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Abstract: The development of luminescent materials is critical to humankind. The Nobel Prizes
awarded in 2008 and 2010 for research on the development of green fluorescent proteins and super-
resolved fluorescence imaging are proof of this (2014). Fluorescent probes, smart polymer machines,
fluorescent chemosensors, fluorescence molecular thermometers, fluorescent imaging, drug delivery
carriers, and other applications make fluorescent polymers (FPs) exciting materials. Two major
branches can be distinguished in the field: (1) macromolecules with fluorophores in their structure
and (2) aggregation-induced emission (AIE) FPs. In the first, the polymer (which may be conjugated)
contains a fluorophore, conferring photoluminescent properties to the final material, offering tunable
structures, robust mechanical properties, and low detection limits in sensing applications when com-
pared to small-molecule or inorganic luminescent materials. In the latter, AIE FPs use a novel mode of
fluorescence dependent on the aggregation state. AIE FP intra- and intermolecular interactions confer
synergistic effects, improving their properties and performance over small molecules aggregation-
induced, emission-based fluorescent materials (AIEgens). Despite their outstanding advantages (over
classic polymers) of high emission efficiency, signal amplification, good processability, and multiple
functionalization, AIE polymers have received less attention. This review examines some of the
most significant advances in the broad field of FPs over the last six years, concluding with a general
outlook and discussion of future challenges to promote advancements in these promising materials
that can serve as a springboard for future innovation in the field.

Keywords: fluorescent polymers; fluorescent macromolecules; aggregation-induced emission;
conjugated polymers; conducting electrolytes; conjugated polyelectrolytes

1. Introduction

Luminescence is the emission of visible, ultraviolet, or infrared light in the optical
range that is an excess over the thermal radiation emitted by the substance at a given
temperature and continues after absorbing the excitation energy for a time significantly
longer than the period of the absorbed light [1]. Various types of luminescence can be
identified (e.g., hemi-, bio-, tribo-, and thermo-luminescence). Photoluminescence occurs
when molecules interact with photons of electromagnetic radiation. Fluorescence occurs
when electromagnetic energy is instantaneously released from the singlet state [2]. Some
compounds display delayed fluorescence, which may be mistaken for phosphorescence.
This is the outcome of two intersystem crossings, one from the singlet to the triplet and one
from the triplet back to the singlet (Figure 1) [3].

The International Union of Pure and Applied Chemistry (IUPAC) defines fluorescence
(for organic molecules) as the spontaneous emission of radiation (luminescence) from
an excited molecular entity with spin multiplicity retention [4]. This definition becomes
irrelevant in species such as nanocrystalline semiconductors (quantum dots or fluorescent
quantum dots) [5] or metallic nanoparticles (fluorescent gold nanoparticles) [6] due to their
complex emission processes.
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Figure 1. Simplified diagram (Perrin–Jablonski) showing the difference between fluorescence and 

phosphorescence. Reproduced with permission from reference [7]. Copyright 2011, American 

Chemical Society. 

Fluorescent materials have been in high demand over the last decade [8], and to 

meet this demand, a large number of substances with fluorescent properties have been 

explored, such as silica particles [9], glass [10], gold surfaces [11], quantum dots [12], and 

carbon dots [13], which are combined with a variety of chemical receptors to produce a 

variety of fluorescent materials. Because of this high demand, there has been a lot of in-

terest in fluorescent polymers (FPs)research (Figure 2), because of their fascinating 

properties such as their increased signal response even after disturbance due to coopera-

tive conformational effects of its chain segments. This is especially advantageous due to 

its superior visco-elastic and mechanical properties, which aid in the manufacturing of 

new devices [14–19]. FPs, similar to small fluorescent molecules, have a wide range of 

uses for sensing [20,21] and imaging [22–27], optoelectronics [28], fluorescent bioprobes 

[29], molecular imaging [30], photodynamic treatments [31], OLEDs [32], storage data 

security [33], encryption [34], anti-counterfeiting materials [35], and other fields 

[27,36–43]. 
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Figure 2. The number of publications per year on (FPs) (obtained from Scifindern). 

Figure 1. Simplified diagram (Perrin–Jablonski) showing the difference between fluorescence and
phosphorescence. Reproduced with permission from reference [7]. Copyright 2011, American
Chemical Society.

Fluorescent materials have been in high demand over the last decade [8], and to meet
this demand, a large number of substances with fluorescent properties have been explored,
such as silica particles [9], glass [10], gold surfaces [11], quantum dots [12], and carbon
dots [13], which are combined with a variety of chemical receptors to produce a variety
of fluorescent materials. Because of this high demand, there has been a lot of interest in
fluorescent polymers (FPs)research (Figure 2), due to their fascinating properties such as
their increased signal response even after disturbance due to cooperative conformational
effects of its chain segments. This is especially advantageous due to its superior visco-elastic
and mechanical properties, which aid in the manufacturing of new devices [14–19]. FPs,
similar to small fluorescent molecules, have a wide range of uses for sensing [20,21] and
imaging [22–27], optoelectronics [28], fluorescent bioprobes [29], molecular imaging [30],
photodynamic treatments [31], OLEDs [32], storage data security [33], encryption [34],
anti-counterfeiting materials [35], and other fields [27,36–43].
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Based on the strategies for developing these materials, two major branches can be
distinguished in the field of FPs: (1) the use of a polymer chain (in general, using a
conducting polymer) containing fluorophores [44–48], and (2) the burgeoning field of
aggregation-induced emission (AIE) polymers [49–54]. Traditionally, conjugated polymers
(CPs) have been employed as primary FPs [55,56], where the electronic conjugation between
each repeating unit creates a semiconductive “molecular wire”, providing very useful
optical and electronic properties. However, the usage of non-conjugated polymers (NCPs)
to create FPs has steadily gained popularity. This advancement was substantially aided by
advances in controlled polymerizations of NCPs, which gave unprecedented control over
polymer compositions and topologies [57,58].

In comparison with traditional FPs, AIE polymers present the advantages of high PL
efficiency in aggregate and solid states, a large Stokes shift, outstanding photostability, etc.
Thus, AIE polymers are expected to exhibit unique properties and remarkable advantages
in their practical applications [51,59,60]. Furthermore, the structure, composition, and
morphology of AIE polymers can be fine-tuned to meet the diverse needs of practical
applications in chemo/biosensing, imaging, and theranostics.

Numerous reviews have been written independently for each type of FP, but classic
FPs and AIE polymers are treated separately. This review discusses a variety of FPs in the
hope that readers will gain a better understanding of the design strategy for FPs through a
discussion of these papers. Finally, the challenges and future development of this class of
materials are discussed.

2. Polymers Containing Fluorophores
2.1. Non-Conjugated Polymers Containing Fluorophores

Polymers are important and ubiquitous in modern society. They are widely used
in housewares, packaging, coatings, biomedical supplies, textiles and fabrics, adhesives,
engineering composites, and other applications due to their ease of processing and wide
range of mechanical performances [61–64]. Polymers and polymer-based composites are
designed and manufactured to be as robust as possible to meet the requirements of most
engineering applications. Several examples in the literature can be found in the preparation
of functional non-conjugated FPs by chemically customizing the core chromophore and the
macromolecular assembly strategy.

Modulating photophysical properties through changes in environmental stimuli such
as light, pH, pressure, heat, electric or magnetic fields, and chemical inputs is a grow-
ing area of research in FPs [65–68]. Mechanoresponsive luminescent (MRL) materials
are interesting materials that change their emission color upon application of external
forces. Weder and coworkers [69] introduced a novel approach that relies on an MRL
compound combined with supramolecular polymerization. They proposed an alterna-
tive approach based on the derivatization of MRL chromophores with supramolecular
binding motifs. The latter induces dyes to self-assemble into supramolecular polymers,
which are then transformed into materials that combine MRL behavior with macro-
molecular mechanics. Cyano-substituted oligo(p-phenylenevinylene) (cyano-OPV)1,4-
bis(α-cyano-4(12-hydroxydodecyloxy)styryl)-2,5-dimethoxybenzene was reacted with 2-
(6-isocyanatohexylaminocarbonylamino)-6-methyl-4[1H]-pyrimidinone in hot pyridine,
affording the supramolecular UPy-functionalized cyano-OPV, as shown in Figure 3a.

The material obtained showed the thermomechanical properties of a supramolecular
polymer glass, emitting three distinct colors in solid state (red, yellow, and orange) with
MRL and thermoresponsive properties (Figure 3b–f). It is hypothesized that the emission is
influenced by molecular packing, which can be altered mechanically [70–72]. Controlling
mechanochemical polymer scission with another external stimulus may provide a way to
advance the fields of polymer chemistry.
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(left) and thermoresponsive (right) luminescent behavior. The fluorescence changes from red to 

yellow upon scratching (left). Upon heating (180 °C), a viscous green-light-emitting fluid is formed, 

which solidifies into a red-light-emitting solid when cooled (right). (d) Fluorescence microscopy 

image of a fiber made from 2; note the yellow fluorescing severed edge. (e,f) Photographs of a 

cylinder made from the UPy-functionalized cyano-OPV before (e) and after (f) scratching its sur-

face. Images displaying fluorescence were recorded under illumination with 365 nm UV light. 

Adapted with permission from reference [69]. Copyright 2017, American Chemical Society. 
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Figure 3. (a) Synthesis of the UPy-functionalized cyano-OPV. (b) Schematic of supramolecular
assemblies. (c) Pictures of films made from the UPy-functionalized cyano-OPV, illustrating mechano-
(left) and thermoresponsive (right) luminescent behavior. The fluorescence changes from red to
yellow upon scratching (left). Upon heating (180 ◦C), a viscous green-light-emitting fluid is formed,
which solidifies into a red-light-emitting solid when cooled (right). (d) Fluorescence microscopy
image of a fiber made from 2; note the yellow fluorescing severed edge. (e,f) Photographs of a
cylinder made from the UPy-functionalized cyano-OPV before (e) and after (f) scratching its surface.
Images displaying fluorescence were recorded under illumination with 365 nm UV light. Adapted
with permission from reference [69]. Copyright 2017, American Chemical Society.

Notably, light-driven reactions in conjunction with fluorescence-based techniques
have become a significant synthetic tool in a range of chemical domains; changes in fluores-
cence are useful for monitoring reaction kinetics. Barner et al. [73] (Figure 4) developed a
fluorescence-based methodology to analyze the kinetics of the step-growth polymerization
in the photoinduced nitrile imine-mediated tetrazolene cycloaddition (NITEC). The tetra-
zole moiety rapidly interacts with activated dialkenes when exposed to UV light, resulting
in a luminous pyrazoline-containing polymer. As a result, step-growth polymers’ fluores-
cence emission is proportional to the number of ligation sites in the polymer, resulting in a
self-reporting optimal sensor system.
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Figure 4. General reaction scheme for the UV-initiated (λmax = 320 nm) step-growth polymerization
of monomers M1 (tetrazole RAFT agent) and M2 (bismaleimide), [M1]0 = [M2]0 = 50 mmol L–1,
in CDCl3 or THF-d8. The 1H NMR spectra (CDCl3) display the evolution of the signals used to
determine the monomer conversion and the pyrazoline yield. Reproduced from reference [73].

Figure 5 displays a conversion vs. reaction time plot obtained by 1H-NMR and
fluorescence spectroscopy, indicating remarkable agreement between the two approaches.
After 24 h, conversion rates of up to 90% were attained. In addition, the conversions for
photopolymerizations in CDCl3 and THF-d8 exhibit extremely comparable tendencies.
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Figure 5. (A) Kinetic plot displaying conversion vs. reaction time for the polymerization of M1,2
(Solvents = THF-d8 or CDCl3. NMR (solid symbols) and fluorescence (open symbols) determined
the conversion. (B) Corresponding Mw vs. conversion plot (Carothers curve represented as a dotted
line). (C) Mw values determined via SEC analysis. Reproduced with permission from reference [73].
Copyright 2017, American Chemical Society.

This method is an exciting tool for monitoring the progress of a reaction, especially
when NMR spectroscopy is challenging to use, such as when the backbone NMR reso-
nances overlap with the resonances of interest, when the polymer’s solubility in common
deuterated solvents is poor, or when high molecular weight polymers are analyzed.

Because of their good biocompatibility, high brightness, and ease of biofunctional-
ization, FPs have recently gained interest as imaging agents for biological applications;
as a result, some examples of NCPs will be disclosed below. In 2015, X. Zhu et al. [74]
prepared a set of multicolor fluorescent protein (GFP), by atom transfer radical polymer-
ization (ATRP) [75] using an azide-modified polyethylene glycol macroinitiator (average
molecular weight [Mn] = 12.3 kDa, polydispersity [Ð] = 1.21, yield = 57%). The free azide
group was used to attach the fluorophores, following the well-known copper-catalyzed
azide-alkyne-1,3- cycloaddition (click chemistry) [76].
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The GFP with a color palette ranging from blue to orange was created using a combi-
nation of chemically tailoring the core chromophore, showing potential applications for
fluorescent color regulation and cell imaging. GFP has received notoriety in biology as
a genetically encoded noninvasive luminous marker [77] due to its minimal cytotoxicity
and strong photostability. However, the macromolecular assembly showed the highest
emission quantum yield (QY), approaching 8%, which is more than 80-fold greater than
the core chromophore. The low QY values are attributed to the segmentation effect of
polymers, which can diminish intermolecular contacts that quench fluorescence and hinder
conformational free rotation (Figure 6).
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2015, American Chemical Society.

Furthermore, developing effective drug-delivery vehicles is still a difficult task in
materials science [78]. Serrano and coworkers [79] described poly(amidoamine) (PAMAM)
dendritic core, functionalized with 2,2-Bis(hydroxymethyl)propionic acid (bisMPA) den-
drons containing cholesterol and coumarin moieties, resulting in a new class of amphiphilic
hybrid dendrimers. Their self-assembly activity was studied in both bulk and water. Be-
cause of their perfect macromolecular structure and precise amounts of functional groups,
dendrimers are attractive candidates for medicinal applications [80] (Figure 7).

The synthesized dendrimers created spherical micelles in water due to their am-
phiphilic nature. The hydrophilic PAMAM cores are exposed at the surface, and the
hydrophobic sections (coumarin and cholesterol moieties) remain inside the micelle. The
cell survival of the micelles was examined in the HeLa (Henrietta Lacks) [81] cell line as
a function of concentration, and all the micelles were shown to be non-toxic after 72 h of
incubation at concentrations below 0.75 mg/mL.
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In the same line, the group of Kanazawa [82] reported a reversible temperature-
induced phase transition of N-isopropyl acrylamide (NIPAAm) copolymers with a fluores-
cent monomer based on fluorescein (FL), coumarin (COU), rhodamine (RH), or dansyl (DA)
skeleton, employed as a molecular switch to regulate fluorescence intensity. Furthermore,
pH responsiveness was seen in polymers with FL and COU groups, respectively (Figure 8).
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Figure 8. General synthetic scheme for the temperature and pH-responsiveness poly-NIPAAm.
Reproduced from reference [82].

The polymers were synthesized via radical polymerization in dimethylsulfoxide, using
azobisisobutyronitrile (AIBN) and 3-mercaptopropionic acid as the radical initiator and
chain-transfer agent, respectively. The weight-averaged molecular weight was determined
by gel permeation chromatography (GPC) (Table 1).
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Table 1. Characterization of synthetic FPs. Reproduced from reference [82].

Polymer Mw
a Ð λex (nm) λem (nm)

P(NIPAAm-co-FL) 52,994 1.979 490 515
P(NIPAAm-co-CO) 47,494 1.873 376 460
P(NIPAAm-co-RH) 45,905 2.028 540 588
P(NIPAAm-co-DA) 43,596 1.984 335 526

a Determined by GPC using DMF with 10 mM LiCl.

The authors concluded that the switchable emission responses of these polymers were
driven by a combination of the properties of both PNIPAAm and the fluorescent molecules.
In addition, in vitro experiments into cultured macrophage cells (RAW 264.7) showed that
intakes occurred over the lower critical solution temperature (LCST) over 30 ◦C for the
polymers. This behavior is due to a significant increase in cellular absorption of FPs at this
temperature, which appears to be caused by dehydration of polymer chains, as found in
prior research by the group [83,84].

Additionally, following the success in intracellular thermometry, biologists realized
the significance of temperature at the single-cell level and demanded that chemists produce
more user-friendly fluorescence thermometers [23,85,86]. Recently, Uchiyama et al. [87]
(Figure 9) have developed a cationic fluorescent nanogel thermometer (CFNT) based on
thermo-responsive N-isopropylacrylamide and environment-sensitive benzothiadiazole
(N-(2-{[7-(N,N-Dimethylaminosulfonyl)-2,1,3-benzothiadiazol-4-yl](methyl)amino}ethyl)-
N-methylacrylamide; DBThD-AA) [88], exhibiting a great sensitivity to temperature fluctu-
ations in live cells and a remarkable ability to penetrate live mammalian cells in a short
incubation period (10 min).

This novel fluorescent nanogel thermometer is photobleached resistant in live cells,
making it appropriate for long-term internal temperature monitoring, allowing intracellular
temperature during cell division.
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Figure 9. (a) Chemical structure of the CFNT. At lower temperatures, the CFNT swells by absorbing
water into its interior, where the environment-sensitive DBThD-AA units are quenched by neighbor-
ing water molecules. When heated, CFNT shrinks with the release of water molecules, resulting in
fluorescence from the DBThD-AA units. (b) Differential interference contrast (DIC) image, confocal
fluorescence image, and merged image of HeLa cells treated with 1 (0.05 w/v%), and (c) DIC image,
confocal fluorescence image, and merged image of MOLT-4 cells treated with the CFNT (0.05 w/v%).
Reproduced with permission from reference [87]. Copyright 2018, John Wiley and Sons.

2.2. Conjugated Polymers Containing Fluorophores

Conjugated polymers’ capacity to act as electronic materials is based on the effective
transport of excitons across the polymer chain [89]. In general, the excited state behavior of
the corresponding conjugated polymers is dictated by the photophysics of the chromophore
monomer. The influence of excited-state lifetimes and molecular conformations on energy
transfer is investigated using various molecular architectures [90]. The opportunity lies in
the nearly limitless possibilities for producing novel materials for specific uses by merely
chemically adjusting the molecular structure. Conjugated polymers can achieve electrical
qualities equivalent to non-crystalline inorganic semiconductors; nonetheless, conjugated
polymers’ complicated chemical and structural features are nontrivial and mirror those of
biomacromolecules. As a result, molecule conformation and interactions are critical to the
operation of these material systems.

A conjugated carbon chain is a sequence of alternating single and double bonds, with
highly delocalized, polarized, and electron-dense π bonds driving its electrical and optical
activity. Polyacetylene (PA), polyaniline (PANI), polypyrrole (PPy), polythiophene (PTH),
poly(para-phenylene) (PPP), poly(-phenylenevinylene) (PPV), and polyfuran are examples
of common conducting polymers (CPs) (Figure 10). Synthetic conducting polymeric ma-
terials are widely used in a variety of applications, including packaging, adhesives and
lubricants, microelectronic electrical insulators, and implanted biomedical devices [91].
Shirakawa et al. [92] discovered the first conducting polymer, a halogenated derivative of
poly(acetylene), opened the door to a burgeoning area of fascinating new uses. The charge
carrier mobility (which can be increased by doping) and significant light absorption in
the UV–visible range are attributed to the delocalized (conjugated) electronic structure of
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poly(acetylene). Unfortunately, poly(acetylene) is difficult to manufacture and unstable
in the presence of oxygen or water, making it unsuitable for a variety of applications. [93]
Moreover, polyacetylene doped with bromine has a million times the conductivity of
unadulterated polyacetylene, and this research was recognized with a Nobel Prize in 2000.
CPs have recently been developed for use as roll-up displays for computers and mobile
phones, flexible solar panels to power portable equipment, and organic light-emitting
diodes in displays, in which television screens, luminous traffic, information signs, and
light-emitting wallpaper in homes are expected to broaden the use of conjugated polymers
as light-emitting polymers [16]. In this context, the insertion of inorganic atoms into the
polymer chain is a powerful strategy for changing the characteristics of conjugated poly-
mers. [94] In this context, Rupar et al. [95] reported the preparation of poly(9-borafluorene)
vinylene (P9BFV, Figure 11) that showed simultaneous turn-off/turn-on fluorescence re-
sponses to fluoride in solution and NH3 (Figure 12) in the gas phase due to the presence of
three-coordinate boron. It is important to emphasize that only a small number of conjugated
polymers act as optical ammonia sensors [96–98].
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The synthesis of the polymer P9BF was conducted via the Yamamoto reductive cou-
pling [99] of Tip (Br). The polymerization is performed with small amounts of bromoben-
zene, which acts as a capping agent for the step-growth polymerization. On the other hand,
the copolymer P9BFV was synthesized via Stille coupling [100].

Compared to the homopolymer P9BF, the prolonged conjugation of P9BFV, owing to
the addition of the vinylene group, results in a lower optical bandgap (2.12 eV) and LUMO
(4.0 eV, calculated by CV).
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Figure 12. (a) Emission spectra of a P9BFV film before exposure to NH3 vapors, (b) emission spectra
of a P9BFV film while being exposed to NH3 from aqueous ammonium hydroxide, (c) emission
spectra of a P9BFV film 5 min after removal of the NH3 source and NH3 vapors. Reproduced with
permission from reference [95]. Copyright 2015, John Wiley and Sons.
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P9BFV has a strong solid-state fluorescence with an almost identical spectrum to that
observed in the solution. The fluorescence changed from yellow to blue when the film
was irradiated with UV light and exposed to ammonia. Furthermore, these alterations are
reversible: removing the ammonia atmosphere within 5 min restores P9BFV’s fluorescence
spectrum to its normal condition. When thin films of P9BF were exposed to ammonia, they
behaved almost identically to P9BFV.

Along with CPs FPs materials, the Bielawski group reported the ring-opening metathe-
sis polymerization of (bicyclo[2.2.2]octa-2,5,7-triene) (barrelene) to prepare copolymers
with norbornene, producing robust films [101]. The copolymers prepared underwent spon-
taneous dehydrogenation in the presence of air or when exposed to laser pulses (phenylene
vinylene), affording precisely defined fluorescent patterns with micrometer-sized dimen-
sions. Direct laser writing (DLW) [102] on films of poly(barrelene-co-norbornene) produced
a succession of well-defined patterns with micrometer dimensions, which were observed
by the fluorescence of the conjugated polymer that formed after irradiation.

As demonstrated by various spectroscopic methods, PPV was produced by sponta-
neous dehydrogenation of the homo- and copolymers in the presence of air. According
to a series of thermal studies, the copolymer displayed an exothermic response when
heated to 100 ◦C, most likely due to oxidation (dehydrogenation), but did not undergo
significant mass loss until around 400 ◦C (under a N2 atmosphere). Thermal aromatization
was achieved in seconds after direct laser writing of the barrelene-containing copolymers
by using a 400 nm diameter laser beam at a wavelength of 355 nm to write on the sub-
strates that consisted of the copolymer at speeds of approximately 350 µm s−1. Raman
spectroscopy was used to look at the dark and luminous portions of the copolymer to see
if the laser aided in the oxidation process. The dark parts of Figure 13 showed signals
consistent with poly(barrelene-co-norbornene). In contrast, the fluorescent sections showed
signals compatible with PPV and consistent with the observations reported by the authors.
This chemistry has the inherent advantage of allowing the monomer to be integrated into
various macromolecular scaffolds and at different compositions, resulting in a diverse
range of materials suitable for laser machining and current lithography applications.

Because of its increased detection sensitivity in the detection of a wide range of envi-
ronmental contaminants and bioactive chemicals, conjugated polymer-based sensors have
received a lot of interest [103–106]. Since the first conjugated polymer sensor was reported
in the 1990s, this sensing platform has advanced more than two decades, with an explosion
of research in this sector noted in the previous 10 years [107]. For instance, water-soluble
conjugated polymers with ionic side chains are known as conjugated polyelectrolytes
(CPEs) [108–112], and they have garnered attention in the past decade mainly because of
their application as sensors, energy converters, and antimicrobials [113–116]. For example,
Tan et al. [117] developed and synthesized four anionic CPEs with a poly(paraphenylene
ethynylene) (PPE, Figure 14a) backbone but varied pendant ionic side chains. These CPEs
were shown to attach to metal ions with varying selectivities via polymer–metal ion inter-
actions, resulting in a wide range of fluorescence responses. Four CPEs were structurally
and photophysically characterized and used as PPE sensor arrays. The sensor array’s
fluorescence intensity responses were tested after the injection of eight different metal
ions separately.

This approach generated environmentally friendly fluorescent materials, with easy
sample preparation and measurements and convenient data processing with a simple
pattern analysis procedure that distinguishes from other existing methods. The authors
improved the methodology for detecting combinations of harmful metal ions, with the
possibility of expanding to other metal ions in the future.
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Figure 14. (a) Structures of the four conjugated polyelectrolytes, PPE1, PPE2, PPE−IDA, and
PPE−HPA, (b) response patterns constructed based on fluorescence quenching of the four polymers
by eight metal ions at 5 µM each. The response patterns were generated from the ratios of the
polymers’ initial to final emission intensities. Error bars represent the standard deviations of six
replicates for each PPE−metal ion pair. Polymers are PPE1, PPE2, PPE−IDA, and PPE−HPA, and
metal ions are Pb2+, Hg2+, Fe3+, Cr3+, Cu2+, Mn2+, Ni2+, and Co2+. Adapted with permission from
reference [117]. Copyright 2015, American Chemical Society.

The development of new detecting methodologies based on FPs has also been ex-
tended to organic molecules. Tetracycline (Tc), for example, is a type of antibiotic that
is commonly used in veterinary medicine, human treatment, and agriculture, and it is
critical to measure in water. The development of simple and efficient methods for de-
tecting and removing TC from water is highly desirable but continues to be a challenge.
Because of major environmental concerns, including ecological hazards and human health
consequences, tetracyclines are a special case among the many antibiotics used. Most
data suggest that tetracycline antibiotics are ubiquitous substances found in many ecolog-
ical compartments due to their widespread use [118,119]. More than 70% of tetracycline
antibiotics are excreted and released inactive form into the environment after adminis-
tration via urine and feces from people and animals. Because of their very hydrophilic
nature and low volatility, they have demonstrated great endurance in the aquatic environ-
ment [120]. Iyer et al. [121] synthesized a CPE following a palladium-catalyzed Suzuki
cross-coupling polymerization, poly[5,5′-(((2-phenyl-9H-fluorene-9,9-diyl)bis(hexane-6,1-
diyl))bis(oxy))diisophthalate] sodium (PFPT), and used it for highly sensitive detection of
tetracycline in water (Figure 15).

Due to the electron-rich nature of the polymer PFPT, cyclic voltammetry analysis
revealed only the oxidation peak, from which the HOMO level was determined to be
5.95 eV. From the beginning of the UV–vis absorption spectrum, the optical band gap
was calculated to be 3.35 eV, whereas the LUMO level was determined to be 2.6 eV. The
HOMO (7.55 eV) and LUMO (4.53 eV) energies of tetracycline were also determined using
cyclic voltammetry and onset UV–vis measurements. These results demonstrate that
photoinduced electron transfer from the polymer’s LUMO (2.6 eV) to the quencher Tc’s
LUMO (4.53 eV) is the sole mechanism by which Tc selectively quenches PFPT fluorescence.



Polymers 2022, 14, 1118 15 of 29Polymers 2022, 14, x FOR PEER REVIEW 15 of 31 
 

 

 

Figure 15. (a) Fluorescence spectra of PFPT (6.6 μM) with increasing concentration of Tc (6.6 μM) in 

aqueous media (HEPES 10 mM, pH 7.4). Inset: color change of PFPT under UV light (lamp excited 

at 365 nm) before and after adding Tc. (b) Stern–Volmer plot of PFPT upon the addition of Tc in 

aqueous media. Effect of Tc (6.6 μM) and various other antibiotics (6.6 μM) on the (c) emission 

spectra of PFPT and their corresponding (d) bar diagram depicting the quenching percentage. Re-

produced with permission from reference [121]. Copyright 2017, American Chemical Society. 

Due to the electron-rich nature of the polymer PFPT, cyclic voltammetry analysis 

revealed only the oxidation peak, from which the HOMO level was determined to be 5.95 

eV. From the beginning of the UV–vis absorption spectrum, the optical band gap was 

calculated to be 3.35 eV, whereas the LUMO level was determined to be 2.6 eV. The 

HOMO (7.55 eV) and LUMO (4.53 eV) energies of tetracycline were also determined us-

ing cyclic voltammetry and onset UV–vis measurements. These results demonstrate that 

photoinduced electron transfer from the polymer’s LUMO (2.6 eV) to the quencher Tc’s 

LUMO (4.53 eV) is the sole mechanism by which Tc selectively quenches PFPT fluores-

cence. 

In 100% aqueous media, the detection limit of PFPT toward Tc is reported to be 14.35 

nM/6.80 ppb (6.8 ng/mL). The effective electron transport from PFPT to Tc via electro-

static/hydrogen bonding interactions resulted in a high quenching efficiency with a Ksv 

value of 1.57 × 105 M−1. 

As well as sensing materials [55], CPs have been intensively researched for bio-

sensing and bioimaging applications due to their great light-harvesting capacity, out-

standing photostability, and easily surface-modifiable features [122–124]. For instance, 

photodynamic therapy (PDT) [125,126] has become an important cancer treatment that 

uses reactive oxygen species (ROS) (such 1O2 and hydroxyl radicals) created by exposing 

photosensitizers (PS) to light irradiation in an oxygen-rich environment to destroy cancer 

cells. Zhang and coworkers [127] prepared a positively charged water-soluble polythio-

phene polymer (PT0, Figure 16). This exhibited high photo- and pH-stability, a sizeable 

two-photon absorption cross-section, and the capability to generate 1O2 (g). 

Figure 15. (a) Fluorescence spectra of PFPT (6.6 µM) with increasing concentration of Tc (6.6 µM) in
aqueous media (HEPES 10 mM, pH 7.4). Inset: color change of PFPT under UV light (lamp excited at
365 nm) before and after adding Tc. (b) Stern–Volmer plot of PFPT upon the addition of Tc in aqueous
media. Effect of Tc (6.6 µM) and various other antibiotics (6.6 µM) on the (c) emission spectra of
PFPT and their corresponding (d) bar diagram depicting the quenching percentage. Reproduced
with permission from reference [121]. Copyright 2017, American Chemical Society.

In 100% aqueous media, the detection limit of PFPT toward Tc is reported to be
14.35 nM/6.80 ppb (6.8 ng/mL). The effective electron transport from PFPT to Tc via
electrostatic/hydrogen bonding interactions resulted in a high quenching efficiency with a
Ksv value of 1.57 × 105 M−1.

As well as sensing materials [55], CPs have been intensively researched for biosensing
and bioimaging applications due to their great light-harvesting capacity, outstanding pho-
tostability, and easily surface-modifiable features [122–124]. For instance, photodynamic
therapy (PDT) [125,126] has become an important cancer treatment that uses reactive oxy-
gen species (ROS) (such 1O2 and hydroxyl radicals) created by exposing photosensitizers
(PS) to light irradiation in an oxygen-rich environment to destroy cancer cells. Zhang and
coworkers [127] prepared a positively charged water-soluble polythiophene polymer (PT0,
Figure 16). This exhibited high photo- and pH-stability, a sizeable two-photon absorption
cross-section, and the capability to generate 1O2 (g).

Irradiation using 780 and 900 nm lasers of 406, and 473 mW of laser power, respectively,
with prolonged irradiation (4 to 5 min) was needed to kill HeLa cells efficiently. Although
PT0 does not appear to distinguish cancer cells from noncancerous cells, such selectivity
might be achieved via a method such as combining PT0 with a cancer cell targeting probe,
which will require additional investigation.
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Figure 16. Illustration of PT0 for simultaneous two-photon excitation fluorescence imaging and
photodynamic therapy. Reproduced with permission from reference [127]. Copyright 2017, American
Chemical Society.

3. Aggregation-Induced Emission Macromolecules

Over the last two decades, there has been a lot of interest in aggregation-induced
emission (AIE) [128,129]. Compared to the well-studied low-mass AIE luminogens, AIE
polymers have received less attention, despite outstanding advantages such as high emis-
sion efficiency in aggregate and solid states, signal amplification, good signal amplification,
good processability, and multiple applications, among others [51]. AIE polymers combine
the benefits of polymeric materials with AIE luminogens, and they exhibit distinct features
compared to standard fluorophores and low-mass AIE materials for practical applications.
The primary technique for producing AIE polymers is to integrate aggregation-induced,
emission-based fluorescent materials (AIEgens) [130–132] into polymer backbones or as
polymer pendants via polymerization and modification.

Since the introduction of the AIE concept, coined in 2001 by Tang et al. [133], lu-
minogenic materials with AIE properties have piqued the curiosity of many researchers.
In principle, luminophores aggregation has two impacts on photoluminescence (PL):
aggregation-caused quenching (ACQ) and AIE. Depending on the molecular architectures
and intermolecular packing, the ACQ and AIE effects will compete in most luminogens
(Figure 17). Generally, typical AIEgens, including tetraphenylethene (TPE), distryreneathra-
cence (DSA), hexaphenylsilole (HPS), 1,8-naphthalimide, 2,4,6- triphenylpyridine, and
tetraphenylpyrazine (TPP) are widely used as scaffolds to prepare AIE polymers.
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Figure 17. Fluorescence photographs of solutions/suspensions of (a) ACQ effect of perylene
(20 µmol/L) and (b) AIE effect hexaphenylsilole (20 µmol/L) in THF-water mixtures with increasing
water contents fraction. Adapted with permission from reference [134]. Copyright 2015, American
Chemical Society.
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Luminous liquid crystals (LLCs) combining intrinsic light-emitting properties and
liquid crystalline ordering have piqued interest in recent decades due to their potential
applications as emissive liquid crystal displays (LCDs), organic light-emitting diodes
(OLEDs), sensors, and optical information storage. [135–139] Xie et al. [140], using AIE lu-
minogens, were able to successfully manufacture a series of novel, highly efficient luminous
liquid crystalline polymer (LCPs), namely poly{2,5-bis{[2-(4-oxytetraphenylethylene)-n-
alkyl]oxycarbonyl}styrene}, with different chain lengths (m = 2, 4, 6, 8, 10, 12), as show
in Figure 18. LCPs are polymers with liquid crystal properties and frequently contain
aromatic rings as mesogens. Liquid crystallinity can also be found in polymeric materials
such as LCEs (liquid crystal elastomers) and LCNs (liquid crystal networks). They are both
crosslinked LCPs. However, their cross-link density is different [141].
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Figure 18. (a) Molecular structures of the LCPs. (b) Emission spectra of the polymer (shown above,
m = 6) in THF/H2O mixtures with various water fractions. (c) Plots of I/I0 values versus water
contents of the aqueous mixtures at 476 nm for the polymer (show above, m = 6); the inset photos
of THF with 0 and 90% water fractions taken under UV light. Reproduced with permission from
reference [140]. Copyright 2017, American Chemical Society.

Furthermore, the polymers demonstrated high-efficiency luminescence in the liquid
crystalline state due to the “Jacketing” phenomenon, which strongly depended on the
spacer length (solid-state quantum yields declined from 52 percent to 18 percent as spacer
length increased). Meanwhile, as the length of spacers increased, the glass transition tem-
peratures (Tg) decreased. The polymers had good film-forming and processing properties,
making them promising materials for luminous devices. OLED technology might usher in a
new age of large-area, transparent, flexible, and energy-efficient display and lighting goods.
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Fluorescence-based techniques not only provide answers for the creation of novel
materials, but also have potential biological applications due to their high sensitivity, quick
reaction, and in situ features. FPs have been widely employed in biomedical studies
spanning from imaging to medication delivery [142,143]. More significantly, they are
biodegradable and may be eliminated from the body after their programmed activities
have been completed. FPs are typically created by incorporating organic-conjugated fluo-
rophores into the center of hydrophobic polymer. Traditional fluorescent probes suffer from
aggregation-caused quenching effects, limiting their application at high concentrations
or in nanoparticles. The concentration of loading fluorophore is an important factor in
determining the overall brightness of the polymer formation. The fluorescence intensity
of the polymer is directly dependent on the dye loading efficiency at low loading concen-
trations [144]. However, when the dye concentration increases, the dye molecules begin
to agglomerate in the particle core, causing the dyes’ light emission to be quenched. AIE
polymers have surmounted this challenge since the polymer molecules become extremely
emissive when aggregated [145]. AIE bioconjugates, formed by covalently linking AIE
luminogens to biomolecules, are particularly promising candidates for biomedical applica-
tions due to their excellent biocompatibility, good water solubility, high specificity to the
target of interest, wide functionality, and smart responsiveness [146–148].

In this context, Liu et al. [149] (Figure 19) created a new photoactive polymer for
light-controlled gene delivery that constituted an AIE photosensitizer and OEI coupled
through a ROS-responsive linker. The polymer contained an AIE PS conjugated with oli-
goethyleneimine (OEI; 800 Da) via an aminoacrylate (AA), where PEG was further grafted to
fine-tune the water solubility of the polymer. The polymer may self-assemble into nanopar-
ticles (NPs) exhibiting intense red fluorescence for bioimaging in aqueous conditions.

When exposed to light (at a much lower light dose than in photodynamic therapy), the
polymer vector may cause endo/lysosomal escape as well as DNA unpacking, allowing
it to efficiently transfer DNA to the cytosol of cells while causing minor damage. When
exposed to visible light, the produced ROS disrupted the endo/lysosomal membrane and
the polymer, resulting in light-controlled endo/lysosomal escape and unpacking of DNA
for effective gene delivery. Simultaneously, the ROS degrades the polymer and promotes the
reversion of high molecular weight complexes to their low molecular weight counterparts,
resulting in DNA unpacking. This research lays the groundwork for a potential light-
controlled platform for simultaneous endo/lysosomal escape and DNA unpacking, both of
which are required for effective gene delivery.

In the same context, Gao et al. [150] (Figure 20) fabricated mitochondria-targeted
NPs with a high ROS quantum yield of 77.9% using a novel AIE crosslinked copolymer
with FR/NIR subcellular bio-imaging capability. Cell viability experiments demonstrated
that the polymer has high cytocompatibility in the dark but causes severe cytotoxicity
in cancer cells when exposed to low-cost white light (10 mW cm−2). They fabricated
a crosslinked copolymer containing N-(2-hydroxypropyl)methacrylamide (HPMA), 2-
aminoethyl methacrylate (AEMA), and tri-phenyl-phosphonium (TPP) [151]; the latter is a
well-established chemical scaffold that targets mitochondria. Within the mitochondria of
live cells, cargo molecules covalently linked to TPP accumulate.

TPP and free TPP polymer NPs have 39.0 mV and 11.3 mV surface zeta potentials,
respectively. TPP polymer NPs had a higher surface zeta potential, indicating that TPP
was conjugated at the NP surface, satisfying the mitochondrial targeting criterion. The
difference in cellular uptake between polymer with and without TPP was confirmed using
flow cytometry, and the results demonstrated that the presence of TPP improved the
cellular uptake.

AIE polymers have also been used as a drug delivery system (DDS) [152–154]. A
DDS is a formulation or a device that allows the entrance of a therapeutic material into
the body and increases its efficacy and safety by managing the rate, timing, and location
of drug release in the body. The delivery of the therapeutic product, the release of the
active chemicals by the product, and the subsequent transport of the active ingredients
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through biological membranes to the site of action are all part of this process [155]. Thus,
local drug delivery is highly demanded in inoperable cancers and prevents local tumor
recurrence. In terms of drug delivery, a self-indicting drug delivery system based on a novel
aggregation-induced emission thermoresponsive hydrogel, based on PEG, poly(propylene
glycol) (PPG), and tetraphenylethene (TPE), featuring AIE that was be tuned depending
on Doxorubicin (Dox) concentration and temperature was described by Loh et al. [156]
(Figure 21). The hydrogel accurately monitored in vivo drug release using a self-detecting
device. It is simple to track medication depletion and reinject to maintain a dose within the
ideal therapeutic window.
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Figure 19. (A) Chemical structure of the ROS-responsive polymer P(TPECM-AA-OEI)-g-mPEG.
(B) ROS-sensitive nanoparticles (S-NPs) self-assembled from P(TPECM-AA-OEI)-g-mPEG in aqueous
media and their complexation with DNA to form S-NPs/DNA. (C) The itinerary of S-NPs/DNA to the
transgene expression. S-NPs/DNA was endocytosed by the cells and entrapped in endo/lysosomes.
Upon light irradiation, the generated ROS can concurrently destroy the endo/lysosomal membrane
to facilitate the vector escape and break the S-NPs to favor DNA unpacking, leading to DNA release
for nuclear entry and transcription. Reproduced with permission from reference [149]. Copyright
2015, John Wiley and Sons.
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Figure 20. Confocal laser scanning microscopy images of A549 cancer cells after incubation with the
AIE polymer containing TPP (40 µg mL−1) and dichlorofluorescein diacetate (10 µM) under white
light irradiation for (A) 0 min, (B) 2 min, (C) 4 min, (D) 6 min, and (E) 8 min. (F) is the bright-field
image. λex = 488 nm, λem = 505–525 nm. The scale bar is 20 µm. Reproduced from reference [150]
with permission from the Royal Society of Chemistry.

Due to difficulties in penetrating deep tissue and skin, the AIE thermogel was injectable
in solutions at room temperature, forming depots containing Dox at the injection site, as
observed by the signals generated by gel aggregation, and were collected at 515–575 nm.
Because TPE aggregation was restored as Dox was released over time, the EPT thermal
photoluminescence signal increased in a dose-dependent manner. The self-indicating EPT
thermogel is useful because the signals from the matrix showed the precise release of
Dox depending on the change in Dox concentration. These findings suggest that when
chemotherapeutics is used, the delayed release of drug-encapsulated micelles from AIE
thermogel may help to limit tumor growth. In addition, delayed release causes less harm
in mice.

In regards of DDS, Tang and colleagues [157] created a conjugated polymer (PTB-
APFB) containing benzothiadiazole and tetraphenylethene (Figure 22) that has excellent
ROS-generation ability and selectivity for pathogenic microbes over mammalian cells.

Due to its D-π-A structure and AIE property, the polymer has a significant ROS pro-
duction ability in the aggregate state under the light. PTB-APFB has excellent selectivity for
microbes over mammalian cells. Because of its balanced hydrophilicity and hydrophobicity,
PTB-APFB exhibited excellent selectivity for microbes over mammalian cells. In vitro and
in vivo antibacterial studies demonstrate that PTB-APFB can effectively inhibit bacterial
growth and accelerate the healing process. Additionally, in vitro and in vivo research
suggests that PTB-APFB is biocompatible. As a result, both preclinical and clinical trials
indicate that PTB-APFB holds considerable promise as an antibacterial agent (Figure 23).
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Figure 21. In vivo mouse model. (a–c) In vivo noninvasive fluorescence imaging of nude mice bearing
HepG2 tumor with postintratumoral injection of 50 µL DOX in saline or DOX loaded thermogel
for indicated time points. The black arrow indicated the location of the tumor. (d,e) Inhibition of
tumor volume by intratumoral injection of saline, DOX, or DOX loaded EPT thermogels. Dorsal
subcutaneous implantation of HepG2 cancer cells into mice was followed by administration of each
solution after tumors had reached a volume of ~150 mm3. The excised tumor removed after 14 d was
taken for evaluation. Reproduced with permission from Reference [156]. Copyright 2016, John Wiley
and Sons.

Bacterial growth inhibition was confirmed in vitro and in vivo after polymer treatment
under light irradiation. Notably, after therapy with their polymer, infection recovery is
faster than after treatment with cephalothin [158]. As a result, in real-world applications,
this polymer holds a lot of promise for treating bacteria-related diseases.
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Figure 23. (A) Photographs of NB agar plate and (B) biocidal activity of S. aureus with PTB-APFB
treatment in dark and under white light and sunlight. (C) Photographs of the S. aureus-infected
skin of mice during treatment with the different formulations, and (D) the size of the infected area
as well as (E) the body weights of the mice. Scale bar = 1 cm. (F) Levels of CREJ2 and UREAL
(biomarkers), and (G) ALT and AST (liver function biomarkers) in blood samples from mice with
different treatments. Reproduced with permission from reference [157]. Copyright 2020, John Wiley
and Sons.
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4. Conclusions and Future Outlook

This review focused on research conducted over the last six years, specifically on
the design and preparation of fluorophores containing polymers and AIE FPs. In the
first, researchers have taken an interest in fluorophores-containing polymers due to their
distinct photoluminescence, tunable emission colors (including white light emission), and
biocompatibility, despite the fact that they are not commercially viable at the moment. The
development of stimuli response fluorescent material is an exciting field, particularly in
the study of cells, where changes in pH or temperature can be monitored during drug
administration to better understand how small molecules act in normal or cancerous
cells. Aside from improving the design of signal transduction systems in sensors and
biosensors, the electrochromic properties of conducting polymers can also be used to
improve their performance.

Conjugated polymers have undoubtedly been utilized to fabricate flexible optoelec-
tronic devices and photo transistors because to their softness, resilience, and light weight,
but have received less attention in the fabrication of a portable electrochemical sensor and
in electrochemical applications. Thus, the tunable features of polymers, such as band gap
tuning, might be advantageous in electrochemical applications. Additionally, although
some conjugated frameworks have been utilized to deliver pharmaceuticals such as dox-
orubicin and for bio imaging, their biological uses are still in their infancy. While designing
these materials, several critical factors should be considered, including bioavailability,
biocompatibility, solubility in aqueous and biological environments, and low cytotoxic-
ity. Without a doubt, developing new materials will require the collaborative efforts of
chemists, biologists, and physicists in order to achieve higher quantum yield and stability
for advanced applications. These materials can emit light with great efficiency in dilute
solutions; however, their fluorescence is diminished or perhaps eliminated in concentrated
solution or solid form, contrary to AIE polymers.

AIE polymers have achieved extraordinary success over the last two decades, resulting
in additional research and discoveries with enormous potential in this field. It is desirable
to develop and prepare novel AIE-active monomers in order to create innovative AIE poly-
mers with novel properties and functionalities. Persistent efforts are required to develop
novel and efficient synthetic techniques for AIE polymerization, with a particular emphasis
on metal-free and spontaneous polymerization processes. The in situ synthesis of AIE
polymers from inactive AIE monomers will be an intriguing direction to pursue. Addi-
tionally, AIE polymers with controlled molecular weights, repeated unit sequences, and
well-defined architectures are in high demand. To meet the demands of various research
frontiers, additional AIE-active polymers with variable architectures and multifunctional
capabilities should be developed. For instance, visualizing the synthesis or aggregation
process may aid in testing and validating established polymer science principles. Although
the use of AIE polymers in polymer light-emitting diodes has been investigated, the devices’
efficiency still requires improvement. Furthermore, photochemically responsive systems
are still in their infancy. Despite the fact that hundreds of photochemically responsive
units have been identified, only a few have been successfully used in the fabrication of
photochemically responsive AIE polymers. By discovering novel photo-responsive units
that operate via distinct mechanisms, such as catalyst-free light-controlled cycloaddition,
we can significantly diversify the types and accelerate the development of photo-chemical
responsive systems.

We anticipate that AIEgens will play critical roles in the discovery of new photo
responsive polymers by integrating them with diverse production strategies and cutting-
edge methodologies. We believe that this review will encourage additional scientific
researchers to work in this promising field, as well as foster a knowledge of the full potential
and further development of classic polymers and AIE polymers for wider applications. As
the adage goes, “Rome was not built in a day”.
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