group. (G and H) The distribution of patients by risk score in TCGA-PAAD. 
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Table 1. Detail clinical data of qRT-PCR data from 95 samples. 

 High risk (N = 47) Low risk (N = 48) P value ALL (N = 95) 

Age > 65:   0.57  

  Yes 28 (59.5%) 25 (52.1%)  53 (55.8%) 

  No 19 (40.5%) 23 (47.9%)  35 (44.2%) 

Sex:   0.82  

  Male 24 (51.1%) 20 (41.7%)  44 (46.3%) 

  Female 23 (48.9%) 28 (58.3%)  51 (53.7%) 

Stage:   0.02  

  I 8 (17.0%) 27 (56.3%)  35 (36.8%) 

  II 16 (34.0%) 13 (27.1%)  29 (30.5%) 

  III 16 (34.0%) 6 (12.5%)  22 (23.2%) 

  IV 7 (15.0%) 2 (4.1%)  9 (9.5%) 

Grade   0.03  

  G1 13 (27.7%) 18 (37.5%)  31 (32.6%) 

  G2 14 (29.8%) 28 (58.3%)  42 (44.2%) 

  G3 15(31.9%) 2 (4.2%)  17 (17.9%) 

  G4 5(10.6%) 0 (0%)  5 (5.3%) 

T   0.454  

  T1 21 (44.7%) 21 (43.8%)  42 (44.2%) 

  T2 14 (29.8%) 17 (35.4%)  31 (32.6%) 

  T3 10 (21.3%) 8 (16.7%)  18 (18.9%) 

  T4 2 (4.2%) 2 (4.2%)  4 (4.3%) 

M   0.698  

  M1 12(25.5%) 10 (20.8%)  22 (23.2%) 

  M0 35 (74.5%) 38 (79.2%)  73 (76.8%) 

N   0.831  

  N1 12 (25.5%) 14 (29.2%)  26 (27.4%) 

  N0 35 (74.5%) 34 (70.8%)  69 (72.6%) 

 

significant positive correlation with M2 macrophages 

consistently (Figure 9B). 

 

Identify the somatic mutation landscape and predict 

sensitive target drugs between high risk group and 

low risk group in PDAC 

 

Finally, we explore the somatic mutation landscape 

between high risk group and low risk group in TCGA-

PAAD. More mutation sites and genes are observed in 

high risk group comparing to low risk group (Figure 
10A). Dasatinib, Pazopanib, MG.132, WH.4.023  

are sensitive to high risk group and Salubrinal, 

Pyrimethamine, Metformin, and Bosutinib are more 

sensitive to low risk group than high group, according 

to the expression data from TCGA-PAAD  

(P < 0.000001) (Figure 10B). 

 

DISCUSSION 
 

As a fatal malignant tumor, PDAC causes huge social 

healthy burden and patients could neither be directly 

diagnosis in the early stage, nor be predicted the clinical 

outcome accurately. In this point, the prognostic marker 

and further basic research is in great need for the 

treatment of PDAC patients [14]. Among the different 

anti-tumor immune responds, antibody-based tumor 

therapy are an origin component. Specifically, there are 
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three pivotal mechanisms in antibody-based tumor 

therapy, including antibody-dependent cellular 

cytotoxicity (ADCC), antibody-dependent cell phago-

cytosis (ADCP) and complement-dependent cyto-

toxicity (CDC) [7]. 

 

ADCP immunological therapies are described as the 

novel engine in precise treatment, because malignant 

cells could be precisely destroyed by the directly 

binding of antibodies and the viability for macrophage-

depended phagocytosis, which is effective in the 

treatment of most tumors [8]. Some antibodies have been 

filtered and proved having directly effect on ADCP with 

favorable therapeutic outcome [8]. An EGFR- targeting 

IgG antibody called Cetuximab, has been discovered it 

can increase the efficacy of gemcitabine therapy and 

radiotherapy in pancreatic cancer [9, 10]. Since then, 

plenty of clinical trials were developed about the 

 

 
 

Figure 8. Construction of a nomogram for evaluating prognosis. (A) Nomogram for predicting the 1-, 3-, and 5 years OS of PDAC 

patients in TCGA. (B) Nomogram for predicting the 1-, 2-, and 3 years OS of PDAC patients in our local samples. 
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potential safety and effectiveness for cetuximab in the 

treatment of pancreatic cancer, most of the clinical trials 

showed positive results [11, 12]. 

 

The mechanisms by which cancer cells evade 

phagocytosis are not fully understood. Recently, Roarke 

A. Kamber et al. developed a platform and identified 

some genes that impede antibody-dependent cellular 

phagocytosis (ADCP). Besides CD47 and other known 

factors in cancer cells, the authors also found many 

ADCP regulatory factors by the complementary 

genome-wide CRISPR knockout overexpression 

screening platform. The author found that these 

regulatory factors are directly related to ADCP and play 

 

 
 

Figure 9. (A) The significant expression between tumor samples and normal samples in GEPIA database. (B) The correlation between 

immune cells infiltration and the 4 screened ARGs through cibersoft methods. 
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an important role in tumor malignant phenotype [13]. In 

this research, we used bioinformatical and statistical 

methods to screen the ADCP-related biomarkers with 

great prognostic sensitivity, based on the screened 

ADCP-related genes in the research from Roarke A. 

Kamber et al. We found FCER2, CABP1, CALB2, 

FGF3, RYR2, SPC24, CDC20, NUF2, KIF18A, 

POLR2F, SOX2, RTEL1, IRF4, H4C8, H3C4, TNP1 

could be pivotal genes in the modulation of ADCP in 

PDAC and some pivotal cellular ion channel is 

significantly enriched in screened ARGs, including 

metal ion transmembrane transporter activity, passive 

transmembrane transporter activity, ligand−gated 

calcium channel activity and ion channel activity. To 

the best of our knowledge, these genes are hardly been 

identified as the related gene in PDAC process before 

[15], because the ADCP-process is a special immune-

related biological process which has not been fully 

clarified in PDAC. 

 

After univariate and multivariate cox regression 

combined with clinical outcomes, CALB2, NLGN2, 

NCAPG and SERTAD2 was identified as the 

significant prognosis-related genes. CALB2 is a 

calcium binding protein, has been identified playing an 

important role in regulating the response of colorectal 

cancer to 5-Fluorouracil [16]. Additionally, CALB2 is 

currently considered as the most sensitive and specific 

marker for the diagnosis of malignant mesothelioma. 

The mechanisms of CALB2 in malignant mesothelioma 

is through the binding of septin 7 on CALB2 promoter 

[17]. NLGN2 was found to act exclusively at GABA 

inhibitory synapses. Altered expression and mutations 

in NLGN2 and several of its interacting partners are 

 

 
 

Figure 10. (A) The mutational landscape of two immune subtypes (high risk and low risk) (B) The potential sensitive targeted drugs in high 
risk group and low risk group. 
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linked to cognitive and psychiatric disorders, 

including schizophrenia, autism, and anxiety. In our 

research, NLGN2 was found to have a minimally 

protective impact on pancreatic ADPC-related 

carcinogenesis. However, high level of NLGN2 has 

also been found having a significant positive role for 

PDAC development in our current study. Unclear 

mechanism about NLGN2 in PDAC carcinogenesis 

need be further explored.  NCAPG has been found as 

a stimulative for cardia adenocarcinoma [18], 

endometrial cancer [19], lung cancer [20]. 

Furthermore, high expression of NCAPG are relevant 

to poor prognosis in ovarian cancer [21] and hepatic 

cancer [22]. In our research, NLGN2 was found to be 

positive associated with PDAC development, and 

may play an important role in ADPC-related biologic 

process. In our current search, SERTAD2 was 

identified as a significant prognosis-related bio-

marker with the largest risk coefficient ratio. 

Previous study identified SERTAD2 as a proto-

oncogene and supports the potential for SERTAD2 as 

a novel prognostic marker and a chemotherapeutic 

drug target in human cancer [23]. However, the 

mechanism of SERTAD2 in cancer development has 

not be fully elucidated. In our research, we identified 

SERTAD2 could promote PDAC through ADCP-

related biological process with significant prognosis 

value. Then, the significant correlation between M2 

macrophage-infiltration and the expression of each 

genes in PDAC samples was identified. Finally, 

several different chemotherapy drugs were screened 

as potential sensitive drugs for high risk group and 

low risk group. Further basic research needs to be 

done to verify the ADCP-related mechanism of each 

of the four genes and their roles in recruiting 

macrophages and transdifferentiation of the macro-

phages to M2 phenotype. However, there are some 

limitations in our study. First, the ADCP-related 

genes and risk formula we identified are based on 

genes expression in tumor tissue rather than in blood 

samples. This could weaken the diagnostic value of 

our risk formula because of the poor accessibility of 

these samples. Second, machine learning related 

algorithms are not been used in our study. This 

weakness of our current study would be overcome in 

our further researches. 

 

CONCLUSION 
 

In conclusion, through the combination of ADCP-

related genes and PDAC sequencing data, an ADCP-

related formula with four genes was identified and 

validated in our clinical samples. The for genes 

identified by this formula are significant related to M2 

polarization of macrophages in PDAC tumor. Different 

chemotherapy drugs are identified with sensitivity 

between high risk and low risk group. 

 

MATERIALS AND METHODS 
 

Data source 
 

The gene expression in normal pancreas are down-

loaded in GTEx portal (https://www.gtexportal.org/ 

home/index.html, 167 normal pancreas samples). 

Additionally, gene expression and somatic mutation 

data in tumor samples with paired clinical data  

are downloaded in The Cancer Genome Atlas  

(TCGA) database (https://www.cancer.gov/about-nci/ 

organization/ccg/research/structural-genomics/tcga) 

named TCGA-PAAD (TCGA PAAD: 4 paracancers 

and 178 cancers with survival data) and two datasets in 

Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo/), GSE28735 and 

GSE62452. (GSE28735 [24]: 45 paracancers and 45 

cancers with survival data. GSE62452 [25]: 61 

paracancers and 69 cancers with survival data.) 

GSE28735 is a cohort of gene chip data collected from 

patients with PDAC at the University of Medicine, 

Göttingen, Germany. GSE62452 is another gene chip 

data collected at the University of Maryland Medical 

System at Baltimore (Baltimore, MD, USA). 

 

Batch normalization 
 

Batch effect is part of the measurement results, because 

of the different experimental conditions. The purpose of 

correcting batch effect is to reduce the irrelevant 

differences between batches, and to identify the 

differences between different biological states. To 

remove the impact of batch effect in TCGA and GTEx 

samples, and GEO datasets (GSE28735 and 

GSE62452), SVA package was used in R software [26]. 
 

Data acquisition 

 

The ADCP-related gene (ARGs) list was acquired in the 

study from Roarke A. Kamber et al. [13]. In this study, 

a list of ADCP genes was screened by developed a 

platform for unbiased identification of factors that block 

ADCP using complementary genome-wide CRISPR 

knockout overexpression screening in cancer cells and 

macrophages. The ADCP genes with P < 0.05 was 

defined as ARGs and was selected to be analyzed in our 

current research (Supplementary Table 3). High-

throughput sequencing mRNA expression data of ARGs 

and corresponding clinical data of Pancreatic 

Adenocarcinoma (PAAD) cohort were obtain from 
 the UCSC Xena datasets (https://xenabrowser.net/ 

datapages/). 

 

https://www.gtexportal.org/home/index.html
https://www.gtexportal.org/home/index.html
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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Differentially expressed ARGs and enrichment 

analysis 

 

Differential ADCP-related genes (ARGs) expression 

data in TCGA-PAAD were screened by the limma 

package in R software (FDR <0.05, |logFC| >2). 

Pathway enrichment and hub gene identifications in 

which these 160 differential ARGs were identified with 

clusterprofile package [27] in R software and 

Metascape online tool (https://metascape.org/) [28]. 

 

Univariate, multivariate COX regression 

 

After 160 differential ARGs was acquired, univariate 

and multivariate COX regression was exerted in these 

ARGs using Survival and Survminer package. 

Specifically, univariate COX regression was used in 

these 160 ARGs firstly, significant ARGs was filtered 

and then these filtered ARGs was analyzed through 

multivariate COX regression (P < 0.05). Combined with 

clinical data of TCGA-PAAD samples and our local 

samples, including TMN staging, age, sex, risk and 

statues, univariate analysis was exerted to identify the 

significance between prognosis and clinical status. 

 

Survival analysis and receiver operating 

characteristic curve 

 

Based on our identified risk formula, the high risk and 

low risk of the clinical samples from TCGA and our 

local clinical samples was divided. Kaplan-Meier 

survival analysis was exerted through Survival package 

between high risk group and low risk group. Combined 

with clinical data of TCGA-PAAD samples and our 

local samples, including TMN staging, age, sex, 

receiver operating characteristic (ROC) curve was 

analyzed by pROC package. 

 

Online database manipulation 

 

GEPIA (Gene Expression Profiling Interactive 

Analysis) [29] is another database containing TCGA 

PDAC tumor sequencing data and GTEx normal tissue 

sequencing data, was used to identify the prognostic 

value of CALB2, NLGN2, NCAPG and SERTAD2 

through Kaplan-Meier plots in optimal cut-off value and 

the expression of these genes among pancreatic tumor 

tissue and common tissue through box plots. 

 

Clinical samples collection 

 

A total of 95 frozen primary PDAC samples were 

collected at the Department of General Surgery of First 
affiliated hospital of Zhengzhou University from Jan 2012 

to October 2019 from PDAC patients undergoing Whipple 

surgery. The average follow-up time of each patients is 2.3 

year. Consent was acquired from all patients in written 

format. This study was executed according to Declaration 

of Helsinki, and the Ethics Committee of First affiliated 

Hospital of Zhengzhou University. The baseline 

characteristics of PDAC patients are listed in Table 1. 

 

Quantitative real time polymerase 

 

The 95 PDAC samples was isolated with TRIzol 

reagent (Noweizan, China) and reverse-transcribed 

using the HiScript II Reverse Transcriptase Kit 

(Noweizan, China). Real-time PCR was performed 

using SYBR Green (Noweizan, China). Quantitation 

was performed in triplicate. 2ΔΔCT method was used to 

calculate the expression and GAPDH was used to be as 

internal reference. The primers for the mRNAs are 

CALB2 (forward) 5′-GCAGAGCTGGCGCAGATC-3′, 

CALB2 (reverse) 5′-GCTCATCGTACGGCCGG 

TTCG-3′; NLGN2 (forward)5′-ccaaagtgggctgtgacc-3′ 

NLGN2 (reverse) 5′-ccaaaggcaatgtggtagc-3′; NCAPG 

(forward): 5′-AAGTTAGACGGGCAGTGTTATC-3; 

NCAPG (reverse): 5′-CAGCTTTCTGACAGCCTCTT-

3; SERTAD2 (forward)5′-ATATATGTTGGGT 

AAAGGAGGAA-3' SERTAD2 (reverse): 5′-TGG CGC 

TGT AAGGTGTAAGAC-3′; GAPDH (forward) 5′-

ACAGTCAGCCGCATCTTCTT-3′ and GAPDH 

(reverse) 5′-GACAAGCTTCCCGTTCTCAG-3′. 

 

Construction and validation of nomogram 

 

Combined with clinical data of TCGA-PAAD samples 

and our local samples, including TMN staging, age, sex, 

risk and statues, two nomogram was constructed 

through regplot package in R software, respectively  

(P < 0.05). 

 

Calculation of tumor microenvironment cell 

infiltration 

 
CIBERSORT were applied to quantify the relative 

proportions of infiltrating immune cells [30]. 

Spearman’s rank correlation analysis was exerted when 

exploring the relationship between the expression of 

CALB2, NLGN2, NCAPG and SERTAD2 and the 

immune infiltrated cells. 

 

Perform the somatic mutation land scape and 

prediction of response to chemotherapy between 

high risk group and low risk group 

 

The maftools R package was utilized to analyze somatic 

mutation data from TCGA-PAAD and visualize the 

mutation waterfall plots [31]. The risk statues are also 

showed in the plot. All statistical values were tested by 

two-sided test, and p < 0.05 was considered statistically 

significant. The R package of pRRophetic was used to 

https://metascape.org/
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predict IC50 of common chemotherapeutic agents [32]. 

IC50 indicates the effectiveness of a substance in 

inhibiting specific biological or biochemical functions. 

The difference between high risk and low risk groups 

was tested by Wilcox and log-rank test (P < 0.000001). 
 

Data availability 
 

The PAAD dataset was downloaded from TCGA 

database (https://tcga-data.nci.nih.gov/tcga/) and the 

GSE28735 and GSE62452 was downloaded from GEO 

database (http://www.ncbi.nlm.nih.gov/geo/). The basic 

code used in this study was deposited in 

https://github.com/inevitable48/Aging-us/. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 3. 

 

 

Supplementary Table 1. The list of identified differential genes in PDAC. 

 

Supplementary Table 2. The result of multivariate analysis in PDAC. 

ID Coefficient Hazard Ratio  HR.95L HR.95H P value 

CALB2 0.355526 1.426931 1.001137 2.033819 0.04927 

NLGN2 −0.86862 0.41953 0.152186 1.156515 0.009317 

NCAPG 0.932348 2.540468 1.321665 4.88322 0.005166 

SERTAD2 1.153568 3.16948 1.074573 9.34846 0.036592 

 

Supplementary Table 3. The list of ADCP-related genes. 

 


