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Abstract: Accurate diagnosis of colorectal cancer (CRC) still relies on invasive colonoscopy. Non-
invasive methods are less sensitive in detecting the disease, particularly in the early stage. In the
current work, a metabolomics analysis of fecal samples was carried out by ultra-high-performance
liquid chromatography–tandem mass spectroscopy (UPLC-MS/MS). A total of 1380 metabolites were
analyzed in a cohort of 120 fecal samples from patients with normal colonoscopy, advanced adenoma
(AA) and CRC. Multivariate analysis revealed that metabolic profiles of CRC and AA patients were
similar and could be clearly separated from control individuals. Among the 25 significant metabolites,
sphingomyelins (SM), lactosylceramides (LacCer), secondary bile acids, polypeptides, formiminoglu-
tamate, heme and cytidine-containing pyrimidines were found to be dysregulated in CRC patients.
Supervised random forest (RF) and logistic regression algorithms were employed to build a CRC
accurate predicted model consisting of the combination of hemoglobin (Hgb) and bilirubin E,E,
lactosyl-N-palmitoyl-sphingosine, glycocholenate sulfate and STLVT with an accuracy, sensitivity
and specificity of 91.67% (95% Confidence Interval (CI) 0.7753–0.9825), 0.7 and 1, respectively.

Keywords: untargeted metabolomics; colorectal cancer; faecal samples; biomarkers

1. Introduction

Colorectal cancer (CRC) is the third-most common malignant neoplasm worldwide in
men and the second one in women, representing almost 10% of global cancer incidence, and
is the second leading cause of cancer-related death [1]. In Spain, colorectal neoplasm is the
second leading cancer among men (after lung cancer) and women (after breast cancer), ac-
counting for a total of 12,010 (10.6%) deaths [1]. Screening and early detection are excellent
measures to prevent colorectal cancer and associated death [2]. Following the 2003 Euro-
pean Guidelines and the National Strategy against Cancer of 2006, CRC screening is based
on the detection of occult blood in feces (FOB) using noninvasive guaiac-based test (gFOBT)
and biennial quantitative fecal immunochemical test (FIT), and an invasive colonoscopy
under sedation for FIT positive cases [3]. However, due to unsatisfactory sensitivity and
specificity, FOB has still limited the clinical application in CRC diagnosis [4,5] and an in-
vasive standardized traditional optical colonoscopy is still the gold-standard method to
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diagnose CRC, which has several risks attributed to the intervention [6]. For these reasons,
high-throughput ‘omics’ technologies such as metabolomics can be considered as an impor-
tant tool for biomarker discovery for disease diagnosis and prognosis [7–11]. Metabolomics,
which focuses on the detection and quantitation of small molecules (metabolites) in dif-
ferent specimens [12–14], is the omic technology that best mirrors the human phenotype,
as metabolites are present in all biological structures and metabolic pathways [15–20].
Although metabolomics is a technique that has reached popularity in the last few decades
and has been applied in a wide range of diseases including cancer, it is still in the pio-
neering phase in CRC research [12]. Even though the improvement of the knowledge on
dysregulated biomarkers associated to cancer is necessary, metabolomics has pointed out
several identified biomarkers for CRC and cancer diagnosis that, at the same time, can be
used for therapeutic evaluation [13,18,21–23].

In the current study, the main objective is to study and compare the fecal metabolomic
profile of patients with normal colonoscopy, advanced adenoma (AA) and CRC to obtain
candidate biomarkers and predictive models capable to identify the different disease stages.

2. Results

After quality assurance and data processing, a total of 1380 metabolites were detected
in 120 fecal samples, derived from benign (n = 40, control), clinically localized colorectal
cancer (n = 40, CRC) and advanced adenoma (n = 40, AA), that fulfill the Metabolon’s
acceptance criteria, being 6% of RSD for instrument variability and 10% of RSD for total
process variability, in the four methods described in the Section 4.

Using the Metabolon’s in-house library and library entries of purified standards,
229 amino acids, 34 carbohydrates, 55 cofactor and vitamins, 12 metabolites of energy
production metabolism, 353 lipids, 63 nucleotides, 12 partially characterized nucleotides,
43 peptides and 241 xenobiotics metabolites make a total of 1042 compounds with known
structural identity and 338 with unknown structures (Supplementary Table S1).

2.1. Univariate, Multivariate and Logistic Regression Analysis

The 1380 metabolites were used for the analysis by principal component analysis
(PCA). As it can be seen in PCA scores plot (Figure 1A) no tendency or separation was
observed among the three groups. Considering this fact, a supervised analysis was per-
formed by the random forest (RF) method. Firstly, the three groups were compared but the
predictive accuracy obtained in the random forest confusion matrix was 52% (Figure S3 in
the Supplementary Material). Nearly 50% of normal individuals were assigned as AA and
vice versa, and 60% of CRC patients were correctly assigned.

Considering the RF’s poor ability when it comes to differentiating the three groups,
a new RF was performed, fusing on the one hand AA + CRC compared with the control
group, and on the other hand grouping control + AA compared with CRC. In both cases the
predictive accuracy increased, reaching 75% in the last case, suggesting that the metabolic
profiles of AA samples might be similar to controls (Supplementary Material Figure S4).
Considering these results, the important variable for control + AA vs. CRC was estimated
using RF, where Figure 1B gathers the top 30 metabolites’ biochemical importance plot, as
well as the class of each compound. As can be seen, most of the compounds belong to the
lipid class, indicating that mainly lipid metabolism is dysregulated in CRC patients.

Finally, a univariate statistical test based on Welch’s two-sample t-test was per-
formed comparing CRC with control and AA individuals. In total, 25 metabolites had
q-values ≤ 0.05 and were identified, except one (Table 1). Among them, 17 were upregu-
lated and 8 were downregulated for CRC patients compared to control and AA individuals.
In Table 1, the significant values obtained after FDR application in the Welch’s two-sample
t-test are summarized. The identified compounds and their associated pathway, as well as
the fold change and the identification confidence level based on the metabolomics society
initiative (MSI), are included. Comparing univariate and multivariate statistical results of
control + AA vs. CRC, 20 out of 25 significant metabolites obtained by Welch’s t-test were
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also found to be important variables by RF classification method. This makes the results
reliable, as different statistical approaches reached same significant metabolites.
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shows each variable on the Y-axis and their importance on the X-axis (B). * indicates the compound 
has not been confirmed based on standard, but highly confident on its identification, and ** standard 
was not available and reasonably confident on its identification. 
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0.7753–0.9825), 0.7 of sensitivity and 1 of specificity. The prediction model was: 

Y = −4.0684 + 0.7050 Hgb − 0.2694 Bilirubin E,E + 0.7248 lactosyl-N-palmitoyl-sphin-
gosine (d18:1/16:0) − 0.3435 glycocholenate sulfate + 0.4484 STLVT. 

Hgb concentration in fecal samples, lactosyl-N-palmitoyl-sphingosine (d18:1/16:0) and 
STLVT were positively associated with risk of developing CRC. In contrast, inverse associa-
tions with risk of developing CRC were observed to Bilirubin E,E and glycocholenate sulfate.  

The obtained AUC value was 0.9500 (95% CI 0.8802-1) in the predicted ROC curve, 
and the best threshold was achieved at 0.678 (Figure 2). 

Figure 1. Two-dimensional principal component analysis plot for all fecal samples color-coded by
group (grey—control group; purple—AA; and green—CRC) (A). Top 30 metabolites’ biochemical
importance plot performed by RF classification-method analysis for control + AA vs. CRC. The plot
shows each variable on the Y-axis and their importance on the X-axis (B). * indicates the compound
has not been confirmed based on standard, but highly confident on its identification, and ** standard
was not available and reasonably confident on its identification.

A logistic regression was also built, including patient demographic data in the model.
The combination of hemoglobin (Hgb) concentration in fecal samples with four metabo-
lites predicts CRC with predictive accuracy of 91.67% (95% Confidence Interval (CI)
0.7753–0.9825), 0.7 of sensitivity and 1 of specificity. The prediction model was:

Y = −4.0684 + 0.7050 Hgb − 0.2694 Bilirubin E,E + 0.7248 lactosyl-N-palmitoyl-
sphingosine (d18:1/16:0) − 0.3435 glycocholenate sulfate + 0.4484 STLVT.

Hgb concentration in fecal samples, lactosyl-N-palmitoyl-sphingosine (d18:1/16:0) and
STLVT were positively associated with risk of developing CRC. In contrast, inverse associa-
tions with risk of developing CRC were observed to Bilirubin E,E and glycocholenate sulfate.

The obtained AUC value was 0.9500 (95% CI 0.8802-1) in the predicted ROC curve,
and the best threshold was achieved at 0.678 (Figure 2).
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Table 1. Significant metabolites obtained by Welch’s two-sample t-test followed by FDR (q-values ≤ 0.05), and fold-change heatmap, which indicates the ratio of
the mean scaled intensity for each metabolite for the comparisons AA vs. Control (C), CRC vs. C, AA + CRC vs. C, CRC vs. AA, and C + AA vs. CRC. Red cells
indicate that the mean values are significantly higher (upregulated) and green cells indicate the mean values are significantly lower (downregulated). MSI indicates
the identification confidence level and C is the abbreviation of control group.

Pathway Biochemical Name
AA vs. C CRC vs. C AA + CRC vs. C CRC vs. AA C + AA vs. CRC MSI

Fold Change q-Value Fold Change q-Value Fold Change q-Value Fold Change q-Value Fold Change q-Value

AMINO ACID
Histidine Metabolism formiminoglutamate 0.92 0.709 2.02 0.0817 1.47 0.5331 2.21 0.0089 2.11 0.0064 1

PEPTIDE

Polypeptide val-val-ala 0.51 0.731 2.02 0.0705 1.27 0.4626 3.96 0.0076 2.68 0.0064 1
STVLT 0.46 0.8245 11.83 0.0065 6.14 0.241 25.98 0.0019 16.26 0.0022 1

LIPID
Fatty

Acid, Dicarboxylate
3-carboxy-4-methyl-5-propyl-2-

furanpropanoate 1.3 0.7987 2.78 0.0339 2.04 0.2488 2.13 0.1472 2.42 0.0233 1

Fatty
Acid Metabolism

eicosenoylcarnitine (C20:1) 0.73 0.6723 0.41 0.0063 0.57 0.241 0.57 0.7251 0.48 0.0274 2

Diacylglycerol oleoyl-arachidonoyl-glycerol
(18:1/20:4) [2] (DAG 38:5)

0.75 0.8245 4.11 0.0065 2.43 0.241 5.5 0.0017 4.7 0.0015 2

Ceramide ceramide (d18:2/24:1, d18:1/24:2) 0.65 0.7016 1.92 0.0771 1.28 0.5331 2.94 0.0004 2.32 0.001 2

LacCer

lactosyl-N-palmitoyl-sphingosine
(d18:1/16:0) (LacCer 34:1) 0.53 0.731 3.06 0.0631 1.8 0.4776 5.78 0.0013 4,00 0.0016 1

lactosyl-N-nervonoyl-
sphingosine (d18:1/24:1)

(LacCer 42:3)
0.42 0.6788 3.13 0.1213 1.78 0.5463 7.39 0.0016 4.4 0.0041 2

Sphingomyelin (SM)

palmitoyl sphingomyelin
(d18:1/16:0) (SM 34:1)

0.59 0.7225 2.3 0.0309 1.45 0.4556 3.89 0.001 2.9 0.001 1

behenoyl sphingomyelin
(d18:1/22:0) (SM 40:1)

0.56 0.6788 2.04 0.1068 1.3 0.5332 3.64 0.0021 2.61 0.005 2

SM (d17:1/16:0,
d18:1/15:0, d16:1/17:0)

0.52 0.6965 1.89 0.1643 1.2 0.5332 3.67 0.008 2.49 0.0233 2

SM (d18:2/16:0, d18:1/16:1)
(SM 34:2)

0.64 0.7359 5.16 0.0017 2.9 0.241 8.01 0.0001 6.28 0.0002 2

SM (d18:1/20:0, d16:1/22:0)
(SM 38:1)

0.45 0.7339 1.63 0.0779 1.04 0.461 3.61 0.0033 2.25 0.0064 2

SM (d18:1/24:1, d18:2/24:0)
(SM 42:2)

0.5 0.7186 4.1 0.0039 2.3 0.3232 8.19 0.00007 5.46 0.00008 2

SM (d18:2/24:1, d18:1/24:2)
(SM 42:3)

0.59 0.7359 6.55 0.0017 3.57 0.241 11.19 0.0001 8.26 0.0002 2
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Table 1. Cont.

Pathway Biochemical Name
AA vs. C CRC vs. C AA + CRC vs. C CRC vs. AA C + AA vs. CRC MSI

Fold Change q-Value Fold Change q-Value Fold Change q-Value Fold Change q-Value Fold Change q-Value

LIPID
Secondary Bile Acid

Metabolism
glycolithocholate sulfate 2.05 0.731 0.28 0.1213 1.17 0.5439 0.14 0.0332 0.19 0.0071 2
glycocholenate sulfate 0.4 0.8598 0.1 0.1643 0.25 0.472 0.24 0.2052 0.14 0.0398 2

NUCLEOTIDE
Pyrimidine
Metabolism

cytidine 0.93 0.7359 0.46 0.0417 0.7 0.2488 0.5 0.3399 0.48 0.0398 1

COFACTOR AND VITAMINS

Hemoglobin and
Porphyrin

Metabolism

heme 0.33 0.7604 8.44 0.0088 4.38 0.2885 25.62 0.0008 12.69 0.0011 1
bilirubin (Z,Z) 0.52 0.7484 0.16 0.0813 0.34 0.3114 0.31 0.3557 0.21 0.0457 1
bilirubin (E,E) 0.77 0.7849 0.19 0.1589 0.48 0.5331 0.25 0.0497 0.21 0.0105 2

XENOBIOTICS
Xanthine Metabolism 3,7-dimethylurate 1.18 0.8245 0.42 0.125 0.8 0.461 0.36 0.1135 0.39 0.0398 1

PARTIALLY CHARACTERIZED MOLECULES (PCM)

PCM bilirubin degradation product,
C16H18N2O5 (2)

0.91 0.7329 0.31 0.0219 0.61 0.2488 0.34 0.2451 0.32 0.0064 3

UN NAMED
N/A X-11787 1.28 0.8318 3.57 0.0065 2.43 0.241 2.78 0.0127 3.13 0.0027 4
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Figure 2. ROC curve of predictive model using logistic regression with Hgb and predicted metabolites.

2.2. Comparison of Metabolome of Colorectal Cancer, Advanced Adenoma and Control Groups

As can be observed from Table 1, lipid metabolism was the most affected path-
way, given that it stands for 60% of the altered metabolites, specifically metabolites in-
volved in the sphingolipid (SL) pathway. Ceramides (Cer) are the central molecules in
SL metabolism, which are produced by both catabolic and anabolic mechanisms, thereby
crafting a metabolic hub, obtaining sphingomyelins (SM) via SMase pathway, glycosph-
ingolipids (GSL), hexosylceramide (HexCer) and lactosylceramides (LacCer) via cere-
broside pathway and sphingosine via salvage pathway [24]. Lactosylceramides were
significantly found not only by Welch’s two-sample t-test, but also lactosyl-N-palmitoyl-
sphingosine (d18:1/16:0) was found as part of the prediction model for CRC disease by
logistic regression.

According to our results, SM reflected a generalized increase in CRC samples com-
pared to those from control and AA. Remarkably SM 34:1 and SM 42:3 molecules, since both
are related with Cer 34:1 and Cer 42:3 significantly increased not only in control + AA vs.
CRC even in CRC comparing with AA too (Table 1). The same results were obtained for Lac-
Cer 34:1 and LacCer 42:3, but the HexCer (intermediate molecules between Cer and LacCer)
do not show a statistical significance, but a slight tendency to increase was observed. An-
other interesting finding that is consistent with these results and findings, even though sta-
tistical significance was not achieved, is that 3-ketosphinganine (Supplementary Table S1),
which is one of the Cer precursors obtained by De Novo pathway, was also increased in
control samples in comparison with both AA or CRC groups.

Apart from lipids, the amount of hemoglobin-derived heme group measured in stool
samples from CRC patients was significantly higher compared to those amounts obtained
from AA and control individuals, even in the control + AA fusion group. Other heme-
related compounds (e.g., bilirubin) or hemoglobin fragments of hydrolyzed α-chain STVLT
(α133–137) and VGAHAGEY (α17–24) [25], the bilirubin E,E, were reduced significantly,
and STVLT increased in CRC individuals. For the VGAHAGEY metabolite a very high fold
change was observed in CRC samples compared with another groups; even so, the change
was not statistically significant (Supplementary Table S1).

We could observe in CRC samples a reduction tendency in the levels of secondary-bile-
acid metabolites, but only two metabolites associated with secondary-bile-acid metabolism
were statistically significant in CRC individuals compared to AA and control + AA. Apart
from these metabolites, it was also observed that other metabolites involved in primary-
bile-acid or secondary-bile-acid metabolism were altered in CRC patients (q-value ≥ 0.05).

A downregulated tendency was observed in pyrimidine-related metabolites (e.g., cyti-
dine, cytosine, 3-ureidopropionate, 3-ureidoisobutyrate and 3-aminoisobutyrate) especially
in cytidine, since that was the unique nucleotide that was statistically significant in CRC
samples compared with the control and control + AA group.
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Finally, considering amino-acid metabolism, formiminoglutamate (FIGlu) was found
to be significant, with an upregulated tendency in CRC patients compared to AA and
control + AA. This metabolite is an important intermediate metabolite that was finally
involved in biological pathways such as tricarboxylic acid (TCA) cycle, and by its conver-
sion in several steps into alpha-ketoglutaric acid also found upregulated in CRC patients
(Supplementary Table S1), and purine synthesis.

3. Discussion

Nowadays, colonoscopy is the most reliable standard for CRC detection, despite
being an invasive method. For this reason, we proposed metabolomics as an approach
for CRC early detection as it is emerging as an efficient approach for the detection of
different tumors [26–29].

Our previous metabolomics approach studied the differences in 105 fecal metabolites,
including glycerolipids, glycerophospholipids, sterol lipids and sphingolipids. Although
18 metabolites were significantly altered in patients with advanced neoplasia compared to
controls, the combination of cholesteryl esters (ChoE (18:1), ChoE (18:2) and ChoE (20:4)),
phosphatidyl ethanolamines (PE (16:0/18:1)), sphingomyelins (SM (d18:1/23:0) and SM
(42:3)) and triglyceride (TG (54:1)) discriminated AA and CRC from control patients [7].
Now, applying a multiplatform untargeted metabolomics with four metabolite-extraction
processes and analyzed by four different UPLC-MS/MS methods, we could extend our
previous study to 1380 metabolites, increasing the coverage and obtaining a wider picture
of metabolic dysregulation.

Most of the recent epidemiological studies focused on the role of dietary heme in the
pathogenesis of CRC [30–33]. Heme induced DNA damage and proliferation of human
colonic epithelial Caco-2 cells via H2O2 produced by heme oxygenase (HO), suggesting
that HO-1 and cell proliferation or apoptosis are linked [30–34], where high expression of
HO-1 has been observed in solid tumors in humans [30,35,36]. In our study, we detected
higher levels of the heme group in CRC samples, further supporting this association of
heme and CRC.

In addition of its primordial function as an oxygen carrier, hemoglobin is also a
source of endogenous bioactive heme-peptides [37] STVLT and VGAHAGEY, related to
antimicrobial peptides (AMPs) that are indispensable components of the innate immune
system in various species, including humans, animals and plants, and become the first-line
defense against foreign attacks [37–39]. AMPs have a broad spectrum of biological activities,
including antibacterial, antifungal, antivirus and anticancer [37,40–42]. The presence of
STVLT or VGAHAGEY, and especially both, indicates a high probability of being CRC [43];
and the absence of both indicates a high likelihood not to be CRC [43,44]. In agreement
with this, we detected higher levels of those heme-related peptides in the CRC samples.

This study found that 60% of the detected significant metabolites that were upregulated
belonged to metabolites from lipid-metabolism pathways, highlighting the critical role
of this metabolic route in tumoral biology, since changes in lipid metabolism can affect
numerous cellular processes [45].

The dysregulated lipid metabolism, and in particular SL metabolism, is a consequence
of the cell growth, mortality and invasion currently occurring in tumoral environments that
could act as tumor biomarkers [46,47]. Cancer cells can further support their proliferation,
metastasis and resistance to chemotherapeutics by upregulating the production of pro-
survival SLs, such as sphingosine-1-phosphate, and downregulating pro-cell death SLs
such as Cer [24].

Cer can be generated by several mechanisms, including catabolic and anabolic path-
ways [24,45–49]. The results showed that CRC patients have decreased levels in 3-ketosphin-
ganine, which is an endogenous Cer precursor synthesized through “de novo” pathways.
The decrease in this metabolite is associated with cell proliferation [50–55].

Cer are precursors of some SL, which GCS can glycosylate to obtain glucolipids as
HexCer and a posteriori LacCer or phospholipids as SM by SMases. The modulations
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of HexCer and SM levels are associated with cell life/death, and the accumulation of
LacCer is associated with cell proliferation [50,56–58]. LacCer are key metabolites in several
biological functions such as immunological response. It is believed that proinflammatory
factors activate LacCer synthase to generate LacCer, which activates “oxygen-sensitive”
signaling pathways affecting such cellular processes as proliferation, migration, adhesion,
etc. Dysregulation in these pathways can affect several diseases of the cardiovascular
system, cancer and inflammatory states. Thus, LacCer metabolism is a potential target for
new therapeutic treatments and a more targeted approach for future studies [59].

SM, part of phospholipids, is an integral part of the membrane and determines its
structure. SM comprises the most significant proportion of SL, among which the d18
base backbone is the dominant species. Several studies have demonstrated that the in-
crease in phospholipids in the cell membrane are related to carcinoma [58]. It has been
suggested that higher levels of phospholipids can be due to enhanced cell-membrane
synthesis related to accelerated neoplasm cell replication [58,60]. In the first phase, G1,
of the cell cycle, are observed the most remarkable changes in phosphatidylcholine and
phosphatidylethanolamine content, where biosynthesis, catabolism and metabolism of
phospholipids are controlled by enzyme activity at its maximum level [58,61,62], and differ-
ences in membrane phospholipid contents can influence metastasis development [58,63].

Another parameter to consider is the connection between cancer and lipid metabolism
with the diet effect. High-fat diets can promote the hepatic synthesis of cholesterol-derived
bile acids (BAs) and increase their delivery to the colonic lumen [8,64–67]. After secretion to
the intestinal lumen, primary bile acids are deconjugated, and most of them are reabsorbed
in small-intestinal transit. The remaining BAs enter the colon. High-fat diets stimulate
the growth and activity of bacteria with 7α-dehydroxylation capacity, converting primary
bile acids into secondary bile acids associated with tumorigenic activity [8,56]. High
concentrations of secondary bile acids in the feces, blood and bile have been linked to
the pathogenesis of colon cancer [8,26,53,68–70]. Here, we observed a disturbance of
BAs metabolism, and in contrast to previous studies that suggested that BAs cause DNA
damage and are promoters of colon carcinogenesis [8,26,53,71,72], our research showed that
compared with AA and control samples, BAs decreased in CRC individuals above all in
glycolithocholate sulfate and glycocholenate sulfate. Considering that only two metabolites
were significant, and the importance of this pathways in cancer disease, this finding here
opens a more targeted approach on bile-acid metabolism to enhance the biological snapshot
associated to colorectal cancer.

Some studies describe the direct association between gut microbiota and metabolome,
finding differences in fecal-bacterial compositions between patients with and without
adenoma [26,53,64]. In particular, bile-acid metabolism showed significant correlations
with genera from the Firmicutes phylum (Clostridium, Dehalobacterium, Ruminococcus
and Oscillospira) and a genus from the Actinobacteria phylum (Adlercreutzia), and sphin-
golipid metabolism showed negative correlations with Dehalobacterium, Ruminococcus
and Oscillospira [53]. Although is known that diet (e.g., fatty-acid content), host physiology
(body mass index) and immune response are indirectly connected, we did not study this
association due to general Spanish population was considered for this study.

Finally, the finding observed for the formiminoglutamate (FIGlu) is remarkable. The
increased tendency in CRC patients was related to alterations in tricarboxylic acid (TCA)
cycle, key pathways for energy production and the synthesis of purine, pyrimidine, amino
acids, etc. intermediates, as well as purine synthesis. Briefly, FIGlu is an intermediate
metabolite of the pathway that converts histidine into glutamic acid and depends on
tetrahydrofolate (THF), a key compound in one-carbon metabolism. FIGlu is converted into
glutamic acid and into 5,10-methenyl-THF by the action of the formiminotransferase. On
one hand, glutamic acid enters in the tricarboxylic acid (TCA) cycle as alpha-ketoglutaric
acid. On the other hand, 5,10-methenyl-THF is a metabolite directly used for purine
synthesis as it acts as a carbon donor. Both pathways, TCA cycle and purine synthesis,
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were found to be altered in certain cancer cells [73,74] and could explain the enhancement
on cellular proliferation.

The RF method showed the best results for C + AA vs. CRC, and hence the generalized
regression model was performed evaluating this model, analyzing accuracy, sensitivity,
specificity, AUC, etc. The model predicted a combination of Hgb along with Bilirubin
E,E, lactosyl-N-palmitoyl-sphingosine (d18:1/16:0), glycocholenate sulfate and STLVT as
CRC predictor.

In summary, although the number of samples is limited, our comprehensive metabolomics
study showed alterations in several metabolisms involving lipids, cofactors, polypeptides
and nucleotides in CRC patients. Hgb-related molecules, four metabolites (Bilirubin E,E,
lactosyl-N-palmitoyl-sphingosine (d18:1/16:0), glycocholenate sulfate and STLVT), micro-
biome and BAs metabolism are potentially valuable for future research in the diagnosis
and prevention of colorectal cancer in an extensive cohort-study validation incorporated
in clinical trials as potential biomarker. Given that this study was performed with sam-
ples collected from regular population screenings, some limitations about the collection
of the information related to diet, lifestyle and diurnal variations were not included in
the study protocol, and the influence of those parameters will need to be addressed in
future investigations.

4. Materials and Methods
4.1. Clinical Samples and Study Population

Samples were obtained for the “metabolomic profile for the diagnosis of colorectal
cancer and its precursor lesion, advanced adenoma” study, from patients submitted to
colonoscopy. They donated the samples to the biobank of Instituto de Investigación
Sanitaria Galicia Sur. The study was approved by Drug Research Ethical Committee
(CEIm-G) (Code 2019/411). Patients self-collected a fecal sample from one bowel movement
without specific diet or medication restrictions the week before the colonoscopy [75].
The fecal sample was brought to the laboratory in less than 4 h, split in aliquots and
immediately frozen at −80 ◦C. One aliquot was shipped to Metabolon, Inc (Metabolon, Inc.,
Durham, NC, USA) for analysis and other aliquot was employed for FOB measurement
using SENTIFIT® FOB Gold Latex fecal immunoassay test (FIT) (Sentinel Diagnostics,
Castellana G. BA, Italy). A total of 120 samples distributed in 40 patients (20 females and
20 males) with normal colonoscopy, 40 patients (20 females and 20 males) with advanced
adenoma-AA (≥10 mm, villous histology, high-grade dysplasia) and 40 patients (20 females
and 20 males) with CRC were selected. Cohort-study population characteristics are listed
in the Supplementary Table S2.

4.2. Sample Preparation and Metabolomics Analysis

Frozen fresh fecal samples were shipped on dry ice to Metabolon, Inc. for UPLC-
MS/MS analysis. Each sample was accessioned into the Metabolon Laboratory Information
Management System (LIMS, Metabolon, Inc., Morrisville, NC, USA) and was assigned by
the LIMS a unique identifier that was associated with the original source identifier only.
This identifier was used to track all sample handling, tasks, results, etc. The samples (and
all derived aliquots) were tracked by the LIMS system. All portions of any sample were
automatically assigned their own unique identifiers by the LIMS [61] (see Supplementary
Materials for more detailed information).

Samples were prepared using previous extraction methods by the automated Micro-
Lab STAR® system from Hamilton Company (MicroLab STAR®, Hamilton Robotics Inc.,
Reno, NV, USA) [76,77]. Then, proteins were removed by precipitating with methanol
under vigorous shaking for 2 min in a GenoGrinder 2000 homogenizer (Glen Mills Inc.,
Clifton, NJ, USA) followed by centrifugation [76,77]. The resulting extract was divided
into five aliquots, and the organic solvent was evaporated on a TurboVap® (Zymark,
Hopkinton, MA, USA) for analysis as it improves the chromatographic resolution, peak
shape and compound detection [77]. The aliquots were used as follows: two for analysis
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by reverse-phase ultraperformance liquid chromatography–tandem mass spectrometry
(UPLC-MS/MS) methods with positive-ion-mode electrospray ionization (ESI), one for
analysis by reverse-phase UPLC-MS/MS with negative-ion-mode ESI, one for analysis by
hydrophilic-interaction liquid chromatography (HILC) /UPLC-MS/MS with negative-ion-
mode ESI, and one sample was reserved for backup [76–78] (see Supplementary Material
for detailed information).

Metabolomic profiles were obtained by four different methods in a Waters ACQUITY
ultraperformance liquid-chromatography system (UPLC) (Waters Corporation, Clifton, NS,
USA) [77] coupled to a Q-Exactive high-resolution/accurate mass spectrometer (Thermo
Scientific, Waltham, Mass, USA) [62] with heated electrospray ionization (HESI-II) source
and operating at 35,000 mass resolution [75]. As different methods were used for the analy-
sis, each dry extract was reconstituted in a compatible solvent to each method. Solvents
contained a series of standards (isotopically labeled compounds) at fixed concentrations to
monitor instrument performance, ensure data quality and serve as retention index markers
for chromatographic alignment during data-processing step [77,79]. The UPLC and MS
conditions are described in detailed by Ford L. et al. [78] (Supplementary Tables S1 and S2),
and briefly explained in the Supplementary Material and Methods. The linearity associ-
ated with these methods was previously published and reported [80]. All the analyses
previously mentioned were performed by Metabolon, Inc.

In order to control and assess analytical variability during analysis, several quality
samples were prepared (see Supplementary Material, QA/QC section, and Table S1).
Instrument variability was determined by calculating the relative standard deviation (RSD)
for the internal standards added to each sample prior to injection, and the overall process
variability was determined by the RSD for all endogenous metabolites present in 100%
of the pooled matrix sample. Both RSDs must fulfill the Metabolon acceptance criteria.
Furthermore, in order to remove any time-related effects, samples were randomly injected
in the sequence and the pooled matrix sample (QC) was also analyzed through the sequence.
A scheme of the analytical sequence is included in Figure S1 (Supplementary Material).

4.3. Data Extraction and Compound Identification

Data extraction and compound identification were entirely performed by Metabolon,
Inc. The information related to bioinformatics, LIMS, data extraction and compound
identification is summarized in the Supplementary Material and is highly detailed in
several published articles [78,80–83]. Briefly, raw data were extracted, peak-identified
and QC processed using the Metabolon’s hardware and software (see Supplementary
Material). Peak detection and integration were performed by the ThermoFisher Scientific
(Waltham, MA, USA) software Xcalibur Quan Browser. Then, a list of m/z ratios, retention
indices and areas under the curve (AUC) values were obtained. Afterwards, the biological
data sets were chromatographically aligned based on the retention index that utilized
internal standards assigned a fixed RI value. Finally, peaks were matched against the
Metabolon´s in-house library of authentic standards, as well as compared with library
entries of purified standards and routinely detected unknown compounds specific to the
respective analytical method.

The compound identification was based on three criteria: retention time index
(window ≈ 10 s), experimental accurate mass match to the library authentic standards
(±10 ppm), and the MS/MS forward and reverse scores between the experimental data
and authentic standard. To each identified metabolite, an identification confidence level
based on the MSI was assigned, being level 1 for those compounds validated with a pure
standard; level 2 for compounds that were not confirmed by the standard but had been
verified by MS/MS; level 3 for a tentative structure or a putative class; and level 4 for those
unknown compounds (see Supplementary Table S1).

After compound identification, and before any statistical analysis, a curation step
was also performed to remove background noise, artifacts, misassignments and to ensure
accurate and consistent identification (see Supplementary Material).
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4.4. Metabolite Quantification and Data Normalization

Once it was ensured that high-quality data had been obtained, peaks were quantified
using AUC, and then data were normalized or corrected in run-day blocks by registering the
medians equal to one and normalizing each data point proportionately (see Supplementary
Material). Finally, missing values were imputed by the minimum value across all batches.

4.5. Statistical Analysis for Metabolome and Clinical Data

R and JMP programs were used for the statistical analysis. Unsupervised analysis by
principal component analysis (PCA, R function “prcomp”) was performed using the matrix
that was previously median-scaled as well as log-transformed. This PCA model was used
for data-dimension reduction, data visualization and group distribution or tendencies. This
PCA was also utilized to understand global metabolic changes among control, advanced
adenoma and CRC patients. Then, random forest (RF) (R package “randomforest”) [84] and
logistic regression (R function “glm”) [85,86] were used to build supervised classification
and prediction models. Considering the requirement of model validation bootstrapping
with replacement was used, not only for supervised model validation, but also to minimize
the bias and improve the precision of prediction [85] (see Supplementary Material for
more details).

RF was further used to measure the importance of all variables and the ability of each
variable to classify the data appropriately. In this sense, “Mean Decrease Accuracy” was
used as the metric for variable importance selection.

Finally, logistic regression, a generalized linear model of probability multivariate
analysis that was used as a predictor of CRC, was used. From the database, the 120 samples
were randomly sampled with replacements (bootstrapping method) splitting the dataset
into two subsets by train-test split procedure to evaluate the performance model using the
R package “caret” [87]. A training set with the size of 0.7 to build the prediction model
and the remainder percentage 0.30 was assigned to the test set used as an evaluation
model. Stepwise regression was built, in which all predictor variables were added or
removed from the model one by one. Additionally, each step was tested to ensure the
component’s significance [85,86]. This logistic regression was evaluated and validated with
k-fold cross-validation of the generalized linear binomial model, completing left-one-out
cross-validation (LOOCV) using the boot package. The area under receiver operating char-
acteristic (ROC) curve (AUC) (R package “pROC” and “performance”) was used to evaluate
the performance of the prediction model [88–90]. This procedure was repeated 1000 times,
and the median of AUCs was regarded as the final AUC (R package “ROCR”) [89–91].
Analyses were performed using R software (version R 4.1.2) (Boston, MA, USA) [92].

Then, and considering the results obtained by PCA and RF, the univariate statistical
test was applied. In this sense, Welch’s two-sample t-test was used to compare two-by-
two groups and to identify metabolites that differed significantly between experimental
groups [67]. Following the workflow detailed in the Supplementary Material, statistical
significance was achieved as q-value ≤ 0.05, after applying multiple hypothesis-testing
correction by the false-discovery rate (FDR). [76,86,93].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060550/s1. Table S1: Description of Metabolon quality
control samples; Table S2: Metabolon quality control standards; Figure S1. Preparation of technical
replicates; Figure S2: Visualization of data normalization steps for a multiday platform run.; Figure S3.
Ranfom Forest Confusion Matrix obtained by bootstrapping for the three groups (Control (C), AA
and CRC); Figure S4. Random Forest Confusion Matrix obtained by bootstrapping for the fusion of
AA + CRC vs. Control (A), and for the fusion of AA + Control vs. CRC (B)
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