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Transposon debris in ciliate genomes
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The germline genomes of ciliated protists are replete with “junk”
DNA insertions that need to be removed for gene expression. Unlike
introns, these are spliced as DNA. What is their source, and why are
they so abundant? A new study in PLOS Biology supports a classic
model of transposon origins.

A genome encodes all the primary information that DNA-based organisms need through their

life span. Although it has been assumed to be identical in most cells of Metazoa, some animals,

such as nematodes, sea lampreys, and songbirds, contain multiple genomes that usually differ

between germline and somatic cells [1]. Another example of somatic rearrangement is V(D)J

recombination in jawed vertebrates, which permits the production of diverse antibodies and

receptors for adaptive immunity [1]. In addition to these examples in Metazoa, ciliates, which

are microbial eukaryotes, contain 2 distinct genomes packaged in a somatic macronucleus

(MAC) and a germline micronucleus (MIC) within the same cytoplasm. Only the MAC

genome is transcriptionally active during asexual (vegetative) growth. During postzygotic

development, the MAC genome rearranges from a copy of the MIC genome by deleting inter-

nal eliminated sequences (IESs) and other repetitive regions from the DNA, together with

rejoining of flanking MAC-destined segments. Although analogous to RNA splicing, these

rearrangements occur on DNA. Paramecium tetraurelia removes approximately 45,000 IESs

during genome differentiation. Most interrupt coding regions [2]. Therefore, precise elimina-

tion is necessary for proper gene function. This gives rise to a long-standing question in the

field: How did IESs accumulate if their presence is deleterious?

A study published in the current issue of PLOS Biology [3] provides evidence to support a

model proposed by Klobutcher and Herrick in 1997 that linked the origin of IESs to transpos-

able elements (TEs) in ciliate genomes [4]. TEs play a key role in genome rearrangement in

other cells and are occasionally domesticated by the host. A classic example is the origin of

RAG1 recombinase by domestication of a Transib transposase [2]. In humans, mutations in

the PiggyBac TE-derived 5 (PGBD5) gene trigger aberrant genome rearrangement in some

childhood cancers, emphasizing the importance of regulating genes derived from transposon

domestication [5]. In ciliates, multiple lines of evidence support the role of TE-derived genes

in DNA elimination. In Oxytricha trifallax, over 1 billion years divergedAU : Anabbreviationlisthasbeencompiledforthoseusedthroughoutthetext:Pleaseverifythatallentriesarecorrect:from Paramecium,

tens of thousands of MIC-limited TEs from the Tc1/mariner family are expressed during

development, and silencing of transposase genes via RNA interference (RAU : PleasenotethatRNAihasbeendefinedasRNAinterferenceinthesentenceInOxytrichatrifallax; over1billionyearsdivergedfrom::::Pleasecheckandcorrectifnecessary:NAi) stalls DNA

elimination [6]. The Paramecium and Tetrahymena lineages domesticated transposase genes
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from the piggyBac family, and their silencing also prevents correct DNA elimination [7,8].

Further, an analysis of 20 Paramecium IESs suggested that they could be decayed transposons

[9]. The IESs share an 8-bp consensus 50-TAYAGYNR-30 on the boundary, similar to

sequences flanking Tc1/mariner transposons [9]. Based on these observations, it is necessary to

revisit the Klobutcher and Herrick model.

Like a whimsical M.C. Escher metamorphosis print, the model describes 4 stages to trans-

form transposons into IESs: invasion, bloom, abdicate, and fade or “IBAF” (Fig 1). An autono-

mous transposon first invades the host genome, bringing with it its encoded transposase to cut

and paste itself. Once there are enough transposon insertions in gene regions, it would become

beneficial for the host to permit sufficient translation of transposase protein to excise these

Fig 1. Klobutcher and Herrick’s original proposal [4] that most IESs are the decayed remnants of transposons. This

model is abbreviated as “IBAF” to describe the gradual conversion of transposons into IESs in 4 steps: invasion, bloom,

abdicate, and fade. Invasion: One or more transposons, perhaps of the IS630-Tc1-mariner superfamily (green box), invaded

the host ciliate germline genome, and many transposons may still be active to this day. Active transposons encode a

transposase (brown circles) that permits their excision from or movement within the genome. Bloom: Transposon expansion

via replicative transposition across the genome. Their encoded transposase/excisase proteins, capable of acting on each other,

become a common good, contributing to the excision of transposons other than one’s self. Abdicate: A gene (green hashed

box) that encodes the excisase becomes placed under a host promoter for stable and regulated expression, but loss of

mobility. In some cases, this gene may also be retained in the MAC (e.g., PiggyMac in Paramecium tetraurelia). Fade:

Mutation accumulation in most transposons gradually converts them into short IESs, nonautonomous elements that retain

motifs to permit their recognition and cleavage from the genome by host excisases. IAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutFig1:Pleaseverifythatallentriesarecorrect:BAF, invasion, bloom, abdicate, and

fade; IES, internal eliminated sequence; MAC, macronucleus; MIC, micronucleus.

https://doi.org/10.1371/journal.pbio.3001354.g001
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insertions. The germline MIC provides a safe haven for transposons to flourish (bloom) as

long as they are safely eliminated before the formation of the MAC. Indeed, modern ciliate

germline genomes may still be prone to transposon invasion, but the trait of ciliate nuclear

dimorphism itself may have evolved as an evolutionary strategy to corral them. Some hosts

could eventually domesticate or repurpose a transposase gene by placing it under control of

their own promoters, which would relax the selection pressure on the transposase ORF

encoded in TEs, hence abdicating their role as excisase and allowing more mutations to accu-

mulate across the crippled TE. The decayed TEs may rapidly atrophy to short IESs and lose the

protein-coding ability (fade), as long as their boundary sequences can still be recognized and

removed efficiently. While this model may explain the origin of IESs, there has been mostly

indirect evidence to support it (e.g., the resemblance of sequences flanking IESs to TE target

site motifs [10]). Sellis and colleagues provide compelling evidence that thousands of IESs

derive from TEs by using comparative genomics within the Paramecium genus [3].

In this study, Sellis and colleagues annotated and dated IESs in 9 diverse species of Parame-
cium [3]. They sequenced both genomes in each species and annotated IESs by comparing

short MIC reads to the MAC genome assemblies. IESs were classified as old, intermediate, or

recent on a phylogeny. To explore whether IESs derived from TEs, they clustered IESs to reveal

shared ancestry. While the majority of IESs are unique, 24 families contained at least 10

homologous IESs across the Paramecium species. Notably, 4 families are homologous to the

IS630-Tc1-mariner transposon superfamily. Moreover, 97.5% of these clustered, mobile IESs

seem to be recent insertions, much higher than the 9.5% of overall IESs. This is expected, as

older IESs accumulate substitutions, obscuring homology. Two species of different subclades,

Paramecium sonneborni and Paramecium tredecaurelia, were found to share several mobile

IES families, likely the result of horizontal gene transfer.

Old IESs are less often under epigenetic control than new ones [3]. In P. tetraurelia, 70% of

IESs require histone methylation or small RNAs for removal, while the rest are independent of

either pathway [11]. The length distribution also differs between older and newer IESs. Older

IESs are much shorter, compatible with the “fade” step of the model. Moreover, some con-

served IESs encode MIC-limited genes [3,12] or provide a “switch” to regulate gene

expression.

This study demonstrates a workflow for studying IES evolution within a lineage. In the

future, it will be illuminating to compare mobile IES families across clades. Unlike the consen-

sus “TA” flanking IESs in Paramecium, IESs in some other lineages are flanked by diverse

microhomologous sequences, although the shortest repeats still resemble transposon ends or

target site duplications [10], harkening back to likely transposon origins. Long-read genome

assemblies may provide a more complete portrait of transposon–IES evolution in ciliates.

Sellis and colleagues suggest that IESs dispersed across the genome within a clade may

derive from TEs. Identifying the initial invading TE insertions is an open question in the IBAF

model. This model is also similar to the one proposed for intron evolution. Recent evidence

demonstrated that DNA transposons have generated hundreds to thousands of introns in 2

species separated by 1 billion years [13]. Both programmed DNA deletion and intron splicing

offer strategies to remove harmful insertions from functional genes. This opportunity for accu-

rate deletion assuages their deleteriousness, permitting a stealth bloom of TE insertions, which

may also beget innovation, permitting the evolution of domestication [7,8] or mutualism [2,6]

between host and genomic parasite.
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