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Abstract

Translation of RNA to protein is a core process for any living organism. While for some
steps of this process the effect on protein production is understood, a holistic understanding
of translation still remains elusive. In silico modelling is a promising approach for elucidating
the process of protein synthesis. Although a number of computational models of the pro-
cess have been proposed, their application is limited by the assumptions they make. Ribo-
some profiling (RP), a relatively new sequencing-based technique capable of recording
snapshots of the locations of actively translating ribosomes, is a promising source of infor-
mation for deriving unbiased data-driven translation models. However, quantitative analysis
of RP data is challenging due to high measurement variance and the inability to discriminate
between the number of ribosomes measured on a gene and their speed of translation. We
propose a solution in the form of a novel multi-scale interpretation of RP data that allows for
deriving models with translation dynamics extracted from the snapshots. We demonstrate
the usefulness of this approach by simultaneously determining for the first time per-codon
translation elongation and per-gene translation initiation rates of Saccharomyces cerevisiae
from RP data for two versions of the Totally Asymmetric Exclusion Process (TASEP) model
of translation. We do this in an unbiased fashion, by fitting the models using only RP data
with a novel optimization scheme based on Monte Carlo simulation to keep the problem
tractable. The fitted models match the data significantly better than existing models and
their predictions show better agreement with several independent protein abundance data-
sets than existing models. Results additionally indicate that the tRNA pool adaptation
hypothesis is incomplete, with evidence suggesting that tRNA post-transcriptional modifica-
tions and codon context may play a role in determining codon elongation rates.
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Author Summary

Translation, the process of synthesizing proteins from mRNA templates, is an essential
biological process in all living organisms. A better understanding of this process will have
ramifications in various fields—from gene regulation, disease understanding and medicine
to biotechnology and synthetic biology. Nonetheless, a holistic understanding of the pro-
cesses remains elusive, making computational modelling a promising approach for study-
ing it. However, accurate modelling of translation is challenging due to many assumptions
made by such models and due to the sheer number of parameters that need to be specified.
Here, we propose to fit models of translation onto ribosome profiling measurements,
which record snapshots of the locations of actively translating ribosomes on mRNAs from
millions of cells. We develop statistical and computational methods for fitting the Totally
Asymmetric Exclusion Process (TASEP) models of translation on these measurements
and verify them by deriving highly accurate translation models for the baker’s yeast Sac-
charomyces cerevisiae, which outperform existing models on independent datasets. We
find that fitted elongation rate parameters from the derived models deviate significantly
from the widely accepted tRNA pool adaptation hypothesis.

Introduction

The process of protein synthesis is central to all living organisms. It has been actively
researched for over five decades, and by now the individual steps of this process are known in
great detail at the molecular and mechanistic levels [1]. Gene adaptation to the tRNA pool,
mRNA secondary structure strength, codon order and local amino acid charge were indepen-
dently implicated in shaping rates of protein production [2-4]. However, many disciplines
would benefit from a holistic view of how these factors collectively influence translation. In
particular, in biotechnology this knowledge would allow for tuning protein expression as
desired with ramifications for cost-effective production of medicines and biofuels using
microbes [5]. However, owing to the biological complexity of the process and the difficulty of
measuring kinetic rates of the individual steps of protein synthesis, the development of compu-
tational models that would enable such applications lagged behind.

Only recently, the accumulated knowledge was integrated into several state-of-the-art mod-
els of increasing complexity. Zhang and Ignatova [6] proposed a “static” model for predicting
the local speed of translation within a gene from codon-specific elongation rates derived from
tRNA concentrations; their approach was extended by Reuveni et al. [7], who suggested using
a “dynamic” model in which ribosomes initiate translation at the first codon and block each
other while moving towards the end of the mRNA transcript. Siwiak and Zielenkiewicz [8] and
Shah et al. [9] independently proposed static and dynamic full-cell models that additionally
integrated the intracellular concentrations of ribosomes, mRNA and tRNA molecules, and
their diffusion inside the cell in a single model. While predictions made by these models are
usually in accordance with the current understanding of translation, most of their core
assumptions (e.g. codon translation rates) have not been subjected to comparison against mea-
sured data.

Ribosome profiling (RP) [10, 11], a relatively new technique based on high-throughput
sequencing of ribosome-protected RNA fragments (footprints), is nowadays often employed
for studying translation [12-15]. It provides noisy snapshots of the locations of actively trans-
lating ribosomes attached to mRNA transcripts, thereby convolving the number of ribosomes
and their speed of translation (a few stalled ribosomes can generate similar sets of footprints as
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Fig 1. Schematic overview of the proposed approach for inferring translation kinetics from RP data. To obtain a segment tree representation of the
RP data (left) mapped ribo-seq (light grey) and RNA-seq (dark grey) reads are assigned to nested segments of decreasing lengths (starting from segments
[1, S] equivalent to the full-length CDSes) while there is sufficient data. Ribosome densities w for each segment are computed for the available replicates and
are used to parameterize the log-normal distributions describing measurement error of these segments. To determine per-gene translation initiation rates kg
and per-codon elongation rates kaaa, - - -, Kaag many candidate sets of translation rates are tested. For every candidate set the TASEP model of translation is
simulated with the proposed rates for all genes in the model simulation step (right). Ribosome occupancy, i.e. the relative amount of time ribosomes spend at
a particular location on the mRNA, obtained from the simulation (dashed grey) is then aggregated per segment to compute the average occupancies N,
which are compared the log-normal distributions of the corresponding segments from the segment tree representation in the model evaluation step.
Evaluation results are used by a genetic algorithm to propose new candidate sets of rates and repeat the simulation-evaluation cycle until the search for
translation rates converges. To simplify notation, the gene index g is dropped for all gene-specific variables in the figure.

doi:10.1371/journal.pcbi.1004336.9001

many ribosomes involved in rapid translation). While in principle these data allow for simulta-
neously reasoning about ribosome counts and their local speed, such analysis is hampered by
the limited understanding of the error model and biases of RP data [16]. To date RP measure-
ments have been analyzed either at the level of full genes [8, 9] or at single codon resolution [4,
17]. While only the latter allows for analyzing the dynamics of translation, it is not clear
whether codon-resolution measurements are sufficiently reliable for such quantitative analysis
(see S1 Text). To overcome the measurement reliability issue several studies [18-20] performed
“meta-codon” analysis by pooling observations from different occurrences of a particular
codon together to produce an estimate of the codon elongation time. It is unclear, however, to
what extent such estimates are affected by ribosomal interference.

We propose a set of methods for deriving full translation kinetics of an organism from RP
data (see Fig 1). Our approach is conceptually similar to Ciandrini et al. [21], who inferred
translation initiation rates of yeast genes from polysome profiling data, except that we use RP
for deriving these rates and additionally determine the translation elongation rates. The
method is based on a novel “segment tree” multi-scale interpretation of the RP data that cap-
tures ribosome translation dynamics along mRNAs without sacrificing reliability due to mea-
surement noise. We use this interpretation to simultaneously extract, for the first time, per-
gene translation initiation rates and per-codon translation elongation rates for the bakers yeast
Saccharomyces cerevisiae by fitting two version of the TASEP (Totally Asymmetric Exclusion
Process), a simple dynamic model of translation [22], on the segment tree estimates. To make
fitting tractable, we devised a highly efficient initiation rate approximation scheme and com-
bined it with a novel Monte Carlo simulation strategy inside an evolutionary optimization
algorithm.

Fitted TASEP models match the RP data significantly better than the state-of-the-art mod-
els, and their predicted protein production rates are confirmed by several independent protein
abundance (PA) datasets. In particular our models show significantly better agreement with
PA than existing models when the measurements are corrected for mRNA levels, i.e. when
only the effect of translation on protein levels is considered. Interestingly, the fitted codon elon-
gation rates deviate significantly from the tRNA pool adaptation hypothesis.
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Materials and Methods
Ribosome profiling data

RP data for yeast Saccharomyces cerevisiae strain S288C [23] containing ribosome footprint
reads (ribo-seq) and fragmented mRNA reads (RNA-seq) measured in duplicate were obtained
from the NCBI Short Read Archive (accession SRP028552). Reads were trimmed and
mapped to the latest S. cerevisiae strain S288C reference genome taken from the Saccharomy-
ces Genome Database (SGD, Cherry et al. [24]) in two stages, and assigned to gene coding
sequences (CDSes) obtained from SGD. Aligned ribosome footprint and mRNA reads were
assigned to single positions within the CDSes based on respectively their inferred A-sites or the
centre position of the read (see S1 Text for details).

Measurement resolution

To obtain a high-resolution map of mRNA and ribosome density without sacrificing measure-
ment accuracy, for each gene we construct a segment tree of density measurements from nested
parts of the CDSes (Fig 1, left). By pooling reads from all segment positions, average densities
per segment can be calculated more reliably than would be possible at single codon resolution
(see also S1 Text), while recording these densities for nested segments of decreasing lengths
allows for indirectly capturing the change in density along a transcript.

Starting from an initial segment [/, r] equivalent to the complete CDS we count the number
of ribo-seq reads Ry;,; and RNA-seq reads M|;,; assigned to this segment. These counts are nor-
malized by the total number of ribo- and RNA-seq reads aligned to all CDSes (N and N,

respectively) and the segment length L;;,; = 7 — I + 1 to obtain ribosome and mRNA densities

M

Ribo _ R mRNA __ M . .
di° = LNe and dj) ;™" = Lo for the current segment. To obtain the sought per transcript

ribosome density (later referred to as density ratio) the ratio of the two measurements w;, | =

Ribo
d[L

v is calculated. The average segment ribosome density given by this ratio is normalized for

fir
transcript abundance and allows for directly comparing segments from different genes to each
other. A cut point p is then chosen and the process is repeated recursively for segments [/, p] and
[p + 1, r] (see Fig 1, left). The aim behind calculating dﬁﬁNA for each segment independently

instead of estimating a single gene-specific value is to remove any local sequencing bias (pre-
sumed to be identical between RNA- and ribo-seq since very similar protocols are used for
library preparation [23]) from the ratio estimates. Density measurements are computed for each
replicate individually, but the same segment cut points are used in order to merge replicates
later. Cut points are chosen such that the combined number of RNA- and ribo-seq reads across
replicates is divided equally between the left and the right segments (see S1 Text for details).

The recursive tree construction continues while there are sufficient reads for making reliable
density estimates (at least 128 reads in the two replicates summed together for RNA-seq and
ribo-seq, separately; see S1 Text for details on choosing these thresholds) and segment length is
large enough, L(;,; > 20 codons. The segment length cutoff aims at keeping the segments long
enough to average out any measurement error due to incorrect read assignment or sequence
bias. Prior to interpreting the measurements, we additionally remove a systematic density-
dependent bias present in the density and ratio measurements using the available replicate
information (see S1 Text).

This procedure was used to construct segment trees for 4, 892 genes with a total of 60, 466
nested density estimates left after removing genes classified as dubious or located on the mito-
chondrial chromosome.
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Statistical treatment of the measurements

In order to accurately capture variance of RP data, we assume that the measured segment den-
sities follow a log-normal distribution around the density values. A similar assumption is often
made for transcriptome measurements and is justified by the observation that inter-replicate
errors (ir.e.), i.e. the ratios of replicated mRNA and ribosome density measurements, follow a
log-normal distribution (51 Fig and Ingolia et al. [10]). It then holds that density ratios w(; ,;

(j € %, where J¢ is the set of all segments of gene g) from different replicates also follow a log-
normal distribution In\V{y, 0;) as ratios of log-normally distributed random variables—the
mRNA and ribosome segment densities. Here y; and o; are used as shorthands for y; ,;; and o;,
+j] respectively.

To determine the parameters of this distribution we estimate y; for the j-th segment from
the available replicated measurements as the log of their geometrical mean. Ideally, a separate
shape parameter g; should also be estimated per segment, but, given the number of replicates,
doing so would not yield reliable estimates. Instead it was chosen to group segments from all
genes based on their length, and estimate shape parameters o§°"” for group k from the i.r.e. of
measurements from that group (see S1 Text and S2 Fig).

group

The proposed measurement distribution InA (1, g )> where k; denotes the length group

of the j-th segment, is used throughout this paper as an error model for fitting TASEP models
of translation on RP data and for comparing different models with the data.

Data interpretation and model evaluation

Computational models of translation typically provide the ability to extract steady-state codon
occupancy probabilities obtained from model simulations, i.e. estimates of the chance that a
particular position of an mRNA is occupied by an actively translating ribosome. Similar to the
ribosome profiling measurements these occupancy profiles are determined by the local speed
of translation and the number of ribosomes translating an mRNA. This allows for evaluating
how well a given model matches the RP data by comparing the average segment occupancies
and the segment tree ratio estimates (see Fig 1, right).

Quantitative measurements obtained via high-throughput sequencing such as the mRNA
and ribosome densities (and hence their ratios) are measured in arbitrary units. Without
explicit assumptions on the physiological characteristics of the analyzed organism, such as the
tull size of its transcriptome [8] or the number of ribosomes per cell [9], and on the efficiency
of individual experimental steps, it is impossible to estimate sequencing depth of the RP mea-
surements (i.e. the average number of reads per ribosome or the average number of reads per
kilobase of transcript) and therefore impossible to express the measured values in physiologi-
cally meaningful units (e.g. number of ribosomes per transcript). Additionally, this unit mis-
match complicates the comparison of modeled ribosome occupancies to the measured
densities. To derive a model evaluation criterion, we first assume that an unknown scaling fac-
tor C that transforms model output into measurement data units is given, and propose a
method for calculating it later.

Let #f be the model-predicted ribosome occupancy at position i of gene gand T¢ =

{(1f,05) | j € J*} be the set of ratio distribution parameters for segments [, r{]. Here the

upper index g denotes the gene, and for a more succinct notation we use the lower index j in

place of [¥,r¢]. For segment j on gene g the probability of the predicted occupancies given the

segment ratio estimates can be expressed as

P(C N/, 0f) o fo (N} 5, 07), (1)

j
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where N} = Z,] ; nf/(rf — E + 1) is the predicted average occupancy on segment j of gene g,

_(nx+lnC— }L)

and f.(x; 4,0) = —=e =¥ is the log-normal probability density function describing the

density ratio measurement error scaled by factor £. This formulation is used for comparing the
predicted occupancies to the estimated values in a probabilistic fashion. Assuming indepen-
dence between ratio estimates of the same gene and between genes, the probability of observing
all estimates, denoted by n, can be expressed as

p(C,n|T) ocHch g, of) (2)

g jeg

In practice these calculations are more easily performed in log space and the constant factors
are dropped:

W(C,n|T) = ZZ Inf (NF; uf, of ZZ[ L (InNf — pf + InC)* — lan] (3)

g je8 g jeg

We use ¥(C, n|T) as the objective function for quantifying how well model-predicted ribosome
occupancies match measured data.

To choose the scaling factor C, we note that it is the only free parameter of y(C, n|T) if
model output #n and segment tree estimates T are given. In that case, the value of C maximizing
y can be determined analytically:

InC = (Zé (1 — lang)> / (Z@%) (4)

&j€)8 &j€J8

Throughout this paper, different models are evaluated at a scaling factor C maximizing their fit
to the data (i.e. maximizing y). While the unknown true scaling factor is determined by the
physiological properties of the cell, the efficiency of the experimental protocols and characteris-
tics of the high-throughput sequencing measurements (see section “Initiation rate approxima-
tion” and S1 Text), evaluating models at the best possible scale allows for a more fair evaluation
as it does not penalize models in cases when the model and the true scales mismatch.

The TASEP model of translation

TASEP (Totally Asymmetric Exclusion Process) models mRNAs g as one-dimensional lattices
of length S and ribosomes as abstract “particles” occupying L sites corresponding to codons
(Fig 2). These particles hop on (translation initiation) and off (translation termination) the lat-
tice at the first and last sites with rates k§ and &, respectively. They only move towards the end
of the lattice (hence the totally asymmetric) by hopping one site at a time with site-specific
elongation rate kf. Ribosomes interact with each other by “excluding” a volume of L sites that
they cover on the lattice, meaning that a ribosome cannot continue to the next codon if it is
already covered by another ribosome. The exact location of the active site among the L covered
codons does not change the rules governing ribosome motion [22], but the choice of L may
influence simulation dynamics in cases of high ribosome queueing. Typically, values 9 <
L <11lareused[8,9,16,21]; L =10 was chosen for our simulations as it best matches the RP
footprint size distribution [10].

TASEP captures the high-level physical interaction between ribosomes and transcripts by
describing the ribosomes as travelling on the mRNAs. While in practice a number of varying
translation scenarios are possible (e.g. RER-bound translation with ribosomes glued to the
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Fig 2. In TASEP mRNAs are modeled as one-dimensional lattices of S¢ sites (codons) and
ribosomes—as particles occupying L sites (L = 3 in the figure). During translation (i) ribosomes attach to
the first codon with rate k{ if the beginning of the mRNA is not occupied by other ribosomes (initiation); (ii)
ribosomes move from position i to i + 1 with a site-specific rate k7 if not blocked by another ribosome
(elongation); and, finally, (iii) after reaching the last codon, they detach with rate k3, (termination).

doi:10.1371/journal.pcbi.1004336.9002

endoplasmic reticulum and moving very slowly while the mRNA is instead pulled though the
ribosomes [25]), the rich set of behaviors attainable by TASEP makes it a suitable framework
for modelling translation. It requires specification of a large number of parameters, namely the
gene- and site-specific elongation rates k! (with the stop codon elongation rate functioning as
the termination rate) and the gene-specific initiation rates kf. To reduce the number of parame-
ters we assume that the site-specific elongation rates are codon-specific and do not differ
between genes. This commonly made assumption [7, 16, 21, 26] is necessary for determining
model parameters from RP data as it makes the model fitting problem tractable. Depending on
the experiment, either elongation rates consistent with the tRNA pool adaptation hypothesis
were fixed to allow fitting the initiation rates only, or all model parameters were fit on the avail-
able data.

Monte Carlo simulations

Evaluation and fitting of the TASEP model requires an efficient way of obtaining steady-state
ribosome occupancies. TASEP models allow limited analytical tractability and, to our knowl-
edge, no analytical results for the steady-state codon occupancy probabilities are available for
the general case. Additionally, existing TASEP mean-field approaches poorly approximate
codon occupancies [27], a quantity of particular importance to this study, leaving stochastic
simulations as the only suitable approach.

TASEP steady-state codon occupancies were obtained by simulating the model using a
Monte Carlo algorithm, i.e. by randomly selecting an event (translation initiation, elongation
or termination) in every simulation step and, if no other ribosomes interfere with the event,
executing it with a probability proportional to its rate. To speed up simulation we developed a
continuous time simulation method similar to the Gillespie algorithm [28], but based on the
use of the Erlang distribution to only sample times between state-changing events, i.e. events
that change the configuration of ribosomes attached to an mRNA.

Formally, the times between consecutive initiation or elongation events at position i are
assumed to be exponentially distributed with rates & and k§ respectively (i.e. the corresponding
model rate parameters, Fig 2). Let 0;,i = 1, . . ., $ be the current state of the simulated mole-
cule:

(5)

i

{ 1, codon i is occupied by a ribosome (is at its A — site)

0, otherwise

Then the time between any two consecutive events is also exponentially distributed with rate

k=I§+ Zil 0,k as the minimum of independent exponentially distributed random vari-
ables. Once an event occurred, the probability that it was event j is given by p; = o,k /k (it is
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©PLOS

COMPUTATIONAL

BIOLOGY

Models of Protein Translation Derived from Ribosome Profiling Data

assumed that ribosomes are always available to initiation translation, i.e. 0o = 1). Some of the
events cannot be executed due to ribosomes blocking each other and do not lead to a state
change. If k, is the sum of rates of events leading to a state change, then the number of events
between consecutive state changes, denoted as e, follows a geometric distribution with parame-
ter p, = k,/k and the time At between state changing events follows the Erlang distribution
with shape e and rate k as the sum of iid exponential random variables. The simulation pro-
ceeds by repeated random sampling of the number of events, the time between events and the
event type s from the appropriate probability distributions; and updating ribosome locations in
accordance to the sampled event:

s ~ Categorial (p,, p,...,ps), €~ Geometric(p,), At~ Erlang(e, k). (6)

Simulating only state-changing events allows the simulation to progress faster, especially in
cases of high ribosome queueing. The total time T} spent by ribosomes at position i and the
total simulation time T% are recorded to estimate the per-transcript ribosome occupancy at this
position as nf = T7 /T¢, which is then used for comparing the model to RP data. Similarly the
total number of translation terminations F* is used to estimate the protein production rate J =
FITE.

To reach steady-state distribution of ribosomes on mRNA irrespective of the CDS length,
each mRNA was simulated until 1000 translation termination events occurred. After that the
model was further simulated for up to 10” additional steps or until the average ribosome occu-
pancy in the segments of interest was estimated with high precision (absolute error € < 107°).
The latter stopping criterion is based on the observation that average ribosome occupancy over
a fixed segment of the mRNA can be reliably estimated before per-position occupancies can.
Segment densities were first estimated after 5 x 10° simulation steps and then every 10° steps.
Simulation was stopped if the absolute error between consecutive estimates was smaller than e.

Initiation rate approximation

In addition to the elongation rates, large TASEP models require specification of hundreds gene
translation initiation rates prior to simulation. Direct measurements of the initiation rates rates
are unavailable and instead their values are often inferred from other sources such as ribosome
profiling [8, 9] or polysome size measurements [21] data. Initiation rates estimated in such a
way depend on the rates of translation elongation used in the analysis, and hence need to be
optimized together with the elongation rates of the TASEP model. This leads to an explosion of
the number of parameters that need to be determined, stressing the need for highly efficient
initiation rate approximation strategies if the initiation and elongation rates are to be deter-
mined from the RP data simultaneously.

The problem of determining initiation rates was previously tackled by approximations
neglecting ribosome queueing [8, 9], and by near-exhaustive computational search [21]. We
propose a method that is a compromise between the two approaches—it allows approximating
gene initiation rates for the TASEP model from RP data at a fraction of the computational cost
of an exhaustive search. Briefly, we add an additional parameter C, the “proposed” scaling fac-
tor, to the list of model parameters that need to be estimated. This parameter is identical to the
scaling factor C from Eq (4), but is used within the model to obtain biologically meaningful ini-
tiation rates. We calculated the value of C from the number actively translating ribosomes [29]
and the number of mRNA molecules [30] per cell using a procedure proposed by Siwiak and
Zielenkiewicz [8]. Given some estimate of the elongation rates and C we then find optimal ini-
tiation rates using a novel numerical approximation of ribosome density for TASEP models
that is based on the observations of Cinandrini et al. [21]. This approach allows us to decouple
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initiation rates from elongation rates and greatly reduces the number of model parameters that
need to be fitted explicitly (next section). We used this method to efficiently (re-)approximate
initiation rates of genes for each new set of elongation rates k. A full description of the
approach is available in the S1 Text.

Model fitting

When fitting the TASEP models, translation rates that maximize y(C, n|T) are sought. Lacking
a closed-form solution, we employed the Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES [31]) to find these rates.

We considered two different TASEP models: TASEP™" and TASEP'°"¢. In TASEP™" the
elongation rates are fixed at values consistent with the tRNA pool adaptation hypothesis and
initiation rates are approximated as described earlier. In the TASEP®°"¢ model none of the
parameters are fixed: also the codon-specific elongation rates are optimized with the CMA.

Since TASEP simulation output is invariant to scaling of translation rates, many equally
good solutions exist. To constrain the search the elongation rate of codon GAA was fixed at its
initial tRNA pool adaptation hypothesis value. The codon was chosen as it is present in many
genes and segments (S5 Fig). Further details regarding the use of CMA can be found in the S1
Text.

Despite the efficient Monte Carlo simulation and translation rate search strategies, model
fitting remains a very CPU-intensive task. To speed up computations in practice, the models
were fitted using hundreds of CPUs in parallel as individual genes can be simulated
independently.

Because TASEP simulations of different genes are independent of each other, it may be
unclear how to interpret the fitted elongation and initiation rates, as they must depend on such
global biophysical quantities as the number of tRNAs or ribosomes within the cell. Neverthe-
less, the final simulation results are compared to whole-genome RP measurements. We can
therefore expect that if our TASEP simulations agree well with RP data, the fitted translation
rates used within the simulations account for the necessary biophysical parameters. Thus they
should be regarded as the effective initiation and elongation rates that account for the relevant
biophysical characteristics of the cell and growth conditions. We note that translation rates
determined in such a way are condition-specific, and would likely change if fitted on a dataset
obtained under different growth conditions.

Comparison to other models

To obtain a baseline for evaluating the performance of fitted TASEP models we also evaluated
several existing state-of-the-art static and dynamic models of translation and compared them
to each other based on their agreement with the RP data as given by Eq (1). SMoPT [9] and
Zhang’s model [6] were chosen for evaluation on the segment tree data as other state-of-the-
art models, namely the Ribosome Flow Model [7] and the model from Siwiak and Zielenkie-
wicz [8], do not provide ribosome occupancy profiles compatible with the segment tree inter-
pretation. The latter model was however compared to the fitted TASEP models based on
several independent PA datasets.

When comparing models’ predictions using independent protein abundance datasets, the
“initiation frequency” P, “total amount of protein molecules produced from transcripts of par-
ticular type” B and the “total time of translation of one protein molecule from a given tran-
script” T from Siwiak and Zielenkiewicz [8] were respectively treated as translation initiation
rate, the product of ] and mRNA levels, and the inverse of J; the average gene total elongation
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time from SMoPT [9] was treated as the inverse of J; P from Ciandrini et al. [21] was treated
as /.

Experimental setup

Since the sets of genes included in SMoPT and the segment trees differ, to facilitate compari-
son, all models were evaluated on a set of 3, 617 genes (49, 894 segments) that were in common
between all models after removing very long genes to speed up TASEP simulations (31 genes
longer than 2, 000 codons). This set of genes was used to fit TASEP models inside a 5-fold strat-
ified cross-validation (CV) loop over genes, in which the CV folds were chosen to balance the
number of genes and segments between folds. In every step of the CV 1 fold was used for fitting
(training set) and 4 folds were used for model evaluation (test set). Smaller training sets were
used to reduce model fitting time. To evaluate predictions of the proposed TASEP models we
also fitted them on all segment tree estimates. And to further reduce fitting time on this large
dataset, codon elongation rates of the TASEP®°"8 model were set to the geometric mean of
elongation rates from CV folds, and only the initiation rates were estimated from the data.

To simplify comparison of different models, we computed CV objectives for all evaluated
models, including the models that did not require any parameter fitting (i.e. SMoPT and
Zhang’s model). While the static Zhang model does not explicitly model the translation initia-
tion step, SMoPT and TASEP models require initiation rates to be defined for every gene in the
test sets in order to calculate the CV objective. We used the original initiation rates inferred
from the RP data [9, 10] for SMoPT, and approximated TASEP initiation rates using the test
set segment tree measurements.

The tRNA pool adaptation hypothesis

Some of the experiments required the translation elongation rates to be defined. For those
experiments we used translation elongation rates ka4, - - ., kggg consistent with the tRNA
pool adaptation hypothesis, which could be seen as a statement that codons recognized by
more abundant tRNAs are translated faster. The exact values for the elongation rates were
defined based on the tRNA Adaptation Index (tAI [32]), which quantifies the decoding effi-
ciency of a codon by simultaneously considering abundances of all tRNA species recognizing it
and the strength of wobble base pairing between the codon and the anticodons of the isoaccep-
tor tRNAs. The elongation rates kaaa, - - ., kggg Were calculated as the inverse of the codon
translation times taken from the Ribosome Flow Model [33]; and translation termination rates
(i.e. ktag, ktaa krga) were set to 1.

Comparison to tAl and CAI

The tAl and CAI (Codon Adaptation Index [34]) are the most commonly used codon indices.
They quantify respectively the extent to which a particular sequence consists of codons recog-
nized by abundant tRNAs, and the extent to which a particular sequence consists of codons
present in highly expressed (e.g. ribosomal and glycolytic) genes. These indices are often used
as a proxy for translational efficiency of a gene and are employed to optimize its sequence for
expression in a different host organism. Having determined elongation rates for the TASEP°"8
model, we sought to understand whether these rates suggest a different optimization scheme
than the one given by tAI or CAI

For each codon the tAI (CAI) assigns a number—the absolute adaptiveness of that codon to
the tRNA pool (codons used in highly expressed genes). To facilitate comparison between the
different indices, following the definition of the CAI, we define the relative adaptiveness of a
codon as its absolute adaptiveness normalized by the maximum adaptiveness among
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synonymous codons. We then use the relative adaptiveness for CAI tAI and an index based on
the TASEP®°"8 elongation rates (described below), when comparing optimization schemes.

We note that from the definitions of tAI [32] and elongation rates consistent with the tRNA
pool hypothesis (previous section and [7]) it follows that the tAI absolute codon adaptiveness
and the elongation rates are proportional to each other, and use this observation to define a
codon index based on the fitted TASEP°"8 elongation rates. We define the relative adap-
tiveness of a codon according to TASEP®°"® as its elongation rate normalized as described
above.

Other datasets

Protein abundance measurements were taken from Newman et al. [35] (YEPD and SD media)
and Ghaemmaghami et al. [36]. 5'- and 3’ UTR lengths were determined based on Naga-
lakshmi et al. [37] and Yassour et al. [38] as the mean length obtained from the two studies.

Results
Segment trees reliably capture density changes along transcripts

Segment density ratios are estimates of the average number of ribosomes engaged in translation
of a given segment (measured in arbitrary units), and are expected to become more reliable if
the segment length is increased. Fig 3 shows that estimates obtained for longer segments are
indeed more reliable (smaller o values) with the longest segments (rightmost group) being
nearly as reliable as the full-CDS estimates from all genes (S2 Fig). We note that although
group widths increase almost exponentially, potentially collecting segments with different i.r.e.
in the top group, the constructed groups map very well to individual levels of the segment trees
because lengths of segments with each new level are halved on average. This mapping thus pro-
vides important additional information to the segment trees about the increasing reliability of
measurements that are located higher within the tree.

In this way, segment trees establish a tradeoff between measurement reliability and mea-
surement resolution by combining the use of trustworthy estimates high in the tree (corre-
sponding to longer segments, describing high-level gene behavior) with the use of many less
reliable estimates located lower in the tree that describe the local density variation. As can be
seen from the visualization of the raw data for gene YLR44 9W and its segment tree reconstruc-
tion in Fig 4, our multi-scale approach, that combines measurements from different scales (seg-
ment lengths), allows for implicitly capturing changes in ribosome density along transcripts,
while at the same time keeping the average ribosome density across larger segments close to
the observed levels. This representation also encodes uncertainty about the density ratio at a
particular region of the gene, even if that region is not directly represented by a segment from
the tree. For example, region (85, 104) (highlighted in the figure) is covered by 6 segments (i.e.
has depth 5 within the tree) and has one of the tightest confidence intervals (CIs) in the recon-
struction. At the same time region (105, 120) was not measured at the two lowest scales (has a
depth 3) and its average density has to be derived from the density values of other segments
and our uncertainty about them, leading to a wider CI. This example demonstrates how seg-
ment trees capture changes in ribosome density along the transcript, which are crucial for fit-
ting translation rates and evaluating competing models.

Knowledge-based models do not fit RP data

Small standard deviations of the scaling factors and objective scores (determined using CV) of
the evaluated models shown in Table 1 suggest that the (fitted) models perform consistently
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Fig 3. Segment length histogram overlaid with the shape parameters of the density ratio distributions for segment length groups (separated by
dashed lines) shows that shorter segments tend to have more variable measurements. Segments were separated based on their length into 10 equal-
content groups (group edges adjusted to allow for unique segment assignment), and the shape parameters o were calculated from the inter-replicate errors
of the measurements falling within each group (S1 Table).

doi:10.1371/journal.pcbi.1004336.9003

across different folds. The objective scores also show that knowledge-based models (i.e. the
SMoPT and Zhang models) based on a manual choice of numerous translation-related param-
eters explain the ribosome density measurements significantly worse than the two models fitted
on RP data. This can also be concluded from a visual inspection of the predictions made by
these models for one of the genes in Fig 4C, which shows that their ribosome occupancies tend
to “miss” the measured density ratios. For the Zhang model this could be explained by the
absence of gene-specific initiation rates in the model, whereas SMoPT often overshoots the
measured density ratios, presumably because it over-estimates initiation rates by neglecting
ribosome queueing.

The TASEP™" model simulated with tAl-based elongation rates and fitted initiation rates
achieves a significantly higher objective scores than the two state-of-the-art models. It is further
improved by the TASEP®'°"8 model, for which the elongation rates are additionally fit on the
segment tree measurements. Fig 5 shows that superior objective function values of the fitted
models translate to better predictions of the measured ribosome density (Pearson correlation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004336  August 14,2015 12/26
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Fig 4. Ribosome profiling data, segment tree and simulated ribosome occupancy for gene YLR449W. (A) Ribo-seq (red) and mRNA-seq (blue) read
density shown at single-codon resolution. Densities from the available replicates are overlaid with each other. Horizontal lines show the beginning and end of
segments from the segment tree constructed for these densities. (B) Heatmap of the average density ratios recorded for each of the segments shows how
density changes along the transcript for each of the scales (i.e. depths) within the segment tree. (C) Reconstruction of the per-transcript ribosome density
from the segment tree (gray) shown as 90%, 50% and 10% confidence intervals (shades of grey). The reconstruction was obtained by sampling from the joint
probability distribution derived from the segment tree (see S1 Text). Simulated ribosome occupancy for several considered models (blue, green, red and

cyan solid lines) was averaged within segments and scaled to match the data.

doi:10.1371/journal.pcbi.1004336.9004

coefficient r = 0.77 vs. 0.45, p < 1

-293
0

). Although the predictions are generally better for longer

segments, improvements can be observed at all scales (see S3 Fig). While due to its relative sim-

plicity only a weak positive correlation was expected for the Zhang model, for reasons unclear,

293

a highly significant (p < 10~

) negative correlation is observed (Fig 5, left). This demonstrates

that current knowledge-based models are not supported by RP measurements and highlights
the importance of a critical evaluation of existing translation models against independent

measurements.

TASEP predictions are su

pported by independent datasets

Although TASEP™" and TASEP°"¢ outperformed existing models in the CV experiments,
care has to be taken when interpreting these results as only the TASEP models were fitted
directly on the segment tree measurements. We sought to obtain additional confirmation of
the models’ performance and to determine if they make biologically meaningful predictions.
To this end we compared the protein production and translation initiation rates given by

Table 1. Objective y and scaling factor C for the evaluated models computed on the test folds inside a 5-fold CV loop.

Model Fitted InC Objective
Zhang No -4.55 + 0.00 —600 286 + 4449
SMoPT Not 5.04 + 0.01 —244 834 + 2962
TASEP™ Init. 5.40 £ 0.00 99 144 + 2137
TASEP&°ne Yes 5.41 +0.02 114 865 + 4335
T—RP data Ingolia et al. [10] was used in the original publication to set initiation rates.

doi:10.1371/journal.pcbi.1004336.t001
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Fig 5. Measured segment density ratios u, ; plotted against the segment-averaged predicted ribosome occupancies for several existing and
proposed models. Ribosome occupancy predictions made by the fitted models show significantly better agreement with the RP data. Reported correlations
are highly significant (p < 10729),

doi:10.1371/journal.pcbi.1004336.9005

TASEP models fitted on all segment tree estimates to several independent large-scale PA data-
sets (see Materials and Methods).

Most importantly, we found that for both models the predicted protein production rates
(PPRs) ] positively correlate with the PA measurements (Table 2). As expected, because J
describes PPR per transcript, these correlations improve when the product of J and mRNA lev-
els (J x mRNA; mRNA levels taken from the RP data) is considered. Even when both Jand PAs
are corrected for mRNA levels (thereby removing transcriptional regulatory influences in
order to study translational regulation in isolation), the remaining (partial) correlation between
J and PA’ is still significant, indicating that our TASEP models adequately capture the effects
of protein translation on protein levels. These correlations are superior compared to correla-
tions observed for state-of-the-art models (Table 3), especially when the partial correlations are
considered. While strong positive partial correlations would be expected, we find these only for
the fitted TASEP models. Unexpectedly low and negative partial correlations between PA’ and
J for other models, together with strong correlations between PPR and mRNA levels (Table 4)
suggest that existing models are overfit on transcript levels and may not accurately model

Table 2. Correlations of TASEP predictions with independent PA datasets. Spearman rank correlation coefficients r for are reported; J' is the partial cor-
relation between J and PA given mRNA.

TASEP™
Newman YEPD Newman SD Ghaemmaghami
Init. rate r=0.56%** r=0.55%** r=0.49%**
J r=0.57%** r=0.56%** r=0.50%**
J x mRNA r=0.72%** r=0.70%** r=0.63***
J r=0.52%** r=0.49%** r=0.39%**
TASEP®°"
Newman YEPD Newman SD Ghaemmaghami
Init. rate r=0.54%** r=0.53*** r=0.49%**
J r=0.56%** r=0.53%** r=0.49*%**
J x mRNA r=0.72%** r=0.70%** r=0.63*%**
J r=0.52%** r=0.48%** r=0.39%**

*_p-value < 107°
**_p-value < 10720
***_p_value < 107"

doi:10.1371/journal.pchi.1004336.t002
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Table 3. Correlations of predictions made by existing models with independent PA datasets. Spearman rank correlation coefficients r are reported.

Siwiak and Zielenkiewicz

Newman YEPD Newman SD Ghaemmaghami
Init. rate r=0.45%* r=0.48%** r=0.40%**
J r=0.33** r=0.36%* r=0.37%**
J x mRNA r=0.58%** r=0.54%** r=0.50%**
J r=-0.12% r=-0.07 r=-0.01

SMoPT

Newman YEPD Newman SD Ghaemmaghami
Init. rate r=0.45** r=0.49%** r=0.44%***
J r=0.21** r=0.23** r=0.26**
J x mRNA r=0.45%* r=0.46%* r=0.46%**
J r=-0.26%* r=-0.21% r=-0.13*

Ciandrini et al. [21]

Newman YEPD Newman SD Ghaemmaghami
Init. rate r=0.44%** r=0.43*%** r=0.43*%**
J r=0.45%** r=0.44%*** r=0.44%**
J x mRNA r=0.57%** r=0.56%** r=0.55%*%
J r=0.10* r=0.10* r=0.14*

*_p-value < 107°
**_p-value < 10720

***_p—value < 1071

doi:10.1371/journal.pcbi.1004336.t003

translation. These findings provide an independent confirmation that the TASEP models
with fitted translation rates accurately capture the dynamics of the S. cerevisiae translation

machinery.

Looking more in detail (Table 4), we find that for both models the fitted initiation rates
agree well with the rates inferred by the existing full-cell models of Shah et al. (SMoPT), and of
Siwiak and Zielenkiewicz. However, we did not find the previously reported strong negative
correlation between initiation rates and CDS length [9, 21]. We note that this correlation is

also not supported by the model of Siwiak and Zielenkiewicz. The initiation rates also exhibit a
weak correlation with the 3’ UTR lengths (similar correlations also found for several other
models), supporting the hypothesis of more efficient translation re-initiation in genes with lon-
ger 3 UTRs.

Interestingly, we did not find the tendency for genes with short 5 UTRs to exhibit high initi-
ation rates suggested by Shah et al. and supported by Ciandrini ef al. [21] in our models or the
model of Siwiak and Zielenkiewicz. We also note that no relationship or a negative relationship
can be observed between initiation rates and 5' UTR lengths corrected for CDS lengths can be
found in most considered models. This suggests that the previously observed inverse relation-
ship between 5’ UTR lengths and initiation rates may not be indicative of a 5 UTR-mediated
initiation rate regulation mechanism, but could be merely a consequence of a positive correla-
tion between 5 UTR lengths and CDS lengths.

While correlations observed for the fitted models do not change between TASEP™" and
TASEP®°"8 (Table 4), the latter model makes considerably better ribosome occupancy predic-
tions. It can be seen from the example in Fig 4C that fitting the elongation rates allows the
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Table 4. Comparison of TASEP predictions to existing models. Spearman rank correlation coefficients r are reported. When “corrected for” column is
non-empty, partial correlations are reported.

Variable 1 Variable 2 Corrected for Correlation coeff. p-value
TASEP™ init. rates SMOoPT init. rates r=0.67 p<1072%
Siwiak and Zielenkiewicz init. rates r=0.74 p<1072%8
Ciandrini et al. init. rates r=0.47 p<107"%7
TASEP®°9 init. rates TASEP™ init. rates r=0.94 p<1072%
SMoPT init. rates r=0.65 p < 107298
Siwiak and Zielenkiewicz init. rates r=0.73 p<1072%
Ciandrini et al. init. rates r=0.46 p <1078
CDS lengths TASEP™ init. rates r=-0.07 p<107*
TASEP®°"9 init. rates r=-0.05 p <1072
SMOoPT init. rates r=-0.52 p<1072%7
Siwiak and Zielenkiewicz init. rates r=-0.02 p>10"
Ciandrini et al. init. rates r=-0.65 p<1072%
5' UTR lengths TASEP™ init. rates r=-0.01 p>107"
TASEP®"° init, rates r=-0.02 p>107"
SMoPT init. rates r=-0.06 p<107°
Siwiak and Zielenkiewicz init. rates r=0.00 p>107"
Ciandrini et al. init. rates r=-0.09 p<107"°
TASEP™ init. rates CDS lengths r=0.00 p>10"
TASEP®°"9 init. rates CDS lengths r=-0.01 p>107"
SMOoPT init. rates CDS lengths r=0.03 p>10"
Siwiak and Zielenkiewicz init. rates CDS lengths r=0.03 p<10~"
Ciandrini et al. init. rates CDS lengths r=-0.06 p<107°
3 UTR lengths TASEP™ init. rates r=0.04 p<1072
TASEP®"°"Y init. rates r=0.04 p<10~'
SMoPT init. rates r=0.06 p<107®
Siwiak and Zielenkiewicz init. rates r=0.07 p<107°
Ciandrini et al. init. rates r=0.03 p<107"
TASEP™ init. rates CDS lengths r=0.04 p<10~"
TASEP®°"9 init. rates CDS lengths r=0.04 p<107"
SMOoPT init. rates CDS lengths r=0.07 p<107*
Siwiak and Zielenkiewicz init. rates CDS lengths r=0.08 p<107
Ciandrini et al. init. rates CDS lengths r=0.02 p>10"
mRNA levels TASEP™ init. rates r=0.36 p<107'"®
TASEP®°" init. rates r=0.33 p<10%
SMoPT init. rates r=0.58 p<1072%8
Siwiak and Zielenkiewicz init. rates r=0.33 p<107'"
Ciandrini et al. init. rates r=0.62 p<1072%
TASEPM J r=0.34 p<107%
TASEP®"°"9 4 r=0.37 p<107'1®
SMoPT J r=0.65 p<1072%8
Siwiak and Zielenkiewicz J r=0.69 p<1072%8
Ciandrini et al.J r=0.63 p<1072%
mRNA levels Newman YEPD PA r=058 p <1072%°
Newman SD PA r=057 p<1071%*
Ghaemmaghami PA r=0.54 p<107273
CDS lengths Newman YEPD PA r=-0.13 p<1071°
(Continued)
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Table 4. (Continued)

Variable 1 Variable 2 Corrected for Correlation coeff. p-value
Newman SD PA r=-0.14 p <1072
Ghaemmaghami PA r=-0.16 p <1022
Newman YEPD PA mRNA r=0.32 p <1075
Newman SD PA mRNA r=0.28 p <107
Ghaemmaghami PA mRNA r=0.21 p<107%
mRNA r=-0.53 p<1072%
5 UTR lengths r=0.14 p<1072°
3 UTR lengths r=-0.03 p<10~'

doi:10.1371/journal.pcbi.1004336.t004

segment-averaged ribosome occupancy of TASEP'°"® to follow the reconstructed density con-
siderably better than any of other model.

Fitted elongation rates are not explained by adaptation to tRNA levels
alone

Since the TASEP®°"¢ model achieves a significantly better fit to the RP data compared to
TASEP™" with tAl-based rates (Table 1), having fitted its elongation rates on different CV
folds, we sought to interpret the obtained values and their variance. We first, however, con-
firmed that elongation rates determined from different RP datasets agree qualitatively with
each other by fitting a new TASEP®'°" model on the dataset of Ingolia et al. [10] and compar-
ing its translation rates to the original model (see S1 Text).

It can be seen from Fig 6 that despite the generally large SDs, for many codons the elonga-
tion rates fitted in different folds of the CV are spread compactly around codon-specific values.
This is clearly visible for codons with smaller SDs (green and blue), for which similar rates
were found in different folds. Nonetheless the rate SDs differ considerably between codons.
While the majority of the fitted elongation rates are consistently different from tAI-based rates,
only for 13 codons this difference is statistically significant (single sample ¢-test for population
mean difference, p < 0.05; Fig 6, S2 Table): GAC, TTG, CCA, CAA, GCC, GGT, GAT, TTT, CAG,

AAG
GGC
GAC
GAA
GTT
ATT
TTG
AGA
ACT
TCT
GCT
GTC
CCA
ATG
AAC
TTC
ATC
CAA
TAC
ACC
TCC
GCC
GGT
GAT
AAA
CAC
TTA
GAG
CGT
TGG
GCA
AGG
AAT
TTT
CGC
ACA
TGC
CAG
TAT
CCG
CAT
TCA
CTA
GGA
GGG
GTG
ACG
GTA
ATA
CCT.
AGC
TCG
TGT
GCG
Cccc
CTC
CGG
CTG
AGT
CTT
CGA
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Fig 6. Mean and SD of the codon elongation rates fitted in different CV folds, compared to the tAl-based rates. For many codons elongation rates
(depicted as mean and SD, blue bars) are reproducible across CV folds. This becomes evident for codons with smaller SDs (blue labels, o < 1.5), and codons
whose elongation rates are significantly different from the tAl-based rates (green labels; t-test, p < 0.05). tAl-based rates (orange line) are plotted as a
reference. The rate of codon GAA (red label) was not optimized. Stop codons were excluded from the figure as their fitted termination rates remained very
close to the original values of 1.

doi:10.1371/journal.pcbi.1004336.9006
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Fig 7. Ribosome density reconstruction (gray, bottom panels) and simulated ribosome occupancy (top) for selected regions of genes YOR202W
(left panels) and YGR284C (right panels) plotted for the TASEP'™ (green) and TASEP®'°" (red) models. Presence of codons with significantly different
elongation rates (vertical dashed lines) increases simulated ribosome occupancy. Higher increase can be observed for segments containing more such
codons. This is clearly seen for gene YOR202W (left) with similar initiation rates in the TASEP™ and TASEP®°"® models (0.24 x 10 and 0.22 x 107*
respectively), for which the predicted occupancy only increases when fitted elongation rates are used. For most genes, such as YGR284C (right) this
increase in density is compensated by reducing the initiation rate (from 0.72 x 10 to 0.36 x 10~*), which leads to an overall better agreement between
simulated ribosome occupancy and the segment tree measurements (bottom right). To keep the visualization comprehensible, only selected regions of
genes YOR202W and YGR284C were used. However, the described trends also hold for the remainder of these genes and for other genes.

doi:10.1371/journal.pcbi.1004336.9007

GTG, ACG, CCT and CGA. Although these differences between the tAI-based and fitted elonga-
tion rates are challenging to explain, their presence suggests that additional unknown factors
are shaping these rates.

Having identified differences in elongation rates between the TASEP™" and TASEP'*"8
models, we sought to understand their effect on models’ predictions. As could be expected
from the similar correlations in Table 4 and Fig 5, the two models make very similar PPR and
ribosome density predictions (S4 Fig). However, ribosome density predicted by the TASEP°"8
model with fitted elongation rates agrees better with RP measurements. To understand the
cause of this improvement we looked for genes whose fit to the RP data improved when fitted
elongation rates were used. These genes can be classified into two groups: (i) genes that have a
very similar initiation rate in both models (Fig 7, left); and (ii) genes that have a considerably
lower initiation rate in the TASEP°"¢ model (Fig 7, right). Because all 13 codons with signifi-
cantly different elongation rates were predicted to be slower, their presence in CDSes generally
leads to higher predicted ribosome occupancy, especially if the genes initiation rate remains
unchanged. For genes from the first group, such as YOR202W shown on the left panel of Fig 7,
this already results in a more accurate ribosome occupancy prediction. For most other genes,
the second group, this increase in codon elongation times yields ribosome occupancy that is
too high under the current initiation rate. For these genes (e.g. YGR284C on the right panel of
Fig 7) a smaller fitted initiation rate is required to reduce ribosome occupancy that would oth-
erwise be too high due to the effects of slow codons and high ribosomal flux (due to high initia-
tion rate). Together these effects allow the model to better match the ribosome density changes
along the transcript.

Significance of the fitted elongation rates for codon optimization

Codon optimization, the process of substituting codons with synonymous alternatives that are
elongated faster, thus contributing to the overall protein production rate, is routinely used to
improve protein expression [39, 40]. Nonetheless, it remains a controversial tool because the
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Fig 8. tAl and CAl compared to a measure of codon adaptation derived from the fitted TASEP®'°"9 elongation rates. Relative adaptiveness of codons
grouped by their corresponding amino acids (columns) plotted for the three measures of codon adaptation (rows) shows that the considered measures often
agree on the optimal codon. In particular, the tAl and TASEP®'°"Y measure agree on the optimal codons for all but 4 amino acids (I, K, Land S).

doi:10.1371/journal.pcbi.1004336.9g008

same optimization techniques can lead to contradicting results when applied to different pro-
teins [41]. Here we compare our fitted elongation rates to codon optimality estimated by the
commonly used tAI [32] and CAI [34] indices.

We considered the relative adaptiveness of a codon (see Materials and Methods) given by
the CAL the tAl and the fitted elongation rates of the TASEP®'°"¢ model. Fig 8 shows that the
three measures of codon adaptation often agree on the optimal codon for a particular amino
acid (relative adaptiveness of 1.0, dark blue), which further demonstrates that our findings are
in line with the earlier work. In particular, despite significant differences between the fitted
elongation rates and elongation rates given by the tRNA adaptation hypothesis, the two sets
agree on optimal codons for all but four amino acids. Only for isoleucine, leucine, lysine and
serine the TASEP'°"® model suggests codons ATC, AAA, TTA and TCG instead of ATT, AAG,
TTG and TCT respectively. An interesting observation is that the bottom row in Fig 8 is much
more blue than the top ones, suggesting codon optimization is less black-and-white than sug-
gested by tAl and in particular CAI, meaning that many more codons are “reasonably good”,
i.e. there may be less to gain by codon optimization than thought before. This observation is
also corroborated by Leavitt and Alper [42], who noted that the level of control achievable in
yeast through codon optimization is considerably smaller than what can be achieved through
transcriptional regulation.

Translation initiation limits protein production

It is still unclear whether translation of endogenous yeast genes is limited by initiation or elon-
gation [43, 44]. To test whether translation is limited by the initiation rates or by the elongation
rates we artificially increased the initiation rate of each gene from the TASEP®°"8 model by
10%. To obtain robust results the experiment was repeated 5 times with different random ini-
tializations and the average increase in PPRs was calculated for every gene.

Fig 9 shows the relative differences in PPRs for all genes. In almost all cases (except 7 genes)
the PPR increased substantially (relative difference > 0.02) when increasing the initiation rate,
supporting the hypothesis that under exponential growth in the rich medium translation in
S. cerevisiae operates in an initiation-limited regime. This also explains why fitting the codon
elongation rates in TASEP®°"¢ did not improve the PA correlations compared to the TASEP™*
model. Elongation-limited production for these genes can be explained by the very high initia-
tion rates predicted for them, which shift the rate-limiting step from translation initiation to
translation elongation. Interestingly, groups of genes that had a low, medium and high PPR
increase are enriched for several biological functions (FDR < 0.05, Fig 9). Notably, genes in the
high increase group are involved in negative regulation of various biosynthetic and metabolic
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Fig 9. Distribution of the relative changes in PPR after a 10% increase in initiation rates shows that translation initiation is the rate limiting step for
the protein production for most S. cerevisiae genes from the considered RP dataset. Groups of genes with low (> 0.02 and < 0.08, red), medium
(>0.08and <0.11, yellow) and high (> 011, green) increase in PPRs are enriched for several biological functions (white boxes in the figure, FDR < 0.05).

doi:10.1371/journal.pcbi.1004336.9009

processes. This suggests that yeast cells may have evolved to rapidly “switch on” negative regu-
lation by keeping a buffer of the required mRNA transcripts that are efficiently translated only
once there is demand.

Discussion

For the first time, we described an approach that derives complete translation kinetics of an
organism from ribosome profiling data and used it to simultaneously infer the translation elon-
gation, translation initiation and protein production rates all together without neglecting the
effects of ribosomal interference. We applied our methodology to the ribosome and RNA
sequencing data of the baker’s yeast Saccharomyces cerevisiae. The fitted yeast translation mod-
els agree considerably better with independent protein abundance datasets than existing
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models. In particular, our TASEP models are the only ones that maintain strong correlations
with protein abundance after removing the effect of transcriptional regulation.

While translation initiation rates provided by the models are similar to rates from other
studies, we did not find the previously reported negative correlation between initiation rates
and CDS lengths. The observed negative correlations between PA and CDS length, which one
would expect to see as a result of this correlation, can alternatively be explained by transcrip-
tional regulation, i.e. the strong negative correlation between mRNA levels and CDS lengths
(Table 4). An alternative explanation can be offered by a mechanism driven by amino acid
chain elongation rather than translation initiation. For example, abortive translation or the
degradation of misfolded proteins [45], since the chance of producing a misfolded protein is
expected to increase with protein length.

We also found that translation elongation rates deviate considerably from the widely
accepted tRNA pool adaptation hypothesis, for 13 codons significantly so. Differences in elon-
gation rates of these codons between the tRNA pool adaptation hypothesis and TASEP°"8
may be partially explained by nucleotide modifications of their respective tRNAs, which are
known to modify the specificity and efficiency of messenger decoding [46]. As such, some of
these 13 codons were shown to be affected by post-transcriptional nucleotide modifications of
tRNAs in different organisms [47]. We speculate that for these codons the concentration of
(un)modified tRNAs, rather than the total tRNA concentration, plays a non-negligible role in
determining their elongation rates [18]. An additional factor that possibly contributes to the
observed deviation from the tRNA pool adaptation hypothesis is its implicit assumption that
different tRNA genes from the same family contribute equally to determining the rate of trans-
lation. This assumption should be revisited in light of the recent finding of Bloom-Ackermann
et al. [48] that the contributions of different gene copies from the same tRNA family to the
tRNA pool and cellular fitness are far from equal.

In our experiments we found that SDs of elongation rates from different CV folds differ
markedly between codons. In order for the elongation rates to be specified with high precision
by the RP data, small changes in the rates must lead to detectable differences in ribosome den-
sity. However, in light of our finding that yeast translation is initiation-limited and the observa-
tion of Bloom-Ackermann et al. [48] that S. cerevisiae is robust to deletions of tRNA genes,
especially in rich medium used to produce the ribosome profiling measurements analyzed
here, it is unlikely that in the considered physiological conditions the elongation rates exert a
strong enough effect on ribosome density to allow the RP data to specify elongation rates with
high precision. We speculate that found SDs reflect the robustness of the yeast translation sys-
tem w.r.t. the codon translation rates, with the system being more sensitive to changes in rates
of those codons that have smaller SDs. In this case, yeast translation appears to be robust to
fold changes in codon translation rates and, consequently, to the aminoacyl-tRNA availability
that these rates are thought to be determined by [44].

Alternatively, the SDs may reflect the extent to which codon translation rates change
between CV folds due to codon context, i.e. the local sequence around a codon which may alter
its elongation rate (see S1 Text, translation rate reproducibility analysis). It is unlikely that the
TASEP model captures the full complexity of the translation process by assuming that codon
elongation rates are determined solely by the codon identity, and not also by the sequence sur-
rounding the codons as was previously suggested [2, 3]. Such a constraint limits the models
ability to capture the underlying translation dynamics and may bias it towards fitting different
rates on different sets of genes (e.g. CV folds) with varying codon contexts, thereby inflating
the SDs. The observed variation in fitted elongation rates puts forward codon context as a fac-
tor that may significantly modulate the baseline elongation rates.
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Using our models we found that under exponential growth in rich medium translation initi-
ation appears to be the main limiting factor of protein production of endogenous genes in Sac-
charomyces cerevisiae, with protein production being limited by initiation rates for all but 7
genes with very high initiation rates. These findings suggest that rational design of 5 UTRs
involved in translation initiation [49, 50] may be a more promising avenue for achieving pro-
tein overexpression than the routinely used codon optimization techniques. It is likely, how-
ever, that further overexpression could be achieved using codon optimization. Because once
the gene is put under the translational control of an efficient 5'-UTR, which is usually the case
in heterologous gene expression, translation elongation is expected to become a rate-limiting
factor. In such cases we recommend performing codon optimization using the fitted TASEP®
long elongation rates, which, while mostly agreeing with existing techniques, also demonstrate
several differences.

Although we found that translation initiation appears to be the main factor limiting protein
production in yeast under exponential growth in rich medium, it is possible that different
mechanisms are dominant in other organisms. For example, Li ef al. [51] and Guimaraes et al.
[52] discuss greater contribution of protein elongation respectively by anti-Shine-Dalgarno
sequences and codon usage in E. coli. Our method could be applied to ribosome profiling data
of other organisms to delineate the relative contribution of initiation and elongation.

All translation models proposed to date, including TASEP™* and TASEP°", assume that
translation elongation rates are not influenced by codon context, i.e. the sequence around a par-
ticular codon, although various factors affecting the speed of elongation have been suggested
[2-4]. Variation in fitted elongation rates and the highly varying codon translation times
recently observed by Dana and Tuller [53] suggest that codon context may play a more com-
pelling role in determining translation rates than previously thought. Fortunately investiga-
tions of codon context are becoming feasible thanks to the growing adoption of ribosome
profiling as a standard technique for studying translation. With the increasing amount of ribo-
some profiling measurements, data-driven approaches, such as the one described here, will
become instrumental for delineating the effects of multiple competing translation mechanisms,
for generating new hypothesis, and for constructing predictive models for use in other fields.
These goals can be achieved by incorporating alternative translation mechanisms as sequence-
and position-specific effects altering the codon elongation rates.

Supporting Information

S1 Text. Contains extended methods and supplementary results.
(PDF)

S1 Fig. Histograms of the log, inter-replicate errors (ratios of replicated measurements) of
reliable ribosome and mRNA density measurements show that the full-CDS and segment
tree density estimates follow comparable log-normal distributions. Distributions fitted into
data (solid lines) are centered around zero, but their SDs differ.

(TIF)

S2 Fig. Histograms of the log, inter-replicate errors of reliable density ratio measurements
show similar error profiles in full-CDS and segment tree estimates. The group shape param-

group __ 1

eters of the i.r.e. and the density ratio distributions are related as oy """ = -5,
(TIF)

S3 Fig. Measured segment density ratios y; ,;) plotted against the segment-averaged pre-
dicted ribosome occupancies for segments of varying size and for several existing and pro-
posed models. TASEP™" and TASEP®'°"¢ significantly improve over existing models for all
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segment length groups.
(TIF)

S4 Fig. Agreement between the PPR (left) and gene-level average ribosome occupancy
(right) predictions made by TASEP™™* and TASEP'°"8 models.
(TIF)

S5 Fig. Presence of codons in gene and segment sequences from the segment tree. Transla-
tion rate of codon GAA (red) was fixed in elongation rate fitting experiments as it is present in
many genes and segments.

(TIF)

S6 Fig. Histogram of the running times (average over 3 replicates) of the TASEP model
simulations for genes in the evaluation set. tAl-based elongation rates and initiation rates of
1.0 were used in the simulations.

(TIF)

S1 Table. Shape parameters of the density ratio distributions for segments grouped by
length. Left (inclusive) and right (exclusive) edges give the range of segment lengths of a given
group.

(PDF)

S2 Table. Mean and SD of the codon elongation rates fitted on different CV folds of the
evaluation set. p-values of the single sample t-test are calculated to check wether the observed
rates are significantly different from the tAI-based rates. All rates are given in log, space.

Codons are colored as in the main text.
(XLS)

S3 Table. Detailed results of the GO term functional enrichment analysis.
(XLS)

S1 Dataset. Translation initiation and protein production rates for the derived models.
(CSV)
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