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Background: Lung adenocarcinoma (LUAD) is a highly malignant cancer with a bleak
prognosis. Pyroptosis is crucial in LUAD. The present study investigated the prognostic
value of a pyroptosis-related signature in LUAD.

Methods: LUAD’s genomic data were downloaded from TCGA and GEO databases.
K-means clustering was used to classify the data based on pyroptosis-related genes
(PRGs). The features of tumor microenvironment were compared between the two
subtypes. Differentially expressed genes (DEGs) were identified between the two
subtypes, and functional enrichment and module analysis were carried out. LASSO
Cox regression was used to build a prognostic model. Its prognostic value was assessed.

Results: In LUAD, genetic and transcriptional changes in PRGs were found. A total of 30
PRGs were found to be differentially expressed in LUAD tissues. Based on PRGs, LUAD
patients were divided into two subgroups. Subtype 1 has a higher overall survival rate than
subtype 2. The tumor microenvironment characteristics of the two subtypes differed
significantly. Compared to subtype 1, subtype 2 had strong immunological infiltration.
Between the two groups, 719 DEGs were discovered. WGCNA used these DEGs to build
a co-expression network. The networkmodules were analyzed. A prognostic model based
on seven genes was developed, including FOSL1, KRT6A, GPR133, TMPRSS2,
PRDM16, SFTPB, and SFTA3. The developed model was linked to overall survival and
response to immunotherapy in patients with LUAD.

Conclusion: In LUAD, a pyroptosis-related signature was developed to predict overall
survival and treatment responses to immunotherapy.
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INTRODUCTION

Lung cancer is a worldwide public health problem (Bray et al.,
2018). The most common subtype of lung cancer is lung
adenocarcinoma (LUAD) (Cheng et al., 2016). Despite
advancements in lung cancer treatment, patients have a 5-year
survival rate of less than 20% (Dixon et al., 2014). The clinical
application of immunotherapies enhanced lung cancer therapy
(Memmott et al., 2021). However, some lung cancer patients do
not respond to immunotherapies (Peters et al., 2019). As a result,
it is critical to investigate markers for predicting the lung cancer
prognosis.

Pyroptosis is a type of programmed cell death that results in
the release of pro-inflammatory cytokines (Liu et al., 2021).
Pyroptosis is primarily triggered by the cleavage of gasdermin
D (GSDMD) and the activation of NLRP3/caspase-1 (Schneider
et al., 2017;Wei et al., 2020). Pyroptosis has been linked to various
cancers, including liver cancer, cervical cancer, and breast cancer.
(A et al., 2014; Chu et al., 2016; Chen et al., 2021). Ye et al. (2021)
found that PRGs play a significant role in tumor immunity. The
defined pyroptosis-related signature might be utilized to predict
the prognosis of ovarian cancer. In lung cancer patients’ alveolar
macrophages, NLRP3/caspase-1 inflammasome is suppressed
(Lasithiotaki et al., 2018).

Furthermore, the activation of pyroptosis has an inhibitive
effect on lung cancer. Polyphyllin VI has an anticancer action
associated with pyroptosis activation (Teng et al., 2020).
Resibufogenin may suppress lung cancer development and
metastasis by triggering pyroptosis (Yin et al., 2021). GSDMD
downregulation may limit lung cancer cell growth via the EGFR/
Akt signaling pathway. Patients with LUAD who had less
GSDMD expression had a better prognosis (Gao et al., 2018).
As a result, PRGs may have prognostic and therapeutic potential
in LUAD management.

We investigated the role of pyroptosis in the prognosis of
LUAD, utilizing a pyroptosis-related signature in this study. The
established prognostic model might predict LUAD patients’
overall survival (OS) and responses to treatment. This study
would promote the rationale use of immunotherapy in LUAD.

MATERIALS AND METHODS

Data Sources
The Cancer Genome Atlas (TCGA) genomic data for LUAD
samples were obtained from the Genomic Data Commons. Gene
Expression Omnibus (GEO) was used to download gene
expression microarrays of LUAD samples (GSE31210) and
non-small cell lung cancer (NSCLC) samples (GSE37745 and
GSE50081) and lung cancer (GSE30219). The Robust Multichip
Average (RMA) method and R package “affy” normalized
GSE37745 gene expression data. Detailed information of the
cohorts is presented in Supplementary Tables S1, S2.

IMvigor210 was a single-arm phase Ⅱ study that looked into an
anti-PD-L1 agent (atezolizumab) in patients with metastatic
urothelial carcinoma (mUCC) (NCT02108652 and
NCT02951767) (Mariathasan et al., 2018). The R package

“IMvigor210CoreBiologies” obtained all the expression and
clinical data from the IMvigor210 trials. GEO provided RNA-
seq data for a total of 27 advanced NSCLC patients who were
treated with anti-PD-1/PD-L1 (GSE135222).

Variation and Interactions of
Pyroptosis-Related Genes
A total of 47 PRGs were obtained from the study of Song et al.
(2021). The R package “maftools” was used to demonstrate PRG
mutation. The R package “ggpubr” was used to visualize the copy
number variation (CNV) information of PRGs. The R package
“limma” was used to examine the differential expression of PRGs
in tumor samples.

The Pathway Commons database was used to find PRG
protein–protein interactions. Pearson correlation was used to
examine the co-expression status of PRGs (Supplementary Table
S3). Cytoscape software was utilized to visualize the correlation
network.

Identification of Pyroptosis-Related
Subtypes
Based on the pyroptosis genes and R package “pheatmap,”
K-means clustering was used to determine the pyroptosis-
related subtypes (subtypes 1 and 2). The Kaplan–Meier
survival analysis was performed to analyze patient differences
between the two subtypes in conjunction with the log-rank test.
The difference between two subtypes based on the PRG
expression was investigated using principal component
analysis (PCA).

Distinction of Cancer Therapeutic
Signatures Between Subtypes
We obtained 25 cancer treatment-predicted signature sets from
various publications (Sweis et al., 2016; Ayers et al., 2017;
Mariathasan et al., 2018; Kamoun et al., 2020). The R package
“GSVA” was used to calculate the therapeutic signature gene set
enrichment score using gene set variation analysis (GSVA).
Detailed information of 25 cancer treatment-predicted
signature sets is listed in Supplementary Table S4. The one-
sidedWilcoxon rank-sum test was used to analyze the differences
in the therapeutic enrichment scores between subtypes.

Characteristics of the Tumor
Microenvironment
The range of infiltration of 22 immune cells in TCGA LUAD
samples was inferred by the CIBERSORT (Cell-type
Identification by Estimating Relative Subsets of RNA
Transcripts) method (Newman et al., 2015). CIBERSORT can
compute the abundances of specific cell types in a mixed sample
based on the bulk expression. In addition, the ESTIMATE
(Estimation of STromal and Immune Cells in MAlignant
Tumor Tissues Using Expression Data) method was used to
calculate the abundances of immune cells by the R package
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“estimate.”We focused on the mRNA expression of five immune
checkpoints: PD-1, PD-L1, CTLA4, CD47, and BTLA. The one-
sided Wilcoxon rank-sum test was utilized to analyze the
differences between subtypes.

Functional Analysis for Subtypes
The R package “limma” discovered 719 differentially expressed
genes (DEGs) between two subtypes with |log2FC| > 0.5 and p <
0.001. A web-based program, Metascape, was used to perform the
enrichment analysis on 719 DEGs using ontology sources such as
KEGG Pathway, GO, Reactome, and other canonical pathways
(Supplementary Table S5). Then, a selection of enriched terms
with a similarity greater than 0.3 was chosen and shown as a
network plot.

Identification of a Key Module
WGCNA (weighted gene co-expression network analysis) is a
data reduction method and an unsupervised classification
method (Langfelder and Horvath, 2008; Langfelder and
Horvath, 2012). The co-expression network was built using
the Sangerbox 3.0 tool and DEG expression profile.
Module–trait association analysis was used to determine which
co-expression module was the most relevant to the clinical
features. The genes were clustered, and a heatmap was created
to illustrate the relationship between modules and phenotype.

Construction of a Pyroptosis
Subtype-Related Prognostic Model
The least absolute shrinkage and selection operator (LASSO)
approach and Cox regression model were employed to screen the
prognostic genes in the key module. One standard error (SE) over
the minimum threshold was chosen. The R package “glmnet”
managed the entire process. Finally, a seven-gene risk score
formula was developed, and multivariate Cox regression
coefficients were computed using the R package “survival”:
Pyroptosis subtype-related risk score (PSR_score) = (exp
Gene1 * coef Gene1) + (exp Gene2 * coef Gene2) + . . . +(exp
Gene7* coef Gene7).

Survival Analysis
Patients were classified based on the median of their PSR_score.
The R package “survival” used the log-rank test to compare the
survival times of patients with high PSR_score and patients with
low PSR_score. Furthermore, stratified analysis was performed to
determine the protective effect of PSR_score based on the T stage,
N stage, M stage, and tumor stage. Chi-square tests were used to
examine the connections between the PRG score and clinical
factors such as age, gender, T stage, N stage, andM stage. The data
were presented using Kaplan–Meier graphs (Supplementary
Table S1, S2).

Statistical Analysis
The one-sidedWilcoxon rank-sum test was used to determine the
difference between the two subtypes or high- and low-PSR_score
groups. R version 4.1.2 was used for all statistical studies. p < 0.05
was considered statistically significant.

RESULTS

Genetic and Transcriptional Alterations of
Pyroptosis Genes in Lung Adenocarcinoma
Supplementary Figure S1 depicts the analytical process used in
this study. We first explored the landscape of variation in PRGs in
the genome and transcriptome. A relatively high mutation
frequency of PRGs was observed in LUAD (Figure 1A). TP53
exhibited the highest mutation frequency (55%), followed by
NLRP3, NLRP7, and NLRP2. Then, we looked at the link
between TP53 mutation and PRG expression. CHMP7, IRF2,
CASP4, ELANE, BAX, and TIRAP were all downregulated in
TP53 mutation samples (Supplementary Figure S2, p < 0.1).
Following that, we investigated the CNV landscape of PRGs in
LUAD (Figure 1B). Copy number amplification was common in
HMGB1, BAX, CASP3, IRF2, IL18, and GPX4, whereas copy
number deletion was common in GSDMC, GSDMD, AIM2, and
CHMP6.

Furthermore, we investigated the difference in PRG expression
levels between tumor and normal tissues (Figure 1C). A total of
30 (63.83%) PRGs showed differential expression (p < 0.05), with
23 genes showing substantial upregulation and seven showing
significant downregulation in tumor samples.

Identification of Pyroptosis-Related
Subtypes
We built an interaction network to investigate the relationship
between PRGs (Figure 2A). The color of the edges indicated the
five types of protein–protein interactions, and the thickness of the
edges indicated the level of co-expression between PRGs, as
determined by Pearson correlation (Supplementary Table S3).
The network showed a strong relationship between PRGs.

To investigate the heterogeneous features of LUAD further, a
K-means clustering algorithm was used to categorize patients
based on PRG expression profiles. Patients with LUAD were
classified into two subtypes (Figure 2B). Survival analysis
revealed that subtype 1 had a considerably greater overall
survival than subtype 2 (Figure 2C, p = 0.039, log-rank test).
According to principal component analysis (PCA), LUAD
patients had unique PRG expression patterns between two
subtypes (Figure 2D).

Characteristics of the Tumor
Microenvironment and Therapeutic
Evaluation in Distinct Subtypes
The therapeutic differentiation between the subtypes was
investigated, and the GSVA approach was utilized to
determine the score of 25 therapeutic signature sets in TCGA
LUAD data (Figure 3A). A total of 23 (92%) therapeutic
signatures differed significantly between the two subtypes, with
20 therapeutic signature scores in subtype 2 significantly higher
than those in subtype 1 and three therapeutic signature ratings
significantly lower (Figure 3B, p < 0.05). Patients in subtype 2
were found to be more amenable to treatment.
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FIGURE 1 | Genetic and transcriptional alterations of pyroptosis-related genes in LUAD. (A)Mutation frequencies of pyroptosis-related genes in LUAD patients of
TCGA cohort. (B) Frequencies of CNV gain and loss of pyroptosis-related genes in LUAD patients. (C) Expression distributions of pyroptosis-related genes between
tumor and normal samples.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8913014

Zhu et al. Lung Adenocarcinoma and Pyroptosis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 2 | Identification of pyroptosis-related subtypes by clustering. (A) Interactions and co-expression among pyroptosis-related genes in LUAD. The colored
edges represent protein–protein interactions, with the line thickness indicating the strength of the correlation between pyroptosis-related genes. (B) Two heterogeneous
subtypes (subtype 1 and subtype 2) were identified according to unsupervised K-means clustering. (C) Kaplan–Meier curves of OS between subtype 1 and subtype 2.
(D) PCA analysis demonstrating a remarkable difference in expression of pyroptosis-related genes between the two subtypes.
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FIGURE 3 | Distinction of therapeutic signature and TME between the subtypes. (A) Heatmap showed the GSVA score of 25 therapeutic signature gene sets in
TCGA LUAD samples. The therapeutic signature gene sets belong to six categories. (B) Distribution of therapeutic signature score between two subtypes. (C–D)
Abundance of infiltrating immune cell types in two subtypes. (E) Distribution of the ESTIMATE score in two subtypes. (F) Expression levels of five checkpoints in two
subtypes.
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FIGURE 4 | Functional analysis and identification of the co-expression module. (A) Pathway and process enrichment analysis has been conducted for DEGs that
are identified between the subtypes. The graphical representation showed top 20 enrichments with p < 0.01. (B) Enrichment terms with a similarity > 0.3 are connected
by edges. (C–D) Analysis of the scale-free fit index for various soft-thresholding powers and the mean connectivity for various soft-thresholding powers. (E) Clustering
relationships among WGCNA modules. (F) Correlation between modules and clinical features. Blue represents a positive correlation, and white represents a
negative correlation.
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The differentiation of TME between two subtypes is then
evaluated. According to the CIBERSORT algorithm, infiltration
of “B cells naive,” “dendritic cells activated,” “mast cells resting,”
“monocytes,” and “neutrophil plasma cells” were higher in
subtype 1 than in subtype 2 (Figure 3C, p < 0.05). “B cells
memory,” “macrophages M1,” “NK cells resting,”, “T cells CD4
memory activated,” and “T cells CD8” showed significantly lower
infiltration in subtype 1 than in subtype 2 (Figure 3D, p < 0.05).
Furthermore, we investigated the tumor purity differentiation
across the subtypes, finding that the ESTIMATE score, stromal
score, and immune score in subtype 1 were considerably lower
than those in subtype 2 (Figure 3E, p < 0.05). Furthermore, we
investigated the distinction between the subtypes in the ability to
recognize tumor cells and execute immune responses. We looked
at the differential expression of five immunological checkpoints
and discovered that the expression of all the five immunological
checkpoints was considerably greater in subtype 2 than that in
subtype 1 (Figure 3F, p < 0.05). The result indicated that samples
in subtype 2 had a higher level of immune infiltration.

Analysis of Functional Differences Between
Subtypes Based on Differentially Expressed
Genes
To investigate the potential biological activity of the subtypes, we
detected DEGs between the two subtypes, and Metascape
performed enrichment analysis on 719 DEGs (Figures 4A,B).
The DEGs were found to be significantly enriched in a variety of
immune-related pathways and processes, including “leukocyte
activation,” “inflammatory response,” “innate immune
response,” and “positive regulation of immune response”
(Supplementary Table S5).

Then, WGCNA was used to build co-expressed networks
based on the expression of 719 DEGs and identify important
modules linked with clinical traits. The power value for modules
was screened to ensure an average connection and high
independence. The power value in this study was set at 5 as
the soft-thresholding parameter to ensure a scale-free network
(Figures 4C,D). In total, four modules have been identified
(Figure 4E). The module–trait association analysis was used to
discover co-expression modules that were highly relevant to
clinical traits. Figure 4F depicts the relationship between
modules and phenotype. Correlation analysis revealed that the
blue module, which comprises 91 genes, was identified as a
correlation between the prognosis and tumor stage. The top
five highly enriched phrases for blue module genes were
“secretion,” “cellular-modified amino acid metabolic process,”
“epidermis development,” “NABA MATRISOME
ASSOCIATED,” and “malignant pleural mesothelioma”
(Supplementary Figure S3; Supplementary Table S5).

Construction and Validation of the
Prognostic PSR_score
A model was built with seven pyroptosis subtype-related co-
expression prognostic genes, FOSL1, KRT6A, GPR133,
TMPRSS2, PRDM16, SFTPB, and SFTA3, to investigate the

prognostic value of the selected subtype-related co-expression
blue module genes (Figures 5A,B). Then, using the expression of
seven genes, we established a predictive model according to the
multivariate Cox proportional hazard model: PSR_score =
(0.1072 * FOSL1 exp) + (0.09327 * KRT6A exp) + (−0.1144 *
GPR133 exp) + (0.04062 * TMPRSS2 exp) + (−0.1238 * PRDM16
exp) + (−0.02503 * SFTPB exp) + (−0.04079 * SFTA3 exp).

The PSR_score of each patient in TCGA was calculated using
the seven-gene-involved formula. The patients were divided into
two groups using the median as the cutoff value: those with a high
PSR_score and those with a low PSR_score. Patients with a high
PSR_score had a substantially shorter life expectancy (Figure 5C,
p = 6. 8e-10, log-rank test). The area under the curve (AUC) of the
receiver operating characteristic (ROC) curve revealed that
PSR_score correctly predicted mortality (Figure 5D, AUC =
0.679). We then investigated PSR_score’s ability to predict
patient prognosis within clinicopathological subgroups. In
most cancer stages, high PSR_score patients had a
substantially worse OS than low PSR_score patients
(Supplementary Figure S4, p < 0.05, log-rank test).

Following that, we validated the prognosis power of PSR_score
in independent datasets. Survival analysis was carried out in four
GEO lung cancer cohorts (GSE30219, GSE31210, GSE37745, and
GSE50081), and the results revealed that a high PSR_score
indicated a poor prognosis in all GEO datasets
(Supplementary Figure S5, p < 0.1, log-rank test). We
combined four GEO lung cancer cohorts into a big dataset to
confirm the robustness of PSR_score. Similarly, patients with a
high PSR_score had a significantly poor OS (Figure 5E, p = 1.1e-
16, log-rank test), with an AUC of 0.682 (Figure 5F).

Correlation of PSR_score and
Immunotherapy
Pearson correlation analysis was performed to assess the
relationship between PRG_score and the number of immune
cells to study the link between PRG_score and immunological
infiltration. Infiltration of “macrophages M1,” “T cells CD4
memory activated,” “macrophages M0,” “NK cells resting,”
“NK cells activated,” “T cells CD8,” and “dendritic cells
activated” was significantly positively connected with
PRG_score (Figure 6A-G, p < 0.05, Pearson correlation
analysis). Furthermore, ESTIMATE score of high PRG_score
samples was higher than that of low PRG_score samples
(Figure 6H). We also investigated the relationship between the
expression of seven genes in the model and immune cells. We
discovered that the quantity of most immune cells was associated
with the expression of these genes (Figure 6I). In TCGA LUAD
cohorts, the expression of PD-1 and PD-L1 was significantly
higher in high PRG_score samples than in low PRG_score
samples (Figures 6J,K, p < 0.05).

To further explore if the risk score can predict patients’
responses to immunotherapy, we compared OS of patients
with a high PRG_score versus low PRG_score who were
receiving immunotherapy. In IMvigor210 and GSE135222
cohorts, patients with a high PRG_score had a significantly
worse prognosis (Figures 7A,B, p < 0.05, log-rank test). In
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addition, we looked at the differences in immune checkpoint gene
expression between high and low PRG_score groups. PD-L1 and
CD47 in the high PRG_score group of the IMvigor210 cohort
were significantly greater than those in the low PRG_score group
(Figures 7C,D; p < 0.05).

DISCUSSION

Increasing research has proven the role of pyroptosis in cancer
progression (Xia et al., 2019; Fang et al., 2020; Tan et al., 2021).

However, the prognostic potential of pyroptosis in LUAD is still
unknown. The genetic and transcriptional mutations of PRGs in
LUAD were detected in this study. TP53 had the highest
mutation frequency among the mutated genes (Figure 1).
TP53 mutation was linked to the downregulation of PRGs
such as CHMP7, IRF2, CASP4, ELANE, BAX, and TIRAP
(Supplementary Figure S1). By elevating the pyroptotic
level, the transcription factor p53 may be able to suppress
lung cancer cell proliferation (Braden et al., 2014; Zhang
et al., 2019). In LUAD samples, 30 PRGs were differentially
expressed (Figure 1). Based on the 30 DEGs, the patients were

FIGURE 5 | Construction and validation of the prognostic PSR_score by LASSO and COX regression analysis. (A) LASSO coefficient profiles of 91 blue co-
expression module genes. (B) Cross-validation for tuning parameter selection in the LASSO model. (C–D) Log-rank test was employed to assess the difference in OS
between high and low PSR_score samples in TCGA cohorts and ROC curve of the prognostic model. (E–F) Log-rank test was utilized to assess the difference in OS
between high and low PSR_score samples in the integrated lung cancer cohorts and ROC curve of the prognostic model.
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FIGURE 6 | Correlation of PSR_score and immune cell infiltration. (A–G) Positive correlation between PRG_score and immune cells. (H) Distribution of the
ESTIMATE score in high and low PRG_score groups. (I) Correlations between the abundance of immune cells and seven genes in the proposed model. (J–K)
Expression of PD-1 and PD-L1 in high and low PRG_score groups.
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divided into two groups. The OS of subtype 1 is higher than that
of subtype 2 (Figure 2).

The score of 25 therapeutic signature sets was calculated to
investigate the therapeutic differentiation between the two
subtypes. There were 23 therapeutic signatures that differed
between the two subtypes. Patients with subtype 2 responded
well to the treatment (Figures 3A,B). The difference in TME
between the two subtypes was then examined. Compared to
subtype 1, subtype 2 had high immunological infiltration of M1
macrophages, NK cells, CD4+, and CD8+ T cells. Patients with
LUAD have lower numbers of NK cells, CD4+, and CD8+ T cells
(Cui et al., 2021). CD4+ and CD8+ T cells are critical in mediating
antitumor responses. Patients with higher numbers of CD4+ T cells
respond better to PD-1 blockade therapy (Kagamu et al., 2020).
The samples showed greater levels of immune infiltration in
subtype 2. As a result, the variation in immune statuses may
cause a differential prognosis between the two subtypes.

Following that, DEGs between subtypes 1 and 2 were
identified. A total of 719 DEGs were found to be enriched in

immune-related pathways and processes, such as “leukocyte
activation.” A co-expression network was constructed by
WGCNA using these DEGs, and four modules were identified.
The blue module was associated with the prognosis and tumor
stage (Figure 4).

A seven-gene-involved prognosis model was created using
LASSO Cox regression to investigate the prognostic value of
genes in the blue module, comprising FOSL1, KRT6A,
GPR133, TMPRSS2, PRDM16, SFTPB, and SFTA3. The
patients were divided into two groups based on the
prognostic model: those with a high PSR_score and those
with a low PSR_score. Patients in the low PSR_score group
have a better OS than those in the high PSR_score group in
TCGA cohort. The GEO cohorts yielded comparable results
(Figure 5). FOSL1 and GPR133 were investigated for their
roles in LUAD. FOSL1 expression, for example, was found to
be inversely associated with the OS of lung cancer patients,
particularly those with LUAD. FOSL1 induction might
enhance LUAD initiation, whereas FOSL1 deficiency

FIGURE 7 | Prognosis power of PSR_score in patients with immunotherapy. (A–B) Log-rank test was used to assess the difference in OS between high and low
PSR_score samples in IMvigor210 and GSE135222 cohorts. (C–D) Expression of PD-L1 and CD47 in high and low PRG_score groups in the IMvigor210 cohort.
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inhibits LUAD cell proliferation and promotes apoptosis
(Elangovan et al., 2018). The GPR133 levels were found to
be lower in LUAD samples. Higher GPR133 expression was
associated with a better prognosis in LUAD patients. Increased
GPR133 expression in LUAD patients may limit cell
proliferation and tumor progression (Wu et al., 2021).

Then, the correlation between PSR_score and cancer immune
features was evaluated. M1 and M0 macrophages, CD4+ and
CD8+ T cells, and NK cells were all found to be positively linked
with the PRG scores. Higher levels of immunological infection
were associated with higher PRG scores and ESTIMATE scores.
The infection levels of B cells, CD4+ T cells, and neutrophils have
prognostic values for LUAD (Kadara et al., 2017; Ma et al., 2020;
Zhang and Ma, 2021). Furthermore, in the TCGA LUAD cohort,
patients in the high PRG_score group have higher expression
levels of PD-1 and PD-L1 than those in the low PRG_score group
(Figure 6). According to the findings, an increased PD-1 and PD-
L1 expression was associated with a poor prognosis in LUAD
patients (Teglasi et al., 2017; Xia et al., 2017).

Finally, we investigated the predictive value of PSR_score for
immunotherapy response. Patients with a low PRG_score have a
greater OS rate than those with a high PRG_score. Furthermore,
in the IMvigor210 cohort, PD-L1 and CD47 were strongly
expressed in the high PSR_score group (Figure 7). LUAD
TME was a good predictor of response to immune checkpoint
blockade treatment (Wang et al., 2020; Yi et al., 2021). These
findings suggested that LUAD patients with a high PSR_score
had a poor prognosis due to TME. As a result, the pyroptosis-
associated model developed shows predictive potential for
responsiveness to immune checkpoint blockade in LUAD. Our
results investigated the role of pyroptosis in TME remodeling.
Using PRGs, we found a subtype with a poor prognosis, which
provides new insights into locating possible immunotherapy
manufacturers.

CONCLUSION

The current study established a pyroptosis-related signature for
predicting OS and immunotherapy responses in LUAD, which
may lead to new insights into the individualized LUAD therapy.
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